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inTRODUCTiOn

The curative efficiency of allogeneic hematopoietic cell transplantation (HCT) is considerably damp-
ened by the graft-versus-host disease (GVHD) that leads to significant mortality and morbidity. 
Donor T cell subsets are recognized as the main cellular mediators and effectors of acute GVHD 
(aGVHD). T cell interactions with antigen-presenting cells (APC) of both host and donor origin are 
required to achieve the status of “alloreactive activated T cell” generating the cytotoxic attack against 
target organs. However, a preliminary awakening of APC by exogenous or endogenous alarm signals 
from distressed/injured cells is critical to recruit and drive an efficient T cell activation. Endogenous 
signals are known to be released after the conditioning regimen (1). They consist in “damage-
associated molecular patterns” (DAMP) that are not discussed here. Exogenous signals are a group 
of widespread natural microbial patterns called “pathogen-associated molecular patterns” (PAMP) 
and are supposed to be translocated from the microbiota in case of body natural barrier weakness, 
especially gut mucosa. We will focus here on the role of a major component of the Gram-negative 
bacteria, the lipopolysaccharide (LPS), which is one of the most studied PAMP in immunology and 
in the aGVHD pathophysiology.

THE ROLE OF LpS in GVHD iniTiATiOn

Both the conditioning regimen (chemotherapy and/or total body irradiation) and the subsequent 
tissue injuries induced by GVHD compromise gastrointestinal tract integrity. This promotes LPS 
translocation in the systemic circulation. Hill and colleagues have first highlighted the role of 
conditioning regimen in LPS leakage in the blood circulation and demonstrated that higher dose 
of irradiation in recipient mice correlated with more lethal GVHD. In this work, highly irradiated 
mice showed enhanced pro-inflammatory cytokine (TNF-α and IL1-β) production associated 
with higher LPS blood concentrations (2). The cellular damages induced in the gut during GVHD 
have been assessed. Intestinal stem cells and Paneth cells are implicated in the regeneration of the 
intestinal epithelium and the production of antimicrobial peptides (AMP), respectively. These cell 
subsets were identified as primarily targets of gut GVHD in experimental models (3, 4), inducing 
loss of gut integrity. Moreover, inhibition of AMP production by Paneth cells favored outgrowth 
of Escherichia coli in the gut flora, which represents the major source of LPS. This creates a vicious 
circle due to the pro-inflammatory role of LPS (4). Finally, electron microscopy analysis of colon 
lesions allowed direct visualization of tight junction impairment during aGVHD, which leads to 
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paracellular permeability (5, 6). Further studies identified the 
importance of gut barrier integrity to avoid PAMP leakage. Thus, 
IL-23 has been shown to have a significant impact on colonic 
inflammation during GVHD. In an experimental model using 
donor IL-23-deficient APC, reduction of gut damages was 
demonstrated along with marked reduction of circulating LPS 
(7). In human setting, a Phase I/II randomized study addressed 
the prevention of mucositis by palifermin (keratinocyte growth 
factor) administrated after HCT in order to limit LPS transloca-
tion. Even though a reduced severity of mucositis was shown, 
the study failed to demonstrate significant effect on GVHD 
occurrence/severity (8).

After transplant, LPS is considered as a systemic mediator that 
binds to the toll-like receptor 4 (TLR-4)/myeloid differentiation 
factor 2 (MD2) complex at the surface of innate immune cells 
in GVHD target organs such as skin, liver, and gut. This inter-
action amplifies the secretion of pro-inflammatory cytokines  
(i.e., IL-1β, TNF-α, and IL-6) in a process called “cytokine storm” 
(9). Another effect of the LPS binding on TLR-4 expressed by 
APC is the upregulation of major histocompatibility complex and 
costimulatory molecule expression on the APC surface. When 
the TLR-4 signaling pathway is inhibited either with a TLR-4 
antagonist administrated to recipient mice (10) or in recipient 
mice deficient in TLR-4 (11), the severity of aGVHD decreases 
significantly. This suggests the importance of LPS in GVHD 
mechanisms. However, TLR-4 is the receptor for other ligands, 
including both PAMP and DAMP (12).

Considering the microbiota as the unique source of LPS and 
its key role in GVHD pathophysiology, one can easily suggest that 
the beneficial effect on aGVHD of gut decontamination in recipi-
ent mice demonstrated by van Bekkum et al. (13) is presumably 
due to reduced LPS translocation. Nowadays, this assumption 
needs to be integrated with recent identifications of the wide 
interactions between intestinal epithelium, gut flora, and the 
immune system based on new molecular tools (14).

innOVATiVE inSiGHTS On LpS TO 
RECOnSiDER “FORMER” DATA

Most informative data published on LPS structure and functions 
have been issued from E. coli-derived LPS. LPSs are amphipathic 
molecules comprising three chemically distinct regions: the 
O-antigen, the core oligosaccharide, and the lipid A. The lipid A 
consists in a variable amount of fatty acid chains (mostly from 
three to six). This hydrophobic moiety binds to TLR-4, and there-
fore, carries the inflammatory properties mostly demonstrated 
during infections with Gram-negative bacteria and in endotoxin 
shock (15, 16). TLR-4 triggering by LPS transduces a down-
stream pathway implicating signal adaptor proteins, MyD88 
and TRIF. We highlighted the critical role of the phospholipid 
transfer protein (PLTP), a member of the lipid transfer/LPS 
 binding protein (LT/LBP) family, in LPS metabolism and 
beyond in sepsis (17). Because PLTP mediates the transfer of 
a spectrum of plasma lipids and the antioxidant tocopherol on 
lipoproteins (18), PLTP was first found to be involved in lipid 
homeostasis and also in atherosclerosis. Among the amphipathic 

molecules affected by the transfer properties of PLTP, LPS has 
been identified (19). This specific function displayed by PLTP 
allows scavenging of LPS from the circulation to biliary secre-
tion and has been called the “reverse LPS transport.” It has been 
demonstrated in vitro a lower production of pro-inflammatory 
cytokines in LPS-stimulated splenocytes from wild-type (WT) 
mice compared to those of splenocytes from PLTP-deficient 
(PLTP−/−) mice in the presence of lipoproteins as “LPS-carrier.” 
This experiment sustained the role of PLTP in LPS metabolism. 
The “reverse LPS transport” was also addressed in the context 
of endotoxin shock, and more recently in the setting of sepsis: 
PLTP−/− mice exhibited a significant higher mortality rate than 
WT mice (17, 20). Thus, proteins from the LT/LBP family should 
be considered in the GVHD pathophysiology.

The liver is the main organ involved in LPS clearance. Recent 
data demonstrated that liver sinusoidal endothelial cells are 
faster LPS scavenger than Küpffer cells (21). In this work, the  
“LPS-carrier” function of high-density lipoprotein (HDL) is 
shown to provide a protective role in inflammatory responses by 
enhancing liver detoxification of LPS. This strengthens the “reverse 
LPS transport” hypothesis discussed above. Liver dysfunction  
(i.e., iatrogenic liver diseases, sinusoidal obstruction syndrome, 
liver infections, or aGVHD) occurs frequently after HCT. These 
damages might be a cause for defective LPS clearance. Ruutu et al. 
have shown that there were improved survival and decreased 
severity of GVHD in patients treated with a hydrophilic bile acid, 
ursodeoxycholic acid (UDCA) after HCT (22). The reason of 
this beneficial activity has not been explored so far. It might be 
interesting to assess the impact of UDCA on LPS elimination by 
the liver in this setting.

Previous data on the role of LPS in experimental aGVHD 
pathophysiology are based on the Limulus amebocyte lysate 
(LAL) assay to measure circulating LPS. This LAL assay 
relies on activation of an enzymatic cascade activated by LPS 
binding. This assay presents a limitation, since it detects only 
the biologically active free LPS and is unable to quantify the 
“neutralized” LPS carried by lipoproteins. An available HPLC/
MS/MS method has been set up for the direct quantitation of 
total amounts of LPS in plasma, encompassing LPS integrated 
within lipoprotein complexes (23). Briefly, this HPLC-based 
method can determine concentrations of specific hydroxylated 
fatty acids from the lipid A. Combined with the LAL assay, 
this innovative method constitutes a relevant and practical 
approach to evaluate the ratio of biological active endotoxins 
and neutralized part of LPS in biological samples. Although the 
endotoxin activity of LPS is the “visible tip” of the iceberg in 
GVHD, quantification of whole LPS with the HPLC method 
associated with the LAL assay gives the opportunity to assess 
the potency of LPS detoxification by the PLTP in experimental 
GVHD models and further in transplanted patients. Single 
nucleotide polymorphisms (SNP) of PLTP have been identified, 
but not systematically associated with a variation of its function 
based on HDL concentrations (24, 25). However, these studies 
did not consider the impact of SNP on the LPS transfer activ-
ity of PLTP. This should be explored in the context of HCT: 
GVHD severity might be predicted by prior assessment of the 
PLTP capacity to eliminate LPS. Finally, data on “reverse LPS 
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transport” provide a powerful rational to investigate promising 
strategies of GVHD prophylaxis by modulating PLTP activity to 
promote LPS elimination.

Previous data on the role of LPS in experimental GVHD 
pathophysiology assume that LPS measured using the LAL 
assay is a homogeneous pro-inflammatory entity. To the best 
of our knowledge, the LPS used experimentally to demonstrate 
its deleterious impact on GVHD severity is extracted from  
E. coli. We propose to reconsider the assumption that LPS/TLR-4 
interactions result in a unique agonist pro-inflammatory reac-
tion in GVHD, since heterogeneity of its sources and structures 
exist. Indeed, the lipid A structure is highly conserved for a given 
bacterial species, but varies among the different species regarding 
the length of fatty acid chains, their number, their acylation, or 
phosphorylation pattern. The HPLC method mentioned above  
allows the identification and quantification of different struc-
tures of lipid A in biological samples. This heterogeneity in 
the structure of the lipid A leads to differential effects on the 
innate immune response (26). A recent study identified the 
different immunogenicity of LPS according to the variation of 
the microbiome during the three first early years; this work was 
initially performed to validate the “hygiene hypothesis” that 
might explain susceptibility to autoimmune diseases in differ-
ent populations. The authors found intrinsic strain diversity in 
microbiome between distinct geographic areas. The LPSs from 
different main strains were tested in vitro by functional assays: 
LPS extracted from Bacteroides dorei was demonstrated to be 
an inhibitor of the powerful immune stimulation induced by  
E. coli-derived LPS (27). This antagonism between Bacteroides LPS 
and E. coli LPS has already been reported several years ago (28).  
The microbiome and its interaction with immune system are 
implicated in the occurrence and severity of GVHD. For instance, 
Jenq and colleagues identified the genus Blautia associated with 
less severe GVHD and non-relapse mortality. This work studied 
the associations of bacterial genera with GVHD-related mortal-
ity in patients by linear discriminant analysis. Interestingly, in 
their analysis, the Bacteroides genus was significantly associated 
with less GVHD-related mortality (29). Antibiotics are used to 
treat febrile aplasia after HCT. A greater loss of the Bacteroidetes 
phylum in patient gut microbiome was shown with the piperacil-
lin–tazobactam association compared to aztreonam or cefepime. 
This piperacillin–tazobactam regimen was associated with a  
higher rate of GVHD-related mortality (30). The potential 
causality of less Bacteroidetes in patient gut microbiome has not 
been explored further in this work. One may hypothesize that the 
LPS of certain microbiota strains (e.g., Bacteroides) plays a major 
role after HCT as a regulator of inflammatory signals delivered 
by E. coli-derived LPS. Considering this links between dysbiosis 
and GVHD, fecal microbiota transplantation has been recently 
reported as a promising tool to restore symbiosis and improve 
steroid refractory GVHD in two cohorts of seven patients  
(31, 32). It is still unclear how the inoculation of a global “healthy” 
microbiota can modulate GVHD. So far, the beneficial effect of 
microbiome-derived metabolites after HCT has been identi-
fied for gut epithelium healing (6). According to this model, it 
would be interesting to assess the source and immunogenicity 
of microbiota-derived LPS in patients with or without GVHD. 

The aim would be to identify specific LPS candidates that are 
associated with better outcome, and then, propose on this iden-
tification transplantation of selected bacterial species to prevent 
or treat GVHD.

COnCLUSiOn

Convincing data on the role of LPS as a major initiator/ampli-
fier of aGVHD have been published so far. However, LPS/
TLR-4 interactions have never been established as a specific 
target translated in human for the treatment or prophylaxis of 
aGVHD. Reduced intensity conditioning regimens have been 
hypothesized to limit GVHD incidence through a decrease in 
inflammation. Another radical approach developed in 1970s was 
the gut decontamination to suppress bacteria as the source of 
LPS. This concept has been validated in mice and widely applied 
in patients. However, gut decontamination was efficiently 
performed in human, and results of such approach on GVHD 
occurrence were disappointing. Nowadays, several research axes 
address the improvement of gut integrity after HCT to limit LPS  
translocation.

We would like to highlight that a side of LPS physiology has 
been neglected in GVHD pathophysiology but should deserve 
attention. First, metabolism of LPS and especially its detoxifica-
tion by PLTP and lipoproteins have been demonstrated to be 
critical in sepsis shock. This so-called “reverse LPS transport” 
seems powerful to modulate endotoxin activity of LPS after HCT 
and decrease GVHD severity. Furthermore, new tools such as the 
HPLC-based method are available to explore this hypothesis by 
quantifying LPS anchored in lipoprotein complexes which are not 
detected by the classical LAL assays. Second, LPS produced by the 
whole microbiome is a heterogenic entity with potential opposite 
activity on innate immune cells. Considering this assumption, 
a part of the mechanistic link between microbiota and GVHD 
target organs might be elucidated. We suggest here the benefi-
cial role of Bacteroides phylum in GVHD outcome in patients, 
because through its LPS, it may exert an antagonist inflammatory 
activity on E. coli-derived LPS.
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