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Quadratic Objective Functions for Dichromatic Model Parameters Estimation

In this paper, we present a novel method to estimate dichromatic model parameters from a single color image. Estimation of reflectance, shading and specularity has many applications such as shape recovery, specularity removal and facilitates classical image processing and computer vision tasks such as segmentation or classification. Our method is based on two successive and independent constrained quadratic programming steps to recover the parameters of the model. Compared to recent methods, our approach has the advantage to transform a complex inverse problem into two parralelizable optimization steps that are much easier to solve. We have compared our method with recent works in the field to assess its robustness and accuracy on accessible datasets. The advantages of our method are shown by analyzing qualitatively and quantitatively the resulting image decompositions.

I. INTRODUCTION

An image acquired by a sensor is the result of reflections of light on a surface. Reflection of light is either diffuse or specular. Diffuse reflection is due to subsurface scattering while specular reflection is a mirror-like reflection. Thus, a challenging task is to isolate the contributions of these phenomena. The resulting decomposition into intrinsic images gives useful information about the shape, the color of an object and the geometry of the scene. For example, the color of an object can be used for segmentation or classification and the shape and the geometry give 3D information about the environment from 2D images. The modelling of surface reflectance and the estimation of photometric invariants is a topic of significant importance and several reflectance models have been proposed. Because of its simplicity, the dichromatic model is widely used in the literature.

The dichromatic model expresses the idea that an image can be split into a diffuse and a specular part. The diffuse component is the result of light being reflected equally in all directions and the specular part is the light being exactly reflected in the viewing direction. The model is mathematically defined by the equation:

𝐼(𝑢, 𝜆) = 𝑙(𝜆)(𝑔(𝑢)𝑆(𝑢, 𝜆) + 𝑘(𝑢))

(1

)
where 𝐼 is the input image, 𝑙 is the spectrum of the illuminant multiplied by the sensor sensitivity, 𝑔 is the shading factor, 𝑘 is the specular coefficient and 𝑆 is the reflectance image. 𝑢 and 𝜆 denote respectively the pixel location and the wavelength.

In expression [START_REF] Robles-Kelly | Imaging spectroscopy for scene analysis[END_REF], the diffuse part is 𝑙(𝜆)𝑔(𝑢)𝑆(𝑢, 𝜆) and the specular part is 𝑙(𝜆)𝑘(𝑢). At specular pixels (when 𝑔 is low compared to 𝑘) the surface acts like a mirror and the pixel color is directly proportional to 𝑙. Inversely, if 𝑘 is low, the pixel color is proportional to the multiplication of the color of the object 𝑆 and 𝑙.

Most of the time the spectrum of the illuminant can be known and (1) becomes:

𝑅(𝑢, 𝜆) = 𝐼(𝑢, 𝜆) 𝑙(𝜆) = 𝑔(𝑢)𝑆(𝑢, 𝜆) + 𝑘(𝑢). ( 2 
)
This simplification shows that the reflectance spectra 𝑆 is known within a scalar and an offset. 𝑙 can be obtained thanks to one of the reference methods taken from literature like the White-Patch method, the Grey-World method or the Grey-Edge method [START_REF] Robles-Kelly | Imaging spectroscopy for scene analysis[END_REF] [START_REF] Huynh | A solution of the dichromatic model for multispectral photometric invariance[END_REF]. New deep learning based algorithms compete these methods like the Convolutional Neural Network of Bianco et al. [START_REF] Bianco | Color constancy using cnns[END_REF] or the mixed pooling neural networks of Fourure et al. [START_REF] Fourure | Mixed pooling neural networks for color constancy[END_REF].

The dichromatic model was first proposed by Shafer in 1985 for modeling dielectric objects [START_REF] Shafer | Using color to separate reflection components[END_REF]. This model is actually a special case of the Bidirectional Reflectance Distribution Function (BRDF) simplified with the assumption of a uniform illumination across the spatial domain. BRDF is the common basis of various phenomenological models like the lambertian model (Lambert 1760) or the Wolff model, used to explain reflections on smooth dielectric surfaces (Wolff 1994) [START_REF] Robles-Kelly | Imaging spectroscopy for scene analysis[END_REF]. Barron et al. have presented the Shape, Illumination and Reflectance From Shading (SIRFS) model in [START_REF] Barron | Shape, illumination, and reflectance from shading[END_REF]. SIRFS is different from the previous list because it is parametrized with a rendering engine, which produces a log-shading image from a depth map, and a spherical-harmonic model of illumination.

Even if the dichromatic model is rather simple, its inversion is still complex: the inversion process is an underdetermined problem. One single image could have been obtained by a large combination of illumination, shapes and reflectances as explained by Barron et al. [6] and Adelson et al. [START_REF] Adelson | The perception of shading and reflectance[END_REF]. As a consequence, it is common to increase the amount of data available, for example by combining multiple views of the scene. Using multiple images makes easier the separation of diffuse and specular components. For example, Umemaya et al. use a rotating polarizer to acquire several images and then apply the Independent Component Analysis (ICA) on the images assuming the probabilistic independence between diffuse and specular components [START_REF] Umeyama | Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images[END_REF]. Feris et al. use multiflash images to reduce specularity [START_REF] Feris | Specular reflection reduction with multi-flash imaging[END_REF].

Another way to overcome the underdetermination is to work on a single image. With a single RGB image, the methods are often based on neighborhood analysis: Tan et al. have described a specular-to-diffuse mechanism which is applied on local neighborhood having the same reflectance [START_REF] Tan | Separating reflection components based on chromaticity and noise analysis[END_REF], [START_REF] Tan | Separating reflection components of textured surfaces using a single image[END_REF]. Fast recovery of intrinsic images from a single image already exists with the methods of Yoon et al. [START_REF] Yoon | Fast separation of reflection components using a specularity-invariant image representation[END_REF] or Yang et al. [START_REF] Yang | Real-time specular highlight removal using bilateral filtering[END_REF]. Yoon et al. create specular-free 2-channel images and Yang et al. use guided filtering to remove specular [START_REF] He | Guided image filtering[END_REF].

As explained previously, solving the equation ( 2) is an underdetermined problem, there are more unknowns than equations. There is exactly 𝑁 𝑝 × 𝑁 𝑐 equations and 𝑁 𝑝 + 𝑁 𝑝 × 𝑁 𝑐 + 𝑁 𝑝 unknowns with 𝑁 𝑝 as the number of pixels and 𝑁 𝑐 as the number of channels. Other single image based approaches use constraints to overcome the underdetermination. Barron et al. have expressed priors on the illumination, the reflectance and the shape of an object [15] [6]. These constraints act as soft constraints and even if we are not using the same model, we use some of his ideas to build our own optimization algorithm. For example, Barron et al. explain that surfaces tend to be smooth, thus the image 𝑔 is also a smooth image. This idea is confirmed by Robles-Kelly et al. [START_REF] Gu | A quadratic optimisation approach for shading and specularity recovery from a single image[END_REF] and Huynh et al. [START_REF] Huynh | Optimal solution of the dichromatic model for multispectral photometric invariance[END_REF]. They use respectively the derivative of 𝑔 and the mean curvature to express the smoothness of 𝑔. Another interesting idea is that there is a small number of reflectances in an image, the palette used for an image tends to be small [START_REF] Barron | Shape, illumination, and reflectance from shading[END_REF].

Recent work have expanded the recovery of intrinsic images to multispectral images. For example, Fu et al. [START_REF] Fu | Specular free spectral imaging using orthogonal subspace projection[END_REF] have applied Orthogonal Subspace Projection to remove specularities. Robles-Kelly and Huynh [START_REF] Robles-Kelly | Imaging spectroscopy for scene analysis[END_REF], [START_REF] Huynh | A solution of the dichromatic model for multispectral photometric invariance[END_REF], [START_REF] Huynh | Optimal solution of the dichromatic model for multispectral photometric invariance[END_REF] have also worked on multispectral images. They have proposed to minimize objective functions based on the dichromatic model to recover intrinsic images and have used the decomposition for skin recognition, material clustering or specularity removal.

We have developed a method, based on the dichromatic model to recover the shading, the specular and the reflectance intrinsic images from a single color image. In this method, the image is processed in two independent steps that are two simple constrained quadratic programming.

The rest of the paper is organized as follow: the method used to recover the intrinsic images is developed in section II and the comparative results are given in section III. [START_REF] Gu | A quadratic optimisation approach for shading and specularity recovery from a single image[END_REF]. They solve the decomposition problem in two successive steps: first, recovering 𝑔 (𝑁 𝑝 unknowns), then recovering 𝑘 (𝑁 𝑝 unknowns). We also solve the problem in two quadratic programming steps which are detailed in parts B and C. The difference with Gu et al. is that our two steps are independent and thus, there is no error propagation and the steps can be parallelized.

II. DETAILS OF THE METHODS

Gu et al. have used quadratic objective functions because of their simplicity in

The section is organized in three parts. First a spectral similarity measure is described in part A. This spectral similarity measure is essential for the understanding of the constrained quadratic programming steps described in parts B and C.

A. Spectral similarity measure

The spectral metric must be scaling invariant. The Spectral Angle Mapper (SAM) is scaling invariant and works well in our case. SAM is defined as the arccosine of the dot product between two spectrum 𝑆 1 and 𝑆 2 divided by their norms [START_REF] Galal | Learnable hyperspectral measures[END_REF]:

𝑆𝐴𝑀 (𝑆 1 , 𝑆 2 ) = arccos( ∑ 𝑁𝑐 𝑖=1 𝑠 1𝑖 𝑠 2𝑖 √ ∑ 𝑁𝑐 𝑖=1 𝑠 2 1𝑖 √ ∑ 𝑁𝑐 𝑖=1 𝑠 2 2𝑖 ) (3)
where 𝑠 1𝑖 and 𝑠 2𝑖 denote the i-th value of the vector 𝑆 1 or 𝑆 2 respectively.

SAM returns a value between 0 and 𝜋 2 ; 0 meaning that the spectra are identical within a scaling factor. In practice, the similarity between two spectra 𝑆 1 and 𝑆 2 is estimated using

𝜁(𝑆 1 , 𝑆 2 ) = exp( -𝑆𝐴𝑀(𝑆1,𝑆2) 2

𝑟

) with 𝑟 as the bandwidth parameter. The negative exponential scales the values between 0 and 1 and reinforces the similarity when the two spectra are close.

B. Recovering the shading factor

The first step of our method is to recover the shading factor 𝑔. To begin with, the case where two pixels 𝑢 and 𝑣 belong to the same material is considered. They have the same reflectance 𝑆 i.e.

∀𝜆, 𝑆(𝑢, 𝜆) = 𝑆(𝑣, 𝜆).

(4)

Interestingly, the ratio of the 𝑠𝑡𝑑 of 𝑅 can be expressed simply with the ratio of the shading factor 𝑔:

𝛼 𝑢,𝑣 = 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) 𝑠𝑡𝑑(𝑅(𝑣, :), 𝜆) = 𝑔(𝑢)𝑠𝑡𝑑(𝑆(𝑢, :), 𝜆) 𝑔(𝑣)𝑠𝑡𝑑(𝑆(𝑣, :), 𝜆) = 𝑔(𝑢) 𝑔(𝑣) . (5) 
This equality suggests that it is possible to write the objective function as the weighted square of the difference of 𝑔(𝑢) and 𝑔(𝑣)𝛼 𝑢,𝑣 :

𝑓 1 (𝑔) = ∑ 𝑢 ∑ 𝑣∈𝑁 (𝑢) 𝜁 𝑢,𝑣 (𝑔 𝑢 -𝑔 𝑣 𝛼 𝑢,𝑣 ) 2 (6) 
where 𝑁 (𝑢) denotes the neighborhood of 𝑢, 𝜁 𝑢,𝑣 is an abbreviation for 𝜁(𝑅(𝑢, :), 𝑅(𝑣, :)), 𝑔 𝑢 and 𝑔 𝑣 stand respectively for 𝑔(𝑢) and g(v). This objective function can be improved by considering the case where the pixels 𝑢 and 𝑣 do not belong to the same material. As 𝑔 tends to be smooth, it is encouraged to minimize the square of the difference of 𝑔(𝑢) and 𝑔(𝑣)

𝑓 2 (𝑔) = ∑ 𝑢 ∑ 𝑣∈𝑁 (𝑢) (1 -𝜁 𝑢,𝑣 )(𝑔 𝑢 -𝑔 𝑣 ) 2 . ( 7 
)
There is a difficult case when two pixels 𝑢 and 𝑣 are grey: the standard deviation is close or equal to zero and thus the ratio 𝛼 𝑢,𝑣 is not calculable. Moreover, according to (2), a grey pixel is a pixel for which 𝑅(𝑢, 𝜆) is constant for every wavelength and thus cannot be separated into a diffuse part and a specular part as it only depends on 𝑢 and not on 𝜆. In practice, when the two pixels are grey, the ratio of the means is used instead of the ratio of the standard deviations:

𝛽 𝑢,𝑣 = 𝑎𝑣𝑔(𝑅(𝑢, :), 𝜆) 𝑎𝑣𝑔(𝑅(𝑣, :), 𝜆) . ( 8 
)
This affirmation actually corresponds to the assumption that there is no specularity on grey objects i.e. that 𝑘 = 0. This leads to the third part of the objective function:

𝑓 3 (𝑔) = ∑ 𝑢 ∑ 𝑣∈𝑁 (𝑢) 𝜁 𝑢,𝑣 𝜁 𝑢 𝜁 𝑣 (𝑔 𝑢 -𝑔 𝑣 𝛽 𝑢,𝑣 ) 2 (9) 
with 𝜁 𝑢 = 𝜁(𝑅(𝑣, :), 1) and 𝜁 𝑢 = 1-𝜁(𝑅(𝑣, :), 1). The symbol 1 is a vector of ones. 𝜁 𝑢 indicates whether a spectrum is nearly grey (value close to 1) or not (value close to 0). The final objective function is written so that all previously defined cases are well encompassed: 𝑓 1 and 𝑓 2 are rewritten with an additionnal factor that removes grey pixels:

𝑓 1 (𝑔) = ∑ 𝑢 ∑ 𝑣∈𝑁 (𝑢) 𝜁 𝑢,𝑣 𝜁 𝑢 𝜁 𝑣 (𝑔 𝑢 -𝑔 𝑣 𝛼 𝑢,𝑣 ) 2 , ( 10 
)
𝑓 2 (𝑔) = ∑ 𝑢 ∑ 𝑣∈𝑁 (𝑢) (1 -𝜁 𝑢,𝑣 𝜁 𝑢 𝜁 𝑣 -𝜁 𝑢,𝑣 𝜁 𝑢 𝜁 𝑣 )(𝑔 𝑢 -𝑔 𝑣 ) 2 . ( 11 
)
Finally, the objective function is written as the sum of the three functions previously defined:

𝑓 𝑠ℎ𝑎𝑑𝑖𝑛𝑔 (𝑔) = 𝑓 1 (𝑔) + 𝑓 2 (𝑔) + 𝑓 3 (𝑔). (12) 
As this objective function is the sum of quadratic functions, 𝑓 𝑠ℎ𝑎𝑑𝑖𝑛𝑔 is also quadratic which means that the objective function can be written in matrix form as:

𝑓 𝑠ℎ𝑎𝑑𝑖𝑛𝑔 (𝑔) = 𝒈 𝑡 × 𝑯 𝒔𝒉𝒂𝒅𝒊𝒏𝒈 × 𝒈 (13)
where 𝑯 𝒔𝒉𝒂𝒅𝒊𝒏𝒈 is a square 𝑁 𝑝 × 𝑁 𝑝 matrix. Because 𝑯 𝒔𝒉𝒂𝒅𝒊𝒏𝒈 is not symmetric, it is better to symmetrize this matrix using

𝑯𝒔𝒉𝒂𝒅𝒊𝒏𝒈+𝑯𝒔𝒉𝒂𝒅𝒊𝒏𝒈 𝑡 2
instead of 𝑯 𝒔𝒉𝒂𝒅𝒊𝒏𝒈 . An advantage of this formulation is that 𝑯 𝒔𝒉𝒂𝒅𝒊𝒏𝒈 is a sparse matrix because we are only working on a square neighborhood around each pixel.

Note that without any constraints, a solution of (13) could be trivially the zero vector. Note also that, in the dichromatic model there could be any balancing factor between 𝒈 and 𝑺 i.e. if 𝑺 * and 𝒈 * are solution of the inverse problem, then 𝑎𝑺 * and 𝒈 * 𝑎 are also solution of the problem for any scalar 𝑎. Thus, the sum of the elements of 𝒈 can be fixed to a certain constant 𝑐 with the constraint:

𝒈 𝑡 × 1 = 𝑐.
Moreover, if a mask is associated with the image to invalidate some pixels, the constraint becomes 𝒈 𝑡 × 𝒎 = 𝑐 and 𝒈 𝑡 × 𝒎 = 0 where 𝒎 is a binary vector and 𝒎 is the binary inverse of 𝒎. 𝑔 is finally obtained by solving:

⎧        ⎨        ⎩ 𝑔 * = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔 𝑓 𝑠ℎ𝑎𝑑𝑖𝑛𝑔 (𝑔) subject to 𝑔 * 𝑡 × 𝑚 = 𝑐 𝑔 * 𝑡 × 𝑚 = 0 𝑔 * ≥ 0 (14) 

C. Recovering the specular factor

The second step of our method is to recover the specular factor 𝑘. The method described below is independent from the previous calculus of 𝑔, and thus, the two optimizations are perfectly interchangeable or can be parallelized to speed up the algorithm.

To begin, let us express the ratio between 𝑅 and its standard deviation as 𝐽:

𝐽(𝑢, 𝜆) = 𝑅(𝑢, 𝜆) 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) (15) = 𝑔(𝑢)𝑆(𝑢, 𝜆) 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) + 𝑘(𝑢) 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) (16) = 𝑆(𝑢, 𝜆) 𝑠𝑡𝑑(𝑆(𝑢, :), 𝜆) + 𝑘(𝑢) 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) . ( 17 
)
We also define a new variable ℎ as:

ℎ(𝑢) = 𝑘(𝑢) 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) -𝑎𝑣𝑔(𝐽(𝑢, :), 𝜆) (18) 
As written in (4), if two pixels 𝑢 and 𝑣 belong to the same material, they have the same reflectance and the difference ℎ(𝑢) -ℎ(𝑣) is zero: 

ℎ(𝑢) -ℎ(𝑣) = 𝑘(
(20) = 0. ( 21 
)
Thus our objective function can be written as the square of the difference between ℎ(𝑢) and ℎ(𝑣) weighted by 𝜁 𝑢,𝑣 to express the similarity of the material and 𝜁 𝑢 𝜁 𝑣 to express the fact that the pixels cannot be grey:

𝑓 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 (ℎ) = ∑ 𝑢 ∑ 𝑣∈𝑁 (𝑢) 𝜁 𝑢,𝑣 𝜁 𝑢 𝜁 𝑣 (ℎ(𝑢) -ℎ(𝑣)) 2 . ( 22 
)
This objective function is also quadratic and can be written as:

𝑓 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 (ℎ) = 𝒉 𝑡 × 𝑯 𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 × 𝒉 (23)
with 𝑯 𝒔𝒑𝒆𝒄𝒖𝒍𝒂𝒓 a 𝑁 𝑝 × 𝑁 𝑝 symmetric matrix.

Because of the physical constraint, 𝑘 is bounded below by 0, all elements of 𝑘 must be positive. Moreover, the consideration of the minimum of 𝑅 over the wavelength

𝑚𝑖𝑛(𝑅(𝑢, 𝜆), 𝜆) = 𝑔(𝑢)𝑚𝑖𝑛(𝑆(𝑢, 𝜆), 𝜆) + 𝑘(𝑢)

(24)

shows that 𝑘(𝑢) is also upper-bounded by 𝑚𝑖𝑛(𝑅(𝑢, 𝜆), 𝜆).

Here, the physical positivity constraint bounds the values of 𝑘(𝑢) between 0 and 𝑚𝑖𝑛(𝑅(𝑢, :), 𝜆). Thus, according to [START_REF] Fu | Specular free spectral imaging using orthogonal subspace projection[END_REF] ℎ(𝑢) is also bounded:

-𝑎𝑣𝑔(𝐽(𝑢, :), 𝜆) ≤ ℎ(𝑢) ≤ 𝑚𝑖𝑛(𝑅(𝑢, :), 𝜆) 𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) -𝑎𝑣𝑔(𝐽(𝑢, :), 𝜆).

(25) ℎ is obtained by solving the following system:

⎧       ⎨       ⎩ ℎ * = 𝑎𝑟𝑔𝑚𝑖𝑛 ℎ 𝑓 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 (ℎ) subject to -𝑎𝑣𝑔(𝐽, 𝜆) ≤ ℎ * ℎ * ≤ 𝑚𝑖𝑛(𝑅, 𝜆) 𝑠𝑡𝑑(𝑅, 𝜆) -𝑎𝑣𝑔(𝐽, 𝜆) (26) 
Once 𝑔 and ℎ are recovered, 𝑘 can be easily obtained with

𝑘(𝑢) = (ℎ(𝑢) + 𝑎𝑣𝑔(𝐽(𝑢, :), 𝜆))𝑠𝑡𝑑(𝑅(𝑢, :), 𝜆) (27) 
and 𝑆 with

𝑆(𝑢, :) = 𝑅(𝑢, :) -𝑘(𝑢) 𝑔(𝑢) . ( 28 
)
To summarize, we have built two quadratic objective functions, to recover 𝑔, 𝑘 and indirectly 𝑆. The minimum of these functions can easily be found thanks to quadratic programming solvers.

III. RESULTS AND DISCUSSION

To assess the robustness of our method, we have compared it to current methods in the literature namely Barron et al. [START_REF] Barron | Shape, illumination, and reflectance from shading[END_REF], Tan and Ikeuchi [START_REF] Tan | Separating reflection components of textured surfaces using a single image[END_REF], Yang et al. [START_REF] Yang | Real-time specular highlight removal using bilateral filtering[END_REF], and two others developed by Robles-Kelly et al. [START_REF] Gu | Efficient estimation of reflectance parameters from imaging spectroscopy[END_REF] and [START_REF] Huynh | A solution of the dichromatic model for multispectral photometric invariance[END_REF]. In the next parts, we will use the following abbreviations to name each method:

• LS for Least Square and corresponds to [START_REF] Gu | Efficient estimation of reflectance parameters from imaging spectroscopy[END_REF] • KL for Robles-Kelly et al. [START_REF] Huynh | A solution of the dichromatic model for multispectral photometric invariance[END_REF] • TI for Tan and Ikeuchi et al. [START_REF] Tan | Separating reflection components of textured surfaces using a single image[END_REF] • Barron for Barron et al. method [START_REF] Barron | Shape, illumination, and reflectance from shading[END_REF] • Yang for Yang et al. method [START_REF] Yang | Real-time specular highlight removal using bilateral filtering[END_REF] LS employs shapelets to recover the shading of an image. KL is based on objective functions with a regularization term that enforces the smoothness of 𝑔. TI creates specular-free images to separate reflection components of textured surfaces. Barron use priors to recover the most probable illumination, shape and reflectance and Yang uses guided image filtering to iteratively remove specularities.

We have tested the different algorithms on the Massachusetts Institue of Technology (MIT) intrinsic dataset [START_REF] Grosse | Ground truth dataset and baseline evaluations for intrinsic image algorithms[END_REF], the same used by [START_REF] Barron | Shape, illumination, and reflectance from shading[END_REF] and [START_REF] Gu | A quadratic optimisation approach for shading and specularity recovery from a single image[END_REF]. This dataset provides 20 images with a ground truth image for the reflectance 𝑆, the shading 𝑔 and the specular 𝑘. To interpret the results, we compare qualitatively the obtained images 𝑔, 𝑆 and 𝑘 with their respective ground truth 𝑔 𝑡𝑟𝑢𝑒 , 𝑆 𝑡𝑟𝑢𝑒 and 𝑘 𝑡𝑟𝑢𝑒 and results are also quantitatively compared.

A. Qualitative analysis

Table II shows six images from the dataset. For the sake of diversity, this subset is chosen to present images with smooth color changes (the apple and the pear) and with abrupt color changes (the sun, the phone, the panther and the raccoon). Similarly, the apple, the pear and the green part of the phone show clear specular spot while the sun, the panther and the raccoon do not.

𝑙𝑜𝑔(𝑘) images are shown in table III. It is easier to compare the logarithm of 𝑘 images because the logarithm increases the dynamic on low level pixels and thus reveals more details than 𝑘 images. The three columns show respectively the results for the apple, the pear and the phone. For the apple and the pear, LS and our method seem to be the most efficient while TI overestimate the specular reflection, the image is saturated. For the phone, all methods are misled by the abrupt color changes. KL and Yang are also misled by the white part of the phone, which is not specularity. Note that the method based on the SIRFS model from Barron et al. is not presented as it does not provide a 𝑘 image.

Table IV presents shading images 𝑔 given by all methods. In this table, the advantages of our method appear: considering the apple and the pear, the specular spot still appear for LS, KL and Yang while our method is more robust and is not corrupted by specularities. Considering the panther and the raccoon, our method makes successfully disappear the stars, ripples and other patterns while preserving the details of the shape like the hair of the raccoon. The same conclusion can be applied on the phone and the sun: strong gradients appear for methods LS, KL and Yang that are not due to the shape of the object but are induced by color changes.

The smoothness term that was introduced in equation ( 7) have positive effects on our results and allows a real improvement compared to the recent works that have been done in the field.

B. Quantitative analysis

In addition to the qualitative analysis, the calculus of metrics between 𝑔, 𝑆 and 𝑘 is essential to prove the quality of the method.

As explained in part II.B there can be any scaling factor a between 𝑔 and 𝑆. Thus, we need to normalize 𝑔 and 𝑔 𝑡𝑟𝑢𝑒 so that the sum of all pixels is 1 to be sure that they are scaled in the same way. After normalization, the Sum of Squared Errors (SSE) is computed to compare the two images.

For 𝑆 and 𝑆 𝑡𝑟𝑢𝑒 the mean value of the SAM angles is computed. SAM is already a scaling invariant metric thus, there is no need to normalize 𝑆. Finally, for 𝑘 and 𝑘 𝑡𝑟𝑢𝑒 , we compute the SSE without normalizing the images. Our method outperforms the other methods for the calculus of 𝑔 and 𝑘: concerning 𝑔 the proposed method has the lowest error with an SSE of 0.384 × 10 -5 , with KL (0.504 × 10 -5 ) in second and LS (0.780 × 10 -5 ) in third position. This is consistent with the results shown previously in table IV.

Results on the SSE of 𝑘 are also favorable to our method with a SSE of 0.017×10 13 that is at least ten times lower than LS (0.208 × 10 13 ). In practice, this difference appears because LS, KL, TI and Yang have significant errors on images with low specular level. This explains why, on average, the error is lower for our method.

Finally the results for 𝑆 show that our method is only ranked third with a mean angular error of 0.030 radians (1.7 degree). However, it should be noted that the mean angular error is quite low for all methods excepting for TI which probably suffers from bad cross-plateform adaptation.

IV. CONCLUSION

In this paper, we have presented a novel method to recover the intrinsic parameters of the dichromatic model using a single color image. This method has better or similar accuracy to recent advances in the field, especially for the recovery of the shading factor 𝑔. Adding smoothness constraints helps to improve the quality of the shading recovery. The specific architecture of our algorithm, i.e. two simple constrained quadratic programming steps, open opportunities in the field to create memory and time efficient algorithms for the recovery of intrinsic images. The introduced method was also built with the idea to be directly transposable to multispectral or hyperspectral images. Therefore, the extension of the proposed method to this type of image forms part of our future work. 

  Table I summarizes the results by giving the mean value over the 20 images of the MIT dataset.

TABLE II EXAMPLES

 II OF IMAGES EXTRACTED FROM THE MIT DATABASE

TABLE III QUALITATIVE

 III RESULTS FOR SPECULAR REFLECTION 𝑘

	Apple	Pear	Phone
	Grund truth		
	LS		
	KL		
	TI		
	Yang		
	Our method		

TABLE IV QUALITATIVE

 IV RESULTS FOR THE SHADING FACTOR 𝑔

	Apple	Pear	Sun	Phone	Panther	Raccoon
	Grund truth					
	LS					
	KL					
	TI					
	Barron					
	Yang					
	Our method					
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