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BIFURCATIONS IN THE ELEMENTARY DESBOVES FAMILY

   

Introduction and result

It is a classical result due to Lyubich [START_REF] Lyubich | Some typical properties of the dynamics of rational maps[END_REF] and Mané-Sad-Sullivan [START_REF] Mané | On the dynamics of rational maps[END_REF] that, for a family of rational maps, the continuity of the Julia set (in the Hausdorff topology) with the parameter is equivalent to the holomorphic motion of the repelling periodic points and of the Julia set itself. This allows one to decompose the parameter space of the family into the stability locus (where such holomorphic motions exist) and its complement, the bifurcation locus. De Marco [START_REF] Demarco | Dynamics of rational maps: a current on the bifurcation locus[END_REF] considered the canonical current dd c L on the parameter space (where L is the Lyapounov function, given by the integration of the logarithm of the Jacobian with respect to the equilibrium measure, i.e. the unique measure of maximal entropy) and proved that it is exactly supported on the bifurcation locus. Thus, stability is equivalent to the harmonicity of the Lyapounov function. An important feature of this picture is that the stability locus is dense in the parameter space.

This description was recently extended to higher dimension by Berteloot, Dupont, and the first author in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]. It is proved there that the complex laplacian of the Lyapounov function still detects the bifurcation of the repelling cycles and that, up to a zero measure subset with respect to the equilibrium measure, the Julia set moves holomorphically precisely out of the support of dd c L. This lead to a coherent definition of stability and bifurcation in general dimension. Two main questions were left open in that work: the equivalence between the above stability conditions and the Hausdorff continuity of the Julia set, and the possible density of stability. The goal of this paper is to present an example answering by the negative to both of the above questions. More precisely, we prove the following.

Main Theorem. The family of endomorphisms of P 2 given by

f λ = -x(x 3 + 2z 3 ) : y(z 3 -x 3 + λ(x 3 + y 3 + z 3 )) : z(2x 3 + z 3 )
with λ ∈ C * satisfies the following properties:

(1) the Julia set of f λ depends continuously on λ, for the Hausdorff topology;

(2) the bifurcation locus coincides with C * .

The family above (referred to as the elementary Desboves family) was studied by Bonifant-Dabija [START_REF] Bonifant | Self-maps of P 2 with invariant elliptic curves[END_REF] and Bonifant-Dabija-Milnor [START_REF] Bonifant | Elliptic curves as attractors in P 2 . Part 1: Dynamics[END_REF], who revealed the dynamical richness of these maps. One of their main properties is that the small Julia set J 2 (λ) of f λ (the support of the equilibrium measure) and its large Julia set J 1 (λ) (the complement of the Fatou set, which coincides with the support of the The first author was partially supported by the ANR project LAMBDA, ANR-13-BS01-0002 and by the FIRB2012 grant "Differential Geometry and Geometric Function Theory", RBFR12W1AQ 002.

Green current) coincide (see Theorem 2.2). We can thus refer to any of them as the Julia set. It would be interesting to know whether the bifurcations in our example are robust. Let us mention that Romain Dujardin has announced the existence of several mechanisms leading to such phenomena.

The paper is organized as follows. In Section 2 we describe in details the Desboves maps and collect (in Theorem 2.2) the properties that we shall need in the construction, deducing in particular the continuity of the Julia set and the presence of bifurcations. This already proves that continuous and holomorphic dependence of the Julia set on the parameter are not equivalent in general dimension. Then, in Section 3 we prove that the bifurcation locus coincides with C * , by proving that Misiurewicz parameters (see Definition 3.1) are dense in the parameter space. The appendix is devoted to the proof of Theorem 2.2. Since in our particular setting the proof can be simplified with respect to the work by Bonifant, Dabija and Milnor, we include it for sake of completeness.

Elementary Desboves maps

In this section we define and give the main properties of the elementary Desboves maps. See [START_REF] Bonifant | Self-maps of P 2 with invariant elliptic curves[END_REF] and [START_REF] Bonifant | Elliptic curves as attractors in P 2 . Part 1: Dynamics[END_REF] for a more detailed description. We start considering the classical Desboves map given by

f D := x(y 3 -z 3 ) : y(z 3 -x 3 ) : z(x 3 -y 3 ) .
This is a rational map on P 2 , with non-empty indeterminacy locus. The important feature we are interested in is the following: the map f D leaves invariant a pencil of elliptic curves and in particular the Fermat curve C := {x 3 + y 3 + z 3 = 0}. We will now consider a well-chosen perturbation of f D , still leaving the curve C invariant. A natural way to do this is to consider the following Desboves family (studied in [START_REF] Bonifant | Elliptic curves as attractors in P 2 . Part 1: Dynamics[END_REF]), parametrized by (a, b, c) ∈ C 3 . We set Φ(x, y, z) := x 3 + y 3 + z 3 for convenience. The Desboves family is thus given by f a,b,c := x(y 3 -z 3 + aΦ) : y(z 3 -x 3 + bΦ) : z(x 3 -y 3 + cΦ) .

By construction, every such map leaves invariant the Fermat curve C. Moreover, f a,b,c is actually a well defined endomorphisms of P 2 (i.e., its indeterminacy locus is empty) with (a, b, c) avoiding the union of the seven hyperplanes abc(a

+ b + c)(a + 1 -b)(b + 1 -c)(c + 1 -a) = 0.
We will now specialize the parameters in order to recover a last property that we shall need in the sequel: we want every element of our perturbation to preserve a pencil of lines (i.e., to be elementary, see [START_REF] Dabija | Algebraic and geometric dynamics in several complex variables[END_REF]). This can be done by specializing the coefficients a = -1 and c = 1. We thus get the following definition (we rename the parameter b to λ). Definition 2.1. Let λ ∈ C. An elementary Desboves map is a map of the form

f λ = -x(x 3 + 2z 3 ) : y(z 3 -x 3 + λ(x 3 + y 3 + z 3 )) : z(2x 3 + z 3 ) .
The elementary Desboves family is the holomorphic family f :

C * × P 2 → C * × P 2 given by f (λ, z) := (λ, f λ (z)).
When λ = 0, the map f λ is an endomorphism of P 2 . With λ = 0, the map f 0 has an indeterminacy locus equal to the point ρ 0 := [0 : 1 : 0]. Moreover, we have f -1 λ ({ρ 0 }) = ({ρ 0 }) for every λ ∈ C * . So, f can also be seen as a family of endomorphisms of P 2 \ {ρ 0 }, parametrized by λ ∈ C.

We denote by P the pencil of lines passing through the point ρ 0 . For every λ ∈ C, f λ preserves P and leaves invariant the coordinate lines X := {x = 0}, Y := {y = 0}, Z := {z = 0}, and the Fermat curve C. The line Y is transversal to P. Hence, the action on P can be identified to the restriction g of f λ to Y , which is independent from λ. To be more precise, by construction the restriction h of f λ to C is independent from λ. It lifts to a map of the form z → αz + β on C and a simple computation of the multiplier at a fixed point gives that α = -2. Hence, h has degree 4 and is uniformly expanding. If π : P 2 \ {ρ 0 } → Y denotes the projection along P on Y then π semiconjugates g to h, i.e. π • h = g • π. Therefore, the map g is a degree 4 Lattès map. An explicit computation gives that, in the coordinate w := x z , the map g takes the form

(1) w → -w w 3 + 2 2w 3 + 1 .

It has 3 critical points, all with double multiplicity, which are given by [1 : 0 :

ω j ],
where ω is a primitive third-root of 1 and j ∈ {0, 1, 2}. It is worth pointing out that these three points are mapped by g to the three (fixed) points of intersections between Y and C, [1 : 0 : -ω j ]. Since the intersection of C and Y are transverse, and the dynamics is expansive on both curves, each of these points is repelling for

f λ , λ ∈ C.
In the next Theorem we collect the properties of the elementary Desboves maps that we shall need in the sequel. The first statement in the Main Theorem is then a consequence of Theorem 2.2.

Corollary 2.3. Let (f λ ) λ∈C * be the elementary Desboves family. Then the Julia set depends continuously on λ for the Hausdorff topology.

Proof. As the equilibrium measure depends continuously on λ, its support J 2 (λ) varies lower semicontinuously with the parameter for every family of endomorphisms of P 2 (see [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]). It is thus enough to prove that, in the elementary Desboves family, this dependence is also upper semicontinuous. This is equivalent to prove that the set ∪ λ {λ} × J 2 (λ) is closed in the product space C * × P 2 . This immediately follows since its complement Ω is the basin of attraction of C * × {ρ 0 } in the product space, which is open. More precisely, if (λ 0 , z 0 ) ∈ Ω then by Theorem 2.2, z 0 is in basin of ρ 0 for f λ0 . Therefore, there exists an open subset U of P 2 included in this basin such that f λ0 (U ) ⊂ U and z 0 ∈ U . Hence, if V ⊂ C * is a small neighborhood of λ 0 then f λ (U ) ⊂ U for all λ ∈ V, i.e. V × U ⊂ Ω.

Remark 2.4. In our setting, the point ρ 0 has to be thought of as the point at infinity, and the Julia set shares a lot of similarities with the filled Julia set of a polynomial map. In particular, being the Julia set J 2 (λ) the complement of the "basin at infinity" of f λ , the above proof is essentially the same of the classical fact that the filled Julia set depends upper semicontinuously on the parameter.

We study now the critical set C λ of the maps f λ . This is a curve in P 2 of degree 9. More precisely, in homogeneous coordinates the Jacobian of f λ is equal to Jac(f λ ) = 8(x 3 -z 3 ) 2 (-x 3 + z 3 + λ(4y 3 + x 3 + z 3 )).

The term (x 3 -z 3 ) gives the three lines L j passing thought ρ 0 and [1 : 0 : ω j ], with j ∈ {0, 1, 2}, respectively, each with multiplicity 2. This corresponds to the critical set of the Lattès map g. The other terms gives a (possibly non irreducible) curve of degree 3, given in homogeneous coordinates by

C λ := {-x 3 + z 3 + λ(4y 3 + x 3 + z 3 ) = 0}. We thus have C λ = C λ ∪ (L 0 ∪ L 1 ∪ L 2 ).
Since C λ has degree 3, it intersects Y in three points. These are given by the points [x : 0 : z] with (x, z) solution of (1 + λ)z 3 + (λ -1)x 3 = 0. For λ = 1, we get the point [1 : 0 : 0] = Z ∩ Y (as a triple solution). Analogously, for λ = -1 we get the point [0 : 0 : 1] = X ∩ Y . Otherwise, we have the three points [w : 0 : 1], where w 3 = 1+λ 1-λ . So, every point w ∈ Y except the six points [1 : 0 : ±ω j ] (i.e., the critical points for the Lattès map and their images, which are always repelling for f λ , see above) there exists a λ = 0 such that w ∈ C λ ∩ Y . Moreover, the description above implies the following observation. 

:= ∪ λ∈V C λ ∩ Y is open in Y .
For λ = 0 the critical set is very special: it is reduced to the union of the three lines L i , each with multiplicity 3. Thus, the intersection of C 0 with Y is again given by the three points [1 : 0 :

ω j ].
Finally, we study the two intersection points x 0 := [0 : 0 : 1] = X ∩ Y and z 0 := [1 : 0 : 0] = Z ∩ Y . We focus on x 0 , since the arguments are the same for z 0 . Since both the lines X and Y are fixed, the point x 0 is a fixed point. Since the restriction of f to Y is a Lattès map, the differential of f at x 0 has one repelling eigenvalue. To compute the other one, notice that the restriction of f λ to X has the form (in the coordinate t := y z )

(2) t → (1 + λ)t + λt 4 .

In particular, the point ρ 0 corresponds to the superattracting fixed point at infinity. The differential at 0 (corresponding to x 0 ) being (1 + λ), we get that x 0 is a repelling fixed point for |1 + λ| > 1. The analogous computation on z 0 gives that z 0 is repelling if and only if |1 -λ| > 1. In particular,

(3) for every λ = 0 one among x 0 and z 0 is repelling.

Remark 2.6. Observe that the transverse multiplier 1 + λ at x 0 can almost be chosen arbitrarily. If 1 + λ satisfies the Brjuno condition, the system f λ admits a Siegel disc (see [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]) passing through x 0 . By Theorem 2.2, this disc is contained in the support of the equilibrium measure. This answers to a question stated in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF]. A different example of this phenomenon was given by the first author in [START_REF] Bianchi | Motions of Julia sets and dynamical stability in several complex variables[END_REF]. For other values of λ, it can give a parabolic petal or an attracting disc in J 2 (λ). It is even possible to have a set of positive Lebesgue measure covered by such attracting discs, see [BDM07, Theorem 6.3] and [START_REF] Taflin | Invariant elliptic curves as attractors in the projective plane[END_REF]. In particular, the small Julia set has positive measure for these parameters.

Misiurewicz parameters and bifurcations

In this section we prove that the bifurcation locus of the elementary Desboves family coincides with the parameter space C * , completing the proof of the Main Theorem. By [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF], Misiurewicz parameters (as defined below) are dense in the bifurcation locus. We will thus prove that these parameter are dense in C * . Recall that C f and C λ denote the critical set of the family f and of f λ , respectively. We shall set C n f := f n (C f ) and C n λ := f n λ (C λ ). Definition 3.1. A parameter λ 0 ∈ C * is called a Misiurewicz parameter if there exist a neighbourhood N λ0 ⊂ C * of λ 0 and a holomorphic map σ : N λ0 → P 2 such that:

(1) for every λ ∈ N λ0 , σ(λ) is a repelling periodic point;

(2) σ(λ 0 ) is in the Julia set of f λ0 ;

(3) there exists an n 0 such that (λ 0 , σ(λ (1) c 1 is a critical point for f λ1 ;

0 )) ∈ f n0 (C f ); (4) σ(N λ0 ) f n0 (C f ).
(2) f n1 λ1 (c 1 ) = N . Since N is repelling (and thus contained in the Julia set, by Theorem 2.2), to prove that λ 1 is a Misiurewicz parameter it is enough to check that N is not persistently contained in f n1 (C f ). This follows from Lemma 3.3 below, and the proof is completed as V can be chosen arbitrarily small. Lemma 3.3. The points x 0 = [0 : 0 : 1] and z 0 = [1 : 0 : 0] are not persistently contained in any set C n λ .

Proof. Since for every λ ∈ C we have f -1 λ (ρ 0 ) = {ρ 0 }, we can see the family as a family of endomorphisms of P 2 \ {ρ 0 }, with parameter space C. We still denote by C n λ and C n f the iterates of the critical sets. Assume, for sake of contradition, that there exists a n 0 such that x 0 ∈ C n0 λ for every λ ∈ C * . Since C n0 f is closed, this would imply that x 0 ∈ C n0 0 . But, for every n ≥ 1, we have C n 0 ∩ Y = {[1 : 0 : -ω j ] : j = 0, 1, 2}. This gives the desired contradiction.

Remark 3.4. Theorem 4.6 in [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] states that, in any holomorphic family f of endomorphisms of P k , the set of parameters λ for which P k coincides with the closure of the postcritical set of f λ is dense in any open subset of the bifurcation locus. It follows that, in the elementary Desboves family, this property holds for a dense subsets of parameters in C * . Remark 3.5. It follows from [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] that, for a dense subset of parameters λ ∈ C * , the map f λ admits a Siegel disc contained in the support of the equilibrium measure.

  Theorem 2.2. [BD02, Proposition 6.16] Let λ ∈ C * . If R(λ) denotes the closure of the repelling periodic points of f λ then (1) J 1 (λ) = J 2 (λ) = R(λ); (2) the Fatou set coincides with the basin of the superattracting fixed point ρ 0 = [0 : 1 : 0].

  Lemma 2.5. Let V be an open subset of C. Then the set W

  Theorem 3.2. Let f be the elementary Desboves family. Then Misiurewicz parameters are dense in C * .Proof. Let λ 0 ∈ C * . If V ⊂ C * issmall enough open neighbourhood of λ 0 , by (3) one of the two points [0 : 0 : 1] and [1 : 0 : 0] is repelling. Call N this point. By Lemma 2.5, the setW := ∪ λ∈V C λ ∩ Y is open in Y .Since the preimages of N by g are dense in Y , there exists a λ 1 ∈ V, a point c 1 ∈ Y and a number n 1 such that:

Appendix A. Proof of Theorem 2.2

This section consists of a simplified proof, in our setting, of Theorem 2.2. The original proof can be found in [START_REF] Dabija | Algebraic and geometric dynamics in several complex variables[END_REF][START_REF] Bonifant | Self-maps of P 2 with invariant elliptic curves[END_REF][START_REF] Bonifant | Elliptic curves as attractors in P 2 . Part 1: Dynamics[END_REF].

Lemma A.1. For every λ = 0, the exceptional E set of f λ is reduced to the point ρ 0 .

Proof. Since the point ρ 0 is backward invariant, it is contained in the exceptional set. Let us prove the other inclusion. The intersection of E with the invariant line X = {x = 0} must be reduced to ρ 0 (the exceptional set for the restriction, by (2)). So, if E were of dimension 1, it had to be a line passing thought ρ 0 . This is excluded since the exceptional set of the Lattès restriction g to Y is empty. Once we know that E has dimension 0, the fact that is reduced to ρ 0 again follows since the exceptional set of g is empty.

Lemma A.2. There exists a repelling point r 0 on the curve C contained in the small Julia set J 2 (λ).

Proof. Since the intersection of C and Y are transverse, and the dynamics is expansive of both curves, every intersection point of C and Y is repelling. Take as r 0 any such point (e.g., the fixed point [1 : 0 : -1]). In order to prove that r 0 ∈ J 2 (λ) we prove that, given any sufficiently small open neighbourhood U of r 0 , we have (4)

Indeed, take any small ball V disjoint from ρ 0 and intersecting the small Julia set J 2 (λ). By (4), preimages of V must accumulate r 0 . Since J 2 (λ) ∩ V = ∅, this proves that r 0 ∈ J 2 (λ), as desired.

Let us thus prove the claim (4). Suppose that E := P 2 \ ({ρ 0 } ∪ ∪ n f n λ (U )) = ∅ and take a line l 0 through ρ 0 intersecting E in a point e 0 . Since the exceptional set of the Lattès restriction of f λ to Y is empty, there exists a sequence of preimages of the line l 0 converging to the line l r through ρ 0 and r 0 . This gives a sequence of preimages e n of e 0 that, up to a subsequence, converge to a point ẽ ∈ l r . Since f -1 λ (E) ⊂ E and E is closed in P 2 \ {ρ 0 }, we have ẽ ∈ l r ∩ E. Moreover, ẽ = ρ 0 since ρ 0 is attracting. On the other hand, the point ẽ must be contained in the exceptional set of the restriction of f λ to l r . An explicit computation yields that this exceptional set is reduced to ρ 0 and gives the desired contradiction.

We can now prove Theorem 2.2.

Proof of Theorem 2.2. The first assertion is a consequence of Lemma A.2. Indeed, since backward preimages (in C) of any point in C are dense in this curve, this implies that all the curve C is included in the Julia set J 2 (λ). Since the exceptional set ρ 0 (see Lemma A.1) is not contained in C, preimages of this curve equidistribute (see [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]) the Green current (supported on the large Julia set J 1 (λ)). This gives that the preimages of r 0 ∈ J 2 (λ) are dense in J 1 (λ), yielding J 1 (λ) ⊆ J 2 (λ). The assertion follows since the inclusions J 2 (λ) ⊆ R(λ) ⊆ J 1 (λ) always hold (the first by Briend-Duval equidistribution result [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF]).

The equality between the Fatou set and the basin Ω of ρ 0 simply comes from the fact that f λ is uniformly expanding in the transverse direction to P in P 2 \ Ω.