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ABSTRACT

Segmentation is a critical step for many algorithms, especially for remote photoplethysmography
(rPPG) applications as only the skin surface provides information. Moreover, it has been shown that
the rPPG signal is not distributed homogeneously across the skin. Most of the time, algorithms get
input information from face detection provided by a supervised learning of physical appearance and
skin pixel selection. However, both methods show several limitations. In this paper, we propose a
simple approach to implicitly select skin tissues based on their distinct pulsatility feature. The input
video frames are decomposed into several temporal superpixels from which the pulse signals are ex-
tracted. A pulsatility measure from each temporal superpixel is then used to merge the pulse traces
and estimate the photoplethysmogram signal. Since the most pulsatile signals provide high quality
information, areas where the information is predominant are favored. We evaluated our contribution
using a new publicly available dataset dedicated to rPPG algorithms comparison. The results of our
experiments show that our method outperforms state of the art algorithms, without any critical face or
skin detection.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Photoplethysmography (PPG) is a non-invasive technique
for detecting microvascular blood volume changes in tissues.
Nowadays, PPG is applied ubiquitously in many settings where
a contact PPG sensor (also known as pulse oximeter) is typ-
ically attached to a finger or patched to the skin. Basically,
contact PPG sensors are used to determine the heart rate and
oxygen saturation in blood. The principle of this technology
is actually very simple as it only requires a light source and a
photodetector. The light source illuminates the tissue and the
photodetector measures the small variations in transmitted or
reflected light associated with changes in perfusion in the tis-
sue [1].

However, conventional contact PPG sensors are not suitable
in situations of skin damage or when unconstrained movement
is required. Moreover, it has been shown that pressure of the
conventional clip sensors tends to affect the waveform of PPG
signal because of the contact force between the finger and the
sensor [2].
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With the emergence of camera-based health care monitoring,
remote photoplethysmography (rPPG) has recently been devel-
oped as it allows remote physiological measurements without
expensive and specific hardware. It has been shown recently [3]
that it is possible to recover the cardiovascular pulse wave mea-
suring variations of back-scattered light remotely, using only
ambient light and low-cost vision systems. Since this seminal
work, there has been rapid growth in the literature pertaining to
remote PPG techniques.

Most methods share a common pipeline-based framework
[4, 5, 6, 7]: regions of interest (ROI) are first detected and
tracked over frames, RGB channels are then combined to es-
timate the pulse signal, which is then filtered and analyzed to
extract physiological parameters such as heart rate or respira-
tion rate. An interesting and comprehensive state of the art
paper on PPG and rPPG has been recently proposed by Sun
and Thakor [1]. Microvascular blood volume changes in tis-
sues induce subtle skin color variations over time. This pul-
satile information is mixed in the light reflected by the tissue
with other signals such as incoming light changes or shadow
casting variations due to movements. This mixed signal is then
captured by the camera. This suggests that Blind Source Sep-
aration (BSS) techniques can separate the different sources and
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isolate pulse signal. To this end, a linear combination of RGB
time traces can be estimated maximizing independence of es-
timated sources. Independent Component Analysis (ICA) is a
very common algorithm used in several works [5] or [8]. In
another work, Lewandowska et al. [9] used Principal Compo-
nent Analysis (PCA) and proper channel selection to extract the
rPPG pulse signal. Unlike the BSS-based methods, some other
methods use prior knowledge of the color vectors of the con-
tributing components to control the de-mixing process. We can
cite CHROM [6], PBV [10] or POS [11] algorithms that deter-
mine optimal RGB combinations to retrieve the pulsatile signal.

RPPG estimation methods use the spatially averaged RGB
values of pixels in a Region Of Interest (ROI) to generate a
temporal RGB signal. The selection of ROI is a critical first
step to obtain reliable pulse signals and must contain as many
skin pixels as possible. Several approaches have been proposed
for ROI selection in the video stream. In earlier studies, manual
selection of the ROI have been used [3, 12]. ROI can also be
defined based on the results of classical face detection [8] and
tracking algorithms [13] and possibly refined with a skin pixel
classification [14]. Instead of selecting and tracking face or skin
pixels, some methods focus on smart ROI selection paradigms.
For example, in [15], we proposed to use temporal superpixels
to extract candidate pulse signals which were then merged into
an rPPG signal using pulsatility criteria.Wang et al. [16] have
used the pulsatility criteria to make a robust living skin classi-
fication. In a related work [14], they extracted the rPPG signal
by constructing pixel based rPPG sensors. Lately, Tulyakov
et al. [17] have developed a matrix completion approach in
which several traces from several ROIs are combined using an
optimization procedure. Indeed, the spatial distribution of the
rPPG information allows cross validation and error estimation
between several temporal traces. Most methods cited above use
a supervised segmentation of the ROI as face detection and skin
detection. The proposed method [15] and related work by [18]
present a different approach based on unsupervised pixel clus-
tering. Theses clusters are used to detect living skin areas that
contribute significantly to rPPG information.

Pixels in the ROI are then usually spatially averaged and the
process is repeated for each video frame. The result of this pro-
cess is a time series which is later used to obtain rPPG signal.
It has been shown in several studies that the quality of the ROI
has a direct impact on the quality of the rPPG signal [19]. First,
because a smaller number of skin pixels leads to larger quan-
tized RGB errors, it can be observed that the quality of rPPG
signal deteriorates while down-sampling the ROI. This may be
understood as the reduction of the sensor noise amplitude by a
factor equal to the square root of the number of pixels used in
the averaging process [20]. Second, the quality is also affected
by the percentage of non-skin pixels in the ROI [7]. All rPPG
algorithms suffer from performance degradation when the ROI
is not properly selected. These two remarks are fairly intuitive
but it is actually quite difficult in practice to get a well-defined
ROI, that is stable over time, without performing complex cal-
culations.

Moreover, as shown by [11], the rPPG signal is not dis-
tributed homogeneously across the skin. Some skin regions

(a) (b) (c)

Fig. 1. Pulsatility measures estimated from various temporal superpixels.
(a) input frame, (b) temporal superpixel segmentation and (c) pulsatility
measures (blue means low pulsatility measures and yellow/orange is high).

contain more PPG signal than others. For example, we ob-
served that the signal-to-noise ratio (SNR) of photoplethysmo-
gram signals extracted from forehead or cheekbones are clearly
higher than those obtained from the chin. Figure 1 presents the
SNR of rPPG signals calculated from several skin regions.

To overcome these limitations, we propose a new method that
implicitly selects ROI that represents living skin tissue and that
favors regions of interest where the pulse trace is more predom-
inant. We use the term implicit to differentiate our method with
those that require critical pre-processing steps for ROI selection
and tracking. ROI selection is based on the fact that only the
skin tissue of a living subject generates pulsatility, as opposed
to conventional approaches based on face detection, tracking
and skin segmentation. The input video stream is decomposed
into several temporal superpixels from which pulse signals are
extracted. A pulsatility measure for each temporal superpixel
is then used to merge the pulse traces and estimate the pho-
toplethysmogram signal. This approach can be used with any
rPPG algorithm. In this paper, we experimentally validated the
proposed automatic living skin tissue segmentation for ROI se-
lection using 5 different methods: Green [3], Green-Red [21],
PCA [9], chrominance-based (also known as CHROM) [6] be-
cause this method is definitely one of the most reliable rPPG
methods, and Plane-Orthogonal-to-Skin (called POS) [11].

The closest contribution to our work, to the best of our
knowledge, was done by Wang et al. [18], called Voxel-Pulse-
Spectral (VPS). In order to detect a living subject in a video
using physiological features, VPS extracts voxel-based rPPG
signals, then a similarity matrix is built and matrix decompo-
sition with hierarchical fusion is used to identify and combine
the voxels. Like our approach, VPS does not rely on ROI selec-
tion as a preliminary step. However, our objective is different.
We select and combine the ROIs that allow the estimation of an
rPPG signal using the weigthed fusion framework without any
tedious ROI selection. Moreover, our method uses temporal
superpixels tailored to video data rather than supervoxels such
as in VPS that are designed for 3D volumetric data. In contrast
to supervoxel, object parts in different frames are tracked by the
same temporal superpixel. Guazzi et al. [20] also use the fusion
of several pulse traces but the video is simply divided into con-
tiguous square blocks. The temporal superpixel segmentation
is more suited to rPPG algorithms to handle motion scenarios.

As explained previously in the Introduction, the implicit liv-
ing skin tissue selection method has already been presented in
previous work [15]. In this paper, we propose to extend notice-
ably the experimental study comparing 5 recent state of the art
rPPG algorithms. Moreover, a new dataset dedicated to rPPG



3

Fig. 2. Overview of the proposed method. (1) Input video stream is decomposed into temporally consistent superpixels. (2) Tentative rPPG signal is
extracted from each TSP. (3) A pulsatility measure is estimated for each ROI. Blue signal is the convolution of the periodogram by hsignal and red signal is
the convolution by hnoise. (4) A weighted average of all the tentative rPPG signals is finally computed.

algorithm evaluation has been acquired, and is presented in the
paper and is made publicly available for further comparison
with the community.

The rest of the paper is organised as follows. The method is
described in section 2 with the temporal superpixel segmen-
tation, the pulsatility measure and the signals fusion proce-
dure. Section 3 presents a new publicly available dataset along
with the implemented rPPG methods and the metrics used to
compare our unsupervised superpixel-based ROI selection with
conventional ROI selection. Results and discussions are pre-
sented in section 4 while the conclusion is presented in sec-
tion 5.

2. Method

The overview of the proposed method is shown in Figure 2.
The algorithm can be decomposed into four main steps: (1)
the video stream is first decomposed into temporally consistent
superpixels (later called TSP for Temporal SuperPixels). (2)
Then, a tentative rPPG signal is extracted from each TSP. (3) A
pulsatility measure is estimated for each TSP to find contribu-
tive signals and (4) a weighted average of all the rPPG signals
is computed where the weights are given by the pulsatility mea-
sure.

2.1. Temporal superpixel construction

The first step of our method is the segmentation of the video
stream into temporally consistent superpixels. If a superpixel
is a set of pixels that are local, coherent, and which preserve
most of the structure necessary for segmentation [22], temporal
superpixels can be defined as a set of video pixels that are local
in space and track the same part of an object across time [23].
In this work, we use the TSP method proposed by Chang et
al. [23] which we found to be a good compromise between pre-
cision and speed. This method is based on the Simple Linear
Iterative Clustering (called SLIC) [24] decomposition. It has

been shown that SLIC is very efficient and is among the fastest
superpixel methods [25].

The construction of the TSP is based on an iterative process
that propagate the superpixel construction in a coherent way
from a frame to the next one. The superpixel construction pro-
cess can be summed up as the assignation of a 5-dimensional
feature vector for each pixel, with the x- and y-location coor-
dinate, and the three components of the lab colorspace as in-
troduced by SLIC [24]. Then, the algorithm is performed in
two steps. First, a k-means clustering in order to aggregate
pixels into clusters with a high compacity. Second, enhance
coherence in the clustering by removing isolated pixels and en-
force that every superpixel is a single 4-connected cluster. The
temporal propagation of the clustering is performed by adding
optical-flow information [26] to the process which provides a
dense tracking of the pixel acceleration. This dense tracking
is then used to build a specific kernel called bilateral kernel to
model both smoothness and discontinuities that are consistent
with flows. The cluster deformation is thus highly related to the
motion between frames. From our perspective, this ability to
keep spatial coherence and to track the same skin region over
time is a significant advantage. Indeed, it reduces the input sig-
nal noise due to specular information variations from a region
to another one.

2.2. Pulse signal extraction

To segment contributive clusters, (e.g. skin areas) from non-
contributive ones we construct tentative rPPG signals from ev-
ery TSP. For each video frame, the pixel values in each super-
pixel are spatially averaged. The result of this process is a set
of N RGB time series xc

i (t), where c ∈ {R,G, B} is the color
channel, t is the frame index and i = 1, 2, . . . ,K where K is the
number of TSP:

xc
i (t) =

∑Mi(t)
k=1 Ic

k,i(t)

Mi(t)
(1)
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where Mi(t) is the number of pixels in the ith TSP at time t and
Ic
k,i(t) the kth pixel value at time t and color channel c.

The RGB temporal traces are then pre-processed by normal-
ization, detrended using a smoothness priors approach [27] and
band-pass filtered with a Butterworth filter. The rPPG signal
can be then extracted using any existing method. In this work,
we decided to use the chrominance-based method (also known
as CHROM) [6] because this method is one of the most simple
and reliable rPPG methods. Other rPPG methods have been im-
plemented and evaluated, the results of which are presented in
section 3. CHROM applies simple linear combinations of RGB
channels and obtains a very good performance with low compu-
tational complexity. Let yc

i (t) be the RGB time series obtained
after pre-processing. The CHROM method projects these RGB
values onto two orthogonal chrominance vectors Xi and Yi:

Xi(t) = 3yR
i (t) − 2yG

i (t),

Yi(t) = 1.5yR
i (t) + yG

i (t) − 1.5yB
i (t).

(2)

The pulse signal S i of the ith TSP is finally calculated with
S i(t) = Xi(t) − αYi(t) where αi = σ(Xi)/σ(Yi). Because Xi

and Yi are two orthogonal chrominance signals, PPG-induced
variations will likely be different in Xi and Yi, while motion
affects both chrominance signals identically.

2.3. Pulsatility measure
Only the skin tissue of a living subject exhibits pulsatility,

therefore pulse signals calculated from some superpixels only
contain noise (on non-skin areas). Figure 3 (a) presents the
periodogram of a pulse signal estimated from skin area while
Figure 3 (b) presents the periodogram of a pulse signal esti-
mated from the background. In the frequency domain, the pul-
satile, cardiac-synchronous signal, exhibits an important peak
centered on the fundamental frequency of heart rate, possibly its
second harmonic and limited information at other frequencies.
To measure the quality of rPPG signals, we estimate signal-to-
noise ratio (SNR) defined as the ratio of the power of the main
pulsatile component and the power of background noise, com-
puted in dB due to the wide dynamic range of the signals.

Fig. 3. Periodogram examples of 2 tentative rPPG signals estimated from
(a) skin area and (b) background.

The pulsatility measure of the ith TSP is estimated by:

S NRi = 10 log10


∫ f2

f1
hi

signal( f )|F {S i(t)}|2d f∫ f2
f1

hi
noise( f )|F {S i(t)}|2d f

 (3)

where F {S i(t)} is the Fourier transform of the rPPG signal of
the ith TSP, f1 and f2 the lower and upper limit of the integral
defined by the possible physiological range of the heart rate (40
to 240 bpm in our case), and a double-step function h, for the
first and second harmonics, defined by the convolution:

hi
signal( f ) = [δ( f − f i

0) + δ( f − 2 f i
0)] ∗
∏

(± fr)

hi
noise( f ) = 1 − hi

signal( f )
(4)

with δ the Dirac delta function, f i
0 the fundamental frequency

(i.e. peak of the periodogram), convoluted with the rect func-
tion, noted as

∏
of half-width fr. S NRi will be high for skin

TSP and low for background ones.

2.4. rPPG signal fusion

The final rPPG signal S (t) is then obtained by a weighted av-
erage of all tentative pulse signals S i(t), i.e. S (t) =

∑
i∈K S i(t)wi

where weightings wi are a function of the main pulsatile com-
ponent SNR:

wi =
10S NRi∑

i∈K 10S NRi
(5)

The weights are normalized and in order to conserve the rel-
ative contribution of each rPPG signal, they are defined with
the log−1(x) function (i.e. 10x). The weighting favors TSP that
have a high main pulsatile component SNR as these are more
likely to represent skin areas. For example, in Figure 4, the final
rPPG signal is made up of mainly four tentative rPPG signals.

Fig. 4. Examples of SNR values (dB) and its corresponding superpixel.

3. Experiments

This section presents the experimental setup for evaluating
the proposed method. First, we describe a new publicly avail-
able dataset. Then we present the rPPG methods that have been
implemented to evaluate the unsupervised ROI segmentation
method. Then, we present the evaluation metrics and finally
we compare our implicit ROI selection with regular face detec-
tion/tracking and skin detection approach.

3.1. UBFC-RPPG Video dataset

We introduce here a new dataset, called UBFC-RPPG, com-
posed of 43 videos, where each video is synchronized with a
pulse oximeter finger clip sensor (Contec Medical CMS50E)
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for the ground truth. Each video is about 2 minutes long and
recorded with a low cost webcam (Logitech C920 HD pro) at
30 frames per second with a resolution of 640 × 480 in un-
compressed 8-bits RGB format. The dataset is available on our
project page1 on demand.

Fig. 5. Dataset sample images.

The subjects sits in front of the camera about one-meter away
as shown in Figure 5. Subjects were required to play a time sen-
sitive mathematical game that supposedly raises the heart rate
and also emulates the scenario of a normal activity in front of a
computer. Experiments are conducted on full video sequences.

3.2. Benchmark algorithms

The TSP algorithm used to construct the time series RGB
input signals was implemented based on the publicly available
MATLAB code [23]. To evaluate the proposed method, we im-
plemented five algorithms widely used in the literature, with
significant performance variations.

3.2.1. Compared rPPG methods
In the Green method [3], the component G is directly used as

the pulse signal S i of the ith TSP. The plethysmographic signal
is not homogeneously distributed through the RGB channels
and the contribution of the green component has been shown to
be far more important than the two others.

The Green−Red method [21] set S i as the difference between
the normalized G and R components of the time series. This
combination provides surprisingly good results considering its
simplicity. It states that the motion and illumination variations
over the skin surface generate noise that are almost equally dis-
tributed in green and red channels.

The PCA method [9] computes the principal component
analysis of the triplet (R,G, B) of the time series xc

i (t). The
three different channels contribute to the same observation. It
constructs a signal with a maximized variance that can be used
as the pulsatile sources.

Similarly to CHROM presented in section 2, the Plane-
Orthogonal-to-Skin method (called POS) [11] applies linear
combination on two different orthogonal vector Xi and Yi:

Xi(t) = yG
i (t) − yB

i (t),

Yi(t) = −2yR
i (t) + yG

i (t) + 1.5yB
i (t).

(6)

Finally S i(t) = Xi(t) + αYi(t) where αi = σ(Xi)/σ(Yi). Xi

and Yi define a plane orthogonal to skin, that minimizes the
specular information due to motion and illumination variations
on the skin surface.

1http://ilt.u-bourgogne.fr/benezeth/projects/UBFCrPPG

Each algorithm presented above is used to extract the
plethysmographic information from the time traces xc

i (t) and
is applied to a sliding window of 20 seconds with a step of 0.5
seconds. The consecutive resultant signals are then overlapped.

Once the pulse signal of each TSP is extracted from the com-
plete video sequences, the signals are detrended and filtered
using a frequency bandwidth of [0.7; 3.5] Hz. The S NR cal-
culation is performed using a Dirac window that has been ex-
perimentally fixed to 2 × fr = 0.35 Hz. The SNR is estimated
within the range [1; 3.5] Hz using the complete rPPG signal. It
is important to note here that the TSPs with significant discon-
tinuities due to tracking failure are just discarded for the final
rPPG signal construction.

3.2.2. ROI selection methods
Several approaches have been introduced for ROI selection

and tracking. In this paper, we compare our implicit ROI seg-
mentation with three regular methods, namely face, cropped
and skin as they are respectively used in [3], [4] and [14].
In face, face detection and tracking was performed using the
Viola-Jones [28] and the Kanade-Lucas-Tomasi [29] imple-
mentations provided by the computer vision toolbox of MAT-
LAB. In cropped, the center 60% width and full height of the
box is selected as the ROI. Finally, in skin, skin detection as
formulated by Conaire et al. [30] was performed to select the
candidate pixels in the face ROI of each frame. Figure 6 show
examples of these threes ROI.

Fig. 6. Segmentation result examples for the reference method with row 1:
face detection, row 2: face detection + crop and row 3: face detection +
skin segmentation.

We use the same pre-processing and filtering, described in 2,
for all the methods. For each video, we estimate heart rate in a
sliding window framework. Heart rate is given by the position
of the peaks on the frequency axis. The same heart rate estima-
tion procedure was used on the PPG signal recorded with the
contact sensor, on the rPPG signal given by the reference meth-
ods and the rPPG signal given by our method. All the computa-
tion steps from the segmentation to the metrics were performed
on MATLAB on a single core on an Intel i7-4790 CPU @ 3.60
GHz platform.

3.3. Benchmark metrics

The following metrics are applied for all the methods intro-
duced and used for comparison:
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Table 1. rPPG methods comparison. CROP for the face detection then crop regular method, S KIN for the face detection then skin detection regular
method and K = 150 for our method with a number of superpixels specified at 150.

Evaluation metrics Method Green Green-Red PCA CHROM POS
FACE 0.522 0.343 0.442 0.75 0.729
CROP 0.56 0.422 0.392 0.796 0.759

Estimation at 2.5 BPM SKIN 0.491 0.535 0.435 0.822 0.795
Our method 0.516 0.595 0.462 0.826 0.782

FACE 0.614 0.409 0.516 0.766 0.73
CROP 0.683 0.65 0.589 0.862 0.863

Estimation at 5 BPM SKIN 0.739 0.782 0.701 0.861 0.862
Our method 0.628 0.821 0.509 0.89 0.885

FACE 0.321 0.135 0.11 0.581 0.571
CROP 0.78 0.748 0.689 0.94 0.952

Pearson correlation SKIN 0.821 0.855 0.794 0.943 0.941
Our method 0.669 0.904 0.557 0.961 0.958

FACE 18.405 24.198 23.364 9.519 10.033
CROP 10.036 12.813 16.053 3.783 3.838

RMSE SKIN 10.131 8.702 11.081 3.157 3.695
Our method 16.84 6.773 21.224 2.388 6.773

FACE -2.075 -4.04 -2.976 1.684 0.098
CROP -0.225 0.266 -0.83 4.083 3.415

Mean SNR SKIN 0.598 3.245 0.544 4.315 3.245
Our method -0.234 3.95 -2.304 4.967 5.175

• Pearson correlation factor r is the correlation between
heart rate estimated from the rPPG signal and the heart
rate estimated from the PPG reference signal.

• Root mean square error (RMSE) is the quadratic error
calculated between the measured value and the ground
truth.

• Precision at 2.5 or 5 bpm. This metric represents the
percentage of estimations where the absolute error is under
a threshold (2.5 or 5 bpm)

• Mean SNR. The average SNR of the rPPG signal estima-
tions. The bandwidth is set to [0.7; 3.5] Hz and the Dirac
width is set to 0.1 Hz

The estimations at 2.5 and 5 bpm are expressed within the
range [0; 1] as well as the Pearson correlation factor metric. The
RMS E is unit-less as it is the quadratic error measurement and
the Mean S NR is expressed in dB.

4. Results and discussions

In this section we present the results and further investigation
conducted to evaluate the contribution and performance of our
segmentation method. The overall results are summarized in
Table 1. The best results per algorithm (Green, Green − Red,
etc.) are marked in bold and the best results per metric (RMS E,
Mean S NR, etc.) are marked in red in the table. For this study,
the superpixels number was fixed to 150 (K = 150).

4.1. Evaluation with several rPPG algorithms
In the first experiment, we evaluate the contribution of the

proposed ROI segmentation method for all rPPG algorithms.
The first observation is that our method outperforms other ROI
segmentation with CHROM, POS and Green-Red. For exam-
ple, the Mean SNR metric for POS increased by 59% (about
2dB) using our implicit ROI segmentation compared to Crop
or S kin. This improvement is clearly significant.

Fig. 7. S NR value estimated for each TSP, for S NR in range [0; 8] dB. First
row, input frame and superpixels segmentation. Second row, results for
Green, Green − Red, PCA, CHROM and POS method.

Although, it is interesting to note that our method does not
improve results of Green and PCA, Skin ROI is usually the best
segmentation algorithm for these two rPPG algorithms. This
can be attributed to the low intrinsic performances of these two
methods. Indeed, Green and PCA obtain on average the worst
performances. As a consequence, the weight difference be-
tween skin and background areas will be smaller if S NR is low
for skin area.
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Fig. 8. S NR metric assigned to corresponding TS P for varying resolution : 100 then 150 then 200 then 400 then 600. Row 1, averaged pixels value per
TS P. Row 2, S NR value in range [0; 8] dB. Row 3, S NR value in dB for every TS P.

To illustrate this observation, Figure 7 shows S NR values
for each TS P. We clearly see that cheeks and forehead are
correctly segmented with Green − red, CHROM and POS
while contributive TS P are wrongly spread over the frame with
Green and PCA. Because the pulsatility criteria is measured on
a very small frequency range [1; 3.5] Hz with a large rectangle
function, i.e. 0.35Hz, the SNR estimation considers that 27% of
the information is signal (and the rest is noise). This could lead
to wrong segmentation. In Figure 7, even some background
areas have a quite high SNR.

In Table 2, we present the running times for the preprocessing
(namely normalization, detrending and filtering) and the pro-
cessing of 20 seconds of RGB traces. These running times are
provided for information only. As they were measured with
non-optimized code on MATLAB, they are indicative only of
the relative processing times. It is interesting to note that the
differences between the methods are very low, about 1 ms (ex-
cept for PCA) and may be negligible compared to other pro-
cessings (mainly TSP). However, it is worth noting that all pro-
cessing was performed per superpixel in our method. Conse-
quently, the relative difference between the processing times
would be higher with a larger number of superpixels. Finally, it
is possible to implement an optimized and parallelized version
of our method, since the processing of each TSP is independent.

Table 2. Running time comparison to process 20 seconds of RGB traces.
Green Green-Red PCA CHROM POS

Time
(ms) 12.13 12.27 15.5 13.21 13.33

Finally, even if it is possible to implement an optimized and
parallelized version of TSP, it is important to note that our pro-
posed ROI segmentation method is significantly slower than
other simpler methods.

4.2. Segmentation impact

In the second experiment, we evaluate the influence of the
resolution of the spatial segmentation defined with the number
of superpixels per frame. According to results presented in Ta-
ble 1, CHROM rPPG algorithm is used for all subsequent ex-
periments. Results are presented in Figure 9 and 10 varying the
number of superpixels per frame from 100 to 600. For compar-
ison, we also added the performance obtained with CROP and
SKIN in the Figures.

Fig. 9. Metrics results for varying amount of TSP. First Pearson correlation
factor, second precision at 2.5 bpm and third precision at 5 bpm.

Every metric shows at least similar results as the CROP and
S KIN regular methods for all the segmentation levels. The
Pearson correlation factor remains quite stable over the study
with results varying from 80% to almost 85%. The precision
metrics are consistenly high with at least 95% of correct esti-
mation at every segmentation level for the 5 bpm estimation.
Our segmentation method outperforms the face detection ap-
proach in both CROP and S KIN scenario as well as the preci-
sion at 2.5 bpm with at least 87% of correct estimation. These
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three metrics, within the range [0; 1], show that our method per-
forms better in terms of heart-rate estimation for all resolutions.
Moreover, the K = 150 TSP resolution performs the best for all
metrics indicating an optimal resolution for our method. Next,
it is important to emphasize that, whatever the resolution used,
RMSE is always lower than 3.5. Finally, for a resolution of K
= 150 superpixels, we obtain a very good SNR of almost 5 dB.

Fig. 10. Metrics results for varying amount of TSP. First RMSE and second
mean SNR value.

Results obtained with all the metrics finally show the same
tendency. Several points can be highlighted here. First of all,
although the performances remain rather robust to the changes
in resolution, as shown in Figure 8, there is a growth and decline
in performance around the best resolution K=150. This can be
explained by the combination of at least two main phenomena.
On one hand, the quality of the measure clearly deteriorates
as we consider less skin pixels because of quantization noise.
On the other hand, the rPPG signal is not distributed homoge-
neously across the skin and consequently, a large ROI tends to
average everything. With very few superpixels, it is possible to
have several areas, with different levels of pulsatility, grouped
into the same superpixels. In that case, highly informative skin
regions will not contribute more than other ones.

4.3. Temporal superpixels segmentation limitations
In this work, we use the TSP method proposed by Chang et

al. [23] which we found to be a good compromise between pre-
cision and speed. However, we experimentally observed that
this segmentation does have some limitations. As the TSPs do
not have long-time continuity, tracking could be lost in case of
rotation or occlusion of the subjects in front of the camera even
for a short period of time. The optical flow also interrupts the
tracking if the pixel acceleration for a couple of frames is mea-
sured too high. Indeed, as we are working with a frame-rate
of 30 f ps, the optical-flow computation step in TSP is highly
sensitive to motion. In Figure 11, we show that for some videos
there is a very large number of tracking failures (yellow super-
pixels in the figure).

Also, superpixel boundaries may vary in time. This variation
generates high frequency noise and in some cases can inter-
fere with the estimated rPPG signal. It was observed with our
dataset that the TSP algorithm performs well enough to avoid
this case and allows a good estimation of the rPPG signal in

Fig. 11. TSP tracking failure examples. The second column shows the TSP
segmentation while the third column highlights in yellow the tracking fail-
ures.

most cases. Further tests would be need to clearly identify the
limitations on varying scenarios and different frame rates.

5. Conclusion

In the present study, we have described, implemented, and
evaluated a new rPPG method that implicitly selects living skin
tissue via their distinct pulsatility feature. Photoplethysmogram
signals are estimated with the weighted fusion of several tenta-
tive rPPG signals computed on a set of temporal superpixels.
Based on a new publicly available dataset of 43 subjects, the
results of this study have demonstrated that the rPPG signals
could be remotely estimated without any tedious ROI selection.
Furthermore, our method always outperforms the supervised
reference methods, namely FACE, CROP and S KIN. Our
method improves signal quality from 15.1% to 59.4%, based
on the signal quality SNR metric. This makes the heart rate
estimation more accurate in almost every TSP resolution im-
plemented in this study.

Because the TSP algorithm is computationally very inten-
sive, further developments include using other spatio-temporal
representation that would consider the important information
that the rPPG signal is not distributed homogeneously across
the skin but more computationally efficient. We also plan to
test our method on a more complex dataset and we are also
planning to continue this work to handle multiple individuals in
the scene.
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Développement Régional (FEDER).

References

[1] Y. Sun, N. Thakor, Photoplethysmography revisited: From contact to non-
contact, from point to imaging, IEEE Trans. on Biomedical Engineering
63 (2016) 463–477.

[2] X. Teng, Y. Zhang, The effect of contacting force on photoplethysmo-
graphic signals, Physiological Measurement 25 (2004) 1323–1335.

[3] W. Verkruysse, L. O. Svaasand, J. S. Nelson, Remote plethysmographic
imaging using ambient light, Optics express 16 (2008) 21434–21445.



9

[4] M. Poh, D. McDuff, R. Picard, Non-contact automated cardiac pulse mea-
surements using video imaging and blind source separation, Optics ex-
press 18 (2010) 10762–10774.

[5] B. Kim, S. Yoo, Motion artifact reduction in photoplethysmography using
independent component analysis, IEEE Trans. on Biomedical Engineer-
ing 53 (2006) 566–568.

[6] G. de Haan, V. Jeanne, Robust pulse rate from chrominance-based rppg,
IEEE Trans. on Biomedical Engineering 60 (2013) 2878–2886.

[7] W. Wang, S. Stuijk, G. de Haan, Novel algorithm for remote photo-
plethysmography: Spatial subspace rotation, IEEE Trans. on Biomedical
Engineering 63 (2016) 1974 – 1984.

[8] M. Z. Poh, D. J. McDuff, R. W. Picard, Advancements in non- con-
tact, multiparameter physiological measurements using a webcam, IEEE
Trans. on Biomedical Engineering 58 (2011) 7–11.
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