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Abstract

Chronic exercise has been shown to prevent or slow age-related decline in cognitive func-

tions in otherwise healthy, asymptomatic individuals. We sought to assess cognitive function

in a stable coronary heart disease (CHD) sample and its relationship to cerebral oxygen-

ation-perfusion, cardiac hemodynamic responses, and _VO2 peak compared to age-matched

and young healthy control subjects. Twenty-two young healthy controls (YHC), 20 age-

matched old healthy controls (OHC) and 25 patients with stable CHD were recruited. Cogni-

tive function assessment included short term—working memory, perceptual abilities, pro-

cessing speed, cognitive inhibition and flexibility and long-term verbal memory. Maximal

cardiopulmonary function (gas exchange analysis), cardiac hemodynamic (impedance car-

diography) and left frontal cerebral oxygenation-perfusion (near-infra red spectroscopy)

were measured during and after a maximal incremental ergocycle test. Compared to OHC

and CHD, YHC had higher _VO2 peak, maximal cardiac index (CI max), cerebral oxygen-

ation-perfusion (ΔO2 Hb, ΔtHb: exercise and recovery) and cognitive function (for all items)

(P<0.05). Compared to OHC, CHD patients had lower _VO2 peak, CI max, cerebral oxygen-

ation-perfusion (during recovery) and short term—working memory, processing speed, cog-

nitive inhibition and flexibility and long-term verbal memory (P<0.05). _VO2 peak and CI max

were related to exercise cerebral oxygenation-perfusion and cognitive function (P<0.005).

Cerebral oxygenation-perfusion (exercise) was related to cognitive function (P<0.005). Sta-

ble CHD patients have a worse cognitive function, a similar cerebral oxygenation/perfusion

during exercise but reduced one during recovery vs. their aged-matched healthy
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counterparts. In the all sample, cognitive functions correlated with _VO2 peak, CI max and

cerebral oxygenation-perfusion.

Introduction

Cognitive impairment in patients with cardiovascular disease (CVD) includes deficits in mem-

ory, attention, executive function and psychomotor speed [1–4], and has been related to loss of

gray matter in various brain regions [5], cerebral atrophy [6] and low resting cardiac output

[7]. Whether vascular or blood flow abnormalities mediate some or all of these potential mech-

anisms remains a question of debate. Patients with CVD often exhibit lower cerebral oxygen-

ation during maximal incremental exercise compared to healthy controls, cerebral

oxygenation being related to _VO2 peak, ventilatory threshold and resting cardiac function [8–

10]. At the same time, chronic exercise has been shown to slow or prevent age-related decline

in cognitive function among otherwise healthy individuals and has been related to improved

cerebral blood flow [11]. In a recent study in both young and older healthy individuals, even

acute exercise was associated with an improvement in cognitive function during exercise, indi-

cating dynamic factors influence cognitive function [12]. Furthermore, at rest, higher cerebral

blood flow (measured by transcranial Doppler) was associated with faster response times to

cognitive test (Stroop) in both young and old and to a similar degree [12]. However, during

exercise, cerebral blood flow (measured by transcranial Doppler) increased similarly in both

groups and was unaltered by cognitive stroop tasks. In contrast, prefrontal cortical hemody-

namic near-infra red spectroscopy (NIRS) measures [oxyhemoglobin (O2Hb) and total hemo-

globin (tHb)] were differentially affected by exercise intensity, age and cognitive task; e.g.,

there were smaller increases in O2Hb and tHb in the older group between exercise intensities

(P<0.05) [12]. These data indicate that: 1) Regardless of age, cognitive (executive) function is

improved while exercising; 2) while cerebral blood flow (measured by transcranial Doppler) is

strongly related to cognition at rest, this relation becomes uncoupled during exercise, and 3)

there is dissociation between global CBF and NIRS regional cortical oxygenation and blood

volume markers during exercise and engagement of prefrontal cognition.

Taken together, these previous studies suggest that several factors modulate cognitive func-

tion such as age, aerobic fitness and cardiovascular disease (such as coronary heart disease

(CHD)) [11, 13, 14]. As well, based on the “vascular hypothesis” it has been suggested, particu-

larly in patients with CHD, that a lower _VO2 peak, cardiac function and cerebrovascular

reserve (measured by NIRS) during exercise may be related to cognitive function [8–11, 13,

14], but this has not been explored yet. To our knowledge, no study has evaluated whether sta-

ble “fit” patients with CHD that regularly exercise (involved in long-term phase III cardiac

rehabilitation) exhibit a similar degree of resting cognitive function compared to fit age-

matched healthy controls, and whether cardiac and cerebral hemodynamic responses during

maximal exercise may contribute to potential differences in cognitive function between

groups. The objectives of this study were therefore 1) to evaluate cognitive function in a sample

of fit CHD patients in comparison to a group of fit, age-matched healthy and younger controls,

and 2) evaluate potential relationships between cognitive function, functional capacity and

hemodynamic responses among groups. We hypothesized that cerebral oxygenation, cardiac

hemodynamic responses, _VO2 peak as well as cognitive function would be lower in patients

with CHD compared to healthy controls, and that cognitive function would be related to
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cerebral oxygenation, cardiac hemodynamic responses and _VO2 peakbased on the cerebrovas-

cular reserve hypothesis [13].

Material and methods

Subjects

A total of 67 adults were prospectively enrolled from 2010 to 2014 in consecutive fashion, from

the Cardiovascular Prevention and Rehabilitation Centre of the Montreal Heart Institute,

including 25 fit patients with stable CHD, 20 age-matched healthy controls and 22 young

healthy controls (Fig 1 Flow chart and the Inclusion/Exclusion Criteria section of the S1 File).

Patients with CHD were defined as “stable” for their disease because of the following exclusion

criteria used: recent acute coronary syndrome (<3 months), uncontrolled hypertension,

recent bypass surgery intervention <3 months, recent percutaneous transluminal coronary

angioplasty<6 months, left ventricular ejection fraction<45%, pacemaker or implantable car-

dioverter defibrillator, recent modification of medication <2 weeks. All subjects provided

written informed consent and the protocol was approved by the Ethics Committee of the Mon-

treal Heart Institute. The study was registered on ClinicalTrials.gov under identifier number:

NCT03018561. All subjects underwent a baseline evaluation including a medical history, phys-

ical examination with measurement of height and weight, body composition (bioimpedance,

Tanita, model BC418, Japan) and fasting blood sample (glucose and lipid profile) [15]. All sub-

jects performed cognitive testing at rest and a maximal cardiopulmonary exercise test (CEPT)

with gas exchange analysis. During CEPT, cerebral oxygenation and cardiac hemodynamic

responses were measured continuously (see measurements section for details).

Measurements

Cognitive function evaluation. Resting cognitive function was performed by a clinical

neuropsychologist with training in cognitive test administration and evaluated using a vali-

dated paper-and-pencil neuropsychological battery test [16, 17]. Mini-Mental State examina-

tion (MMSE) and Geriatric Depression Scale (GDS) and were used to exclude patients

suffering from depression and mental disease. A score < 26/30 on the MMSE and > than 10

on the GDS resulted in exclusion. This battery included the following tests: a Digit Span (For-

ward and Backward) (short-term and working memory). In this test, the neuropsychologist

gave a series of numbers at the rate of about one per second. Following presentation, the

Fig 1. Flowchart of the inclusion of the subjects.

https://doi.org/10.1371/journal.pone.0183791.g001
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subjects repeats the numbers in the order they were presented (Digits Forward) or in reverse

order (Digits Backward). b. Digit Symbol Substitution Test (attention & processing speed), In

this test, the participant had to associate symbols to numbers (1 to 9), in a table of numbers, by

referring to a response key. The participant had 120 seconds to draw as many symbols as possi-

ble. c. Trail making test, part A and B. In the Trail Making Test part A, the participant had to

connect numbers (from 1 to 25) with straight lines as fast as possible. In Part B, which mea-

sures flexibility, the participant had to alternate between letters in alphabetical order and num-

bers in ascending order (1-A-2-B-3-C, etc.) as fast as possible. d. D-KEFS Color-Word

Interference Stroop Test: The Modified Stroop color test includes four conditions and provides

a measure of inhibition and mental flexibility. In the reading condition (1), the participant had

to read aloud color words as fast as possible. In the naming condition (2) they had to name the

color of rectangles. In the inhibition condition (3), color-words were printed in a color that

differed from their meaning (e.g., red printed in green) and the task was to name the ink color

(green) and avoid reading the word. In the flexibility condition (4), the participant had to alter-

nate between naming the color of the color-words, and reading the words (when the color-

words appear in a square). Typically, scores in the more difficult conditions (3 & 4) are consid-

ered representative of executive control. In all conditions, word lists were printed on a sheet of

paper and participants had to provide their answer verbally as fast as possible. e. Rey Auditory

Verbal Learning Test (RAVLT, long-term verbal memory). In the RAVLT, participant must

learn and remember a list of 15 words immediately after learning them and after a delay.

Maximal cardiopulmonary exercise testing. Exercise testing was performed on an ergo-

cycle (Ergoline 800S, Bitz, Germany) with an individualized protocol that included a 3-min

warm up at 20 Watts, followed by a power increase of 10 to 20 Watts/min until exhaustion at a

free pedaling speed > 60 rpm [18–20]. Gas exchange was measured continuously at rest, dur-

ing exercise, and after exercise cessation using a metabolic system (Oxycon Pro, Jaegger, Ger-

many). The calibration of the flow module was accomplished by introducing a calibrated

volume of air at several flow rates with a 3-liter pump. Gas analyzers were calibrated before

each test using a standard certified commercial gas preparation (O2: 16%; CO2: 5%). Data were

measured every four respiratory cycles during testing and then were averaged every 15 sec for

minute ventilation ( _VE, in l/min, BTPS), oxygen uptake ( _VO2, in l/min, STPD), carbon diox-

ide production ( _VCO2, in l/min, STPD) [18, 21]. Maximal exercise test lasted until the attain-

ment of one of the two primary maximal criteria: (A) a plateau of _VO2 despite an increase in

cadence, (B) R.E.R > 1.1, or one of the two secondary maximal criteria: (C) measured maximal

heart rate attaining 95% of age-predicted maximal heart rate, (D) inability to maintain the

cycling cadence, (E) subject exhaustion with cessation caused by fatigue and/or other clinical

symptoms (dyspnea, abnormal BP responses) or ECG abnormalities that required exercise ces-

sation. The ventilatory threshold was determined using a combination of the V-slope, ventila-

tory equivalents, and end-tidal oxygen pressure methods. The highest _VO2 value reached

during the exercise phase of each test was considered as the _VO2 peak and peak power output

(PPO) was defined as the power output reached at the last fully completed stage [18–20].

Cerebral oxygenation/perfusion. Cerebral oxygenation/perfusion was measured using a

near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis Medical, Netherlands)

during maximal exercise and recovery [19, 22, 23]. Optodes were placed on the left prefrontal

cortical area between Fp1 and Fp3, according the modified international EEG 10–20 system

[19, 22, 23]. During exercise test, optodes were secured with a tensor bandage wrapped around

the forehead, a neoprene pad was place between the skin and the optodes plastic holder and

ambient room light (dimmer) was reduced. To correct for scattering of photons in the tissue, a

differential path-length factor of 5.93 was used for the calculation of absolute concentration

Cardiac-cerebral hemodynamic and cognition in CHD patients
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changes with an interoptode distance of 45 mm. Data were sampled at 10 Hz during the rest

period (3 min), the exercise phase and the 5-min recovery period. Data were displayed in real

time and stored on disk for off-line analysis. Raw NIRS signals were filtered via the oxysoft/

DAQ software (Artinis Medical, Netherlands) using a running average function with a filter

width of 1. Thereafter, NIRS signals were exported into excel files with the oxysoft/DAQ soft-

ware at 0.2 Hz for statistical treatment. Relative concentration changes (ΔμM) were measured

from resting baseline of oxyhaemoglobin (ΔO2Hb), deoxyhaemoglobin (ΔHHb), total haemo-

globin (ΔtHb) = (ΔO2Hb)+ (HHb) and differential haemoglobin (ΔHb diff.) = (ΔO2Hb)-

(HHb). The baseline period was set at the end of the 3-min resting period, defined as 0 μM

[19, 22, 23].

Cardiac hemodynamics. Cardiac hemodynamics were measured continuously at rest,

during exercise and recovery using an impedance cardiography device (PhysioFlow1, Enduro

model, Manatec, France) as previously published [19, 20, 23]. This noninvasive technique was

previously found to be valid, accurate, and reproducible at rest and during exercise in healthy

subjects and CHD patients [24–29]. Data were averaged every 15 consecutive heartbeats for

cardiac index (CI: in l/min/m2, stroke volume index (SVi: in ml/m2), heart rate (in beats/min),

end-diastolic and end-systolic volume index (EDVi and ESVi: in ml/m2), left cardiac work

index (LCWi: in kg.m/m2), left ventricular ejection fraction (in %) and systemic vascular resis-

tance index (SVRi: in dynes/s/cm5/m2).

Statistical analysis

Results are presented as mean ± standard deviation except where otherwise indicated. Statisti-

cal analysis was performed using Statview software 5.0 and SAS version 9.4 (SAS, Cary, USA).

Normal Gaussian distribution of the data was verified by the Shapiro–Wilk test. A one-way

ANOVA (groups) was used to compare cardiopulmonary, hemodynamic and cognitive func-

tion variables. A two-way ANOVA (groups x time) was performed to compare brain NIRS

parameters data during exercise and recovery between healthy controls and CHD patients. A

Bonferroni post-hoc test was used to localize differences. Statistical significance was set at

P<0.05 level for all analysis. Relationships between _VO2 peak, CI max, NIRS variables and

cognitive function items were performed using a Pearson coefficient of correlation (R) and sta-

tistical significance was corrected according to the number of correlations and set at P<0.005.

Composite scores were calculated form the neuropsychological battery that assessed four cog-

nitive domains: memory, speed of processing, executive functioning and verbal memory. All

cognitive scores were first transformed in standardized z-scores and then averaged to provide

a composite score for each domain. The composite z score were calculated as follow: 1) work-

ing memory = (forward + backward z scores)/2, 2) Speed of processing = (DSST+Trail A+-

Stroop 1+Stroop 2 z scores)/4, 3) Executive functioning = (Trail B+Stroop 3+Stroop 4 z

scores)/3, 4) Verbal memory = (Immediate recall + delayed recall + Recognition + A1-15 z

scores)/4. We sought to identify predictors of each of these four composite z score. Univariate

analysis using Spearman correlation coefficient (to account for light deviation from normal

distribution) was first performed to highlight potential predictors. All variables that showed a

p�0.05 in the univariate analysis were included in a stepwise linear regression analysis to iden-

tify independent predictors of each composite z score. Despite the light deviation from normal

distribution for some predictors, the analysis of the residuals for each model shows that all

underlying assumptions of linear regression were respected without the need to use data trans-

formation. For a multiple linear regression model on predicting cognitive function which

already includes 5 covariates with a squared multiple correlation R2 of 0.50, a sample size of 80

will have 80% power to detect at alpha = 0.05 an increase in R2 of 0.046 due to including the
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factor of interest (ex: ΔO2Hb). The number of covariates (ex: from 1 to 15) has only a very

small effect on the results.

Results

Clinical characteristics

Baseline characteristics of all three groups are outlined in Table 1. The prevalence of traditional

risk factors was significantly higher in patients with CHD relative to age-matched controls,

both of these groups being significantly older than young healthy controls (See the Results sec-

tion on Clinical characteristics of the S1 File for details).

Cognitive function parameters

Table 2 describes cognitive function parameters in all three groups. Briefly, except for GDS

which was similar between groups, young healthy control subjects scored significantly higher

on all tasks followed by age-matched controls then CHD patients. (See the Results section on

Cognitive function parameters of the S1 File for details).

Cardiopulmonary exercise and hemodynamic parameters

Table 3 describes cardiopulmonary exercise and hemodynamic parameters in all three groups.

Both _VO2 peak and cardiac index were significantly higher among young healthy subjects fol-

lowed by age-matched control and CHD patients. Importantly, _VO2 peak was between 110

and 140% higher relative to age-predicted values depending upon the group, indicating a phys-

ically fit sample (all groups). (See the Results section on Cardiopulmonary exercise and hemo-

dynamic parameters of the S1 File for details).

Left prefrontal NIRS parameters during exercise and recovery

Figs 2a, 2b, 2c, 2d, 3a, 3b, 3c and 3d describes left prefrontal NIRS parameters during exercise

and recovery in all three groups. All parameters were similar at baseline and increased progres-

sively until peak exercise. However, ΔO2 Hb and ΔtHb were significantly higher at peak exer-

cise in young healthy controls relative to CHD patients and age-matched healthy controls

(P<0.01). (See the Results section on Left prefrontal NIRS parameters during exercise and

recovery of the S1 File for details).

Relationships between _VO2 peak, maximal cardiac index, left prefrontal

NIRS and cognitive function parameters

The relationships between _VO2 peak, CI max, left prefrontal NIRS parameters (ΔO2 Hb,

ΔHHb, ΔtHb, ΔHb diff.) and selected cognitive tasks are described in the Table A and B in S2

File (see the Results section of the S1 File). In summary, statistically significant univariate rela-

tionships were observed between all cognitive tasks and both _VO2 peak and CI max, while

most cognitive tasks were significantly associated with NIRS parameters.

Stepwise multiple regression analysis

Table 4(A)–4(D) describes univariate and multivariate analyses used to identify independent

predictors of each cognitive composite z score. The relationship between composite z scores

representing four cognitive domains (memory, speed of processing, executive functions and

verbal memory) and CV risk factors, body composition, exercise and NIRS parameters are

presented in Table 4. Briefly, trunk fat mass, education and diabetes were independent

Cardiac-cerebral hemodynamic and cognition in CHD patients
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predictors of composite working memory score, while maximal total hemoglobin (ΔtHbmax)

was the only independent predictor of the speed of processing score. Age and LDL-cholesterol

were independent predictors for executive functioning score, whereas _VO2 peak /LBM and

gender were independent predictors of the verbal memory score.

Table 1. Clinical characteristics in young, old healthy controls and CHD patients.

Young healthy controls

(n = 22)

Old healthy controls

(n = 20)

Patients with CHD

(n = 25)

Age (years) 33 ± 11 a,b § 67 ± 6 70 ± 8

Height (cm) 173 ± 6 170 ± 8 170 ± 8

Female sex 7 (31%) 4 (20%) 2 (8%)

Smoking 0 (0%) 0 (0%) 0 (0%)

Hypertension 1 0 (0%) 0 (0%) 15 (60%)

Diabetes 2 0 (0%) 0 (0%) 7 (28%)

History of dyslipidemia 0 (0%) 2 (10%) 20 (80%)

Obesity 3 0 (0%) 0 (0%) 11 (44%)

Prior MI 0 (0%) 0 (0%) 10 (40%)

Prior PCI 0 (0%) 0 (0%) 9 (36%)

Prior CABG 0 (0%) 0 (0%) 8 (32%)

Medication

Beta–blockers 0 (0%) 0 (0%) 14 (58%)

ACE inhibitors 0 (0%) 0 (0%) 8 (32%)

Antiplatelet agents 0 (0%) 0 (0%) 24 (96%)

Angiotensin receptor blockers 0 (0%) 0 (0%) 6 (24%)

Statin 0 (0%) 1 (5%) 23 (92%)

Calcium channel blockers 0 (0%) 1 (5%) 9 (36%)

Nitrates 0 (0%) 0 (0%) 3 (12%)

Hypoglycemic agents 0 (0%) 0 (0%) 3 (12%)

Body composition

Body mass (kg) 69 ± 8 b* 70 ± 8 c* 77 ± 11

BMI (kg/m2) 23 ± 2 b§ 24 ± 1 c† 26 ± 2

Waist circumference (cm) 83 ± 7 b§ 89 ± 7 c† 97 ± 9

Lean body mass (kg) 57 ± 8 55 ± 9 57 ± 8

FM percentage (%) 18 ± 7 a*, b§ 22 ± 4 c* 26 ± 5

Trunk FM percentage (%) 16 ± 7 a†, b§ 22 ± 4 c§ 28 ± 5

1 Rest SBP� 130 mmHg;
2 glucose� 7 mmol/l;
3 BMI > 30 kg/m2

Group effect:
a = young vs. older,
b = young vs. CHD patients,
c = older vs. CHD patients,

* = P<0.05,
† = P<0.01,
§ = P<0.0001.

ACE, angiotensin–converting enzyme; CABG, coronary artery bypass grafting surgery; CHD, coronary heart disease; MI, myocardial infarction; PCI,

percutaneous coronary intervention. BMI: body mass index, FM: fat mass, SBP: systolic blood pressure, DBP: diastolic blood pressure.

https://doi.org/10.1371/journal.pone.0183791.t001
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Discussion

Major findings

The main findings of this study are that: 1) CHD patients despite being fit, scored significantly

worse on cognitive tests relating to short-term and working memory, processing speed, inhibi-

tion and flexibility and long-term verbal memory compared to fit age-matched and young

healthy controls, 2) cerebral oxygenation/perfusion during exercise was significantly lower

among CHD patients and age-matched controls relative to young controls and 3) executive

and memory cognitive functions correlated with _VO2 peak, maximal cardiac index and cere-

bral oxygenation/perfusion (ΔO2 ΔHHb, ΔtHb) during exercise among the entire cohort. To

the best of our knowledge, this study is the first to relate executive cognitive functions with

simultaneous measures of cardiopulmonary and cardiac function, and cerebral hemodynam-

ics. Our data further support the hypothesis that cardiac function plays a role in the normal

decline in cognitive function with aging, and that high fitness alone as a consequence of regu-

lar exercise training is insufficient to prevent this decline although it may be slowed.

Table 2. Cognitive function parameters in young, old healthy controls and CHD patients.

Young healthy controls

(n = 22)

Old healthy controls

(n = 20)

Patients with CHD

(n = 25)

ANOVA

P value

Education (years) 17 ± 1 a*,b* 14 ± 3 15 ± 3 0.0277

Mental disease / depression symptomatology

GDS (/30) 1.7 ± 1.3 1.8 ± 1.9 3.1 ± 3.2 0.2072

MMSE (/30) 29.2 ± 0.8 b† 28.7 ± 1.1 28.1 ± 1.1 0.0107

Short term and working memory

Forward Span 11.9 ± 1.7 a‡,b§ 9.9 ± 1.3 c† 8.3 ± 1.7 <0.0001

Backward Span 8.6 ± 2.7 b§ 7.4 ± 2.0 c† 5.7 ± 1.6 <0.0001

Perceptual abilities and processing speed

DSST 88.7 ± 12.0 a§,b§ 65.8 ± 13.2 c† 55.1 ± 13.8 <0.0001

Trail A (s) 23.35 ± 7.99 a§,b§ 40.80 ± 10.93 43.93 ± 12.65 <0.0001

Stroop 1(s) 24.05 ± 3.90 a†,b§ 31.60 ± 7.82 32.82 ± 7.28 0.0003

Stroop 2 (s) 17.81 ± 2.29 a†,b† 23.74 ± 8.82 22.31 ± 3.29 0.0043

Cognitive inhibition and flexibility

Trail B (s) 48.99 ± 13.99 a†,b§ 77.62 ± 20.32 c† 112.24 ± 47.26 <0.0001

Stroop 3 (s) 38.66 ± 11.41 a‡,b§ 55.38 ± 12.79 c† 67.34 ± 14.01 <0.0001

Stroop 4 (s) 44.84 ± 5.11 a*,b§ 62.07 ± 22.22 c† 78.78 ± 23.56 <0.0001

Long term verbal memory

Immediate Recall 12.9 ± 1.7 a†,b§ 10.4 ± 2.4 c† 7.9 ± 3.4 <0.0001

Delayed Recall 13.2 ± 1.5 a†,b§ 9.8 ± 2.5 c† 7.3 ± 3.8 <0.0001

Recognition 14.7 ± 0.5 a†,b‡ 13.2 ± 1.5 12.8 ± 2.0 0.0008

A1-15 60.3 ± 6.6 a‡,b§ 48.7 ± 9.8 c† 39.6 ± 11.3 <0.0001

GDS: Geriatric Depression Scale, MMSE: Mini-Mental State Examination, DSST: Digit Symbol Substitution Test. Group effect:
a = young vs. older,
b = young vs. CHD patients,
c = older vs. CHD patients,

* = P<0.05,
† = P<0.01,
‡ = P<0.001,
§ = P<0.0001.

https://doi.org/10.1371/journal.pone.0183791.t002
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Cognitive function in fit cohorts

A large and growing body of evidence highlights the positive relationship that exists between

cardiorespiratory fitness and cognitive function in both middle-aged [30] and older healthy

adults [31, 32]. Furthermore, higher fitness at a younger age is predictive of better cognitive

function later on in life [33, 34]. These data are also consistent with others showing the benefits

of exercise training on cognitive function in otherwise healthy individuals [11]. Correlates of

this association include structural differences (greater white matter, cerebral blood flow etc.).

Few data, however, exist regarding cognitive function in highly fit individuals, and particularly

in those with chronic disease. A recent study in elderly marathon runners (mean age 66 years,

Table 3. Cardiopulmonary exercise testing data in young, old healthy controls and CHD patients.

Cardiopulmonary and hemodynamic variables Young healthy controls

(n = 22)

Old healthy controls

(n = 20)

Patients with CHD

(n = 25)

ANOVA

P value

Rest

Resting heart rate (bpm) 61 ± 11 65 ± 8 70 ± 14 0.0536

Resting CI (l/min/m2) 3.10 ± 0.52 2.72 ± 0.43 2.77 ± 0.63 0.0778

LVEF (%) 61 ± 7 b† 55 ± 7 53 ± 7 0.0071

Rest SBP (mmHg) 116 ± 8 b* 119 ± 14 c† 127 ± 16 0.0155

Rest DBP (mmHg) 70 ± 6 72 ± 10 73 ± 8 0.6404

At peak

_V_O2 peak (ml/min/LBM) 59 ± 8 a§, b§ 42 ± 6 c* 36 ± 8 <0.0001

% of _V_O2 peak predicted (%) 139 ± 20 b§ 138 ± 17 c§ 110 ± 22 <0.0001

_V_CO2 (ml/min) 4017 ± 961 a§,b§ 2703 ± 813 2385 ± 837 <0.0001

R.E.R 1.20 ± 0.05 1.15 ± 0.06 1.16 ± 0.09 0.1012

Peak power (Watts) 273 ± 59 a§,b§ 189 ± 55 c† 138 ± 51 <0.0001

_V_Epeak (l/min) 122 ± 29 a‡,b§ 88 ± 31 80 ± 24 <0.0001

% of _V_Epeak predicted (%) 154 ± 26 b‡ 139 ± 32 c* 119 ± 30 0.0007

_V_E/ _V_CO2
34 ± 5 32 ± 5 35 ± 5 0.0759

VT (liters) 2.69 ± 0.54 b‡ 2.42 ± 0.56 2.13 ± 0.41 0.0017

CI max (l/min/m2) 10.43 ± 1.90 a‡,b§ 8.71 ± 1.82 c* 7.44 ± 1.37 <0.0001

Δ CI max (l/min/m2) 7.33 ± 1.77 a*,b§ 6.01 ± 1.99 c* 4.66 ± 1.23 <0.0001

Peak HR (puls/min) 184 ± 11 a§,b§ 155 ± 10 c§ 132 ± 21 <0.0001

Heart rate reserve (%) 97 ± 7 a*,b§ 87 ± 11 c§ 69 ± 18 <0.0001

HRR at 1 min (puls) - 23 ± 8 -20 ± 6 - 18 ± 7 0.0903

Max SBP (mmHg) 184 ± 18 185 ± 26 177 ± 24 0.4335

Max DBP (mmHg) 74 ± 8 80 ± 11 78 ± 9 0.0903

LVEF: left ventricular ejection fraction, SBP: systolic blood pressure, DBP: diastolic blood pressure, LBM: lean body mass, R.E.R: respiratory exchange

ratio, VT: volume tidal, Bf: breathing frequency, CI: cardiac index, ΔCI max = CI max- Resting CI, C(a-v)O2: arterio venous difference, SVi: stroke volume

index, LCWi: left cardiac work index, SVRi: systemic vascular resistance index, HR: heart rate, HRR: heart rate recovery, Group effect:
a = young vs. older,
b = young vs. CHD patients,
c = older vs. CHD patients,

* = P<0.05,
† = P<0.01,
‡ = P<0.001,
§ = P<0.0001.

https://doi.org/10.1371/journal.pone.0183791.t003

Cardiac-cerebral hemodynamic and cognition in CHD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0183791 September 22, 2017 9 / 20

https://doi.org/10.1371/journal.pone.0183791.t003
https://doi.org/10.1371/journal.pone.0183791


functional capacity 140% of predicted) demonstrated better cognitive function in one execu-

tive function domain (non-verbal fluency assessed via Five Point Test) relative to age-matched

controls, while all other executive functions were similar between groups. In a small study in

Masters Athletes (n = 12, mean age 72 years), letter and category fluency were significantly bet-

ter relative to both sedentary elderly and young controls, while other cognitive domains were

similar between all three groups [35]. Despite the fact that the prevalence of cognitive decline

is higher among patients with CHD or vascular risk factors [36–42], no studies however have

evaluated whether fitness level influences cognitive function among such subjects with CHD.

Our data would indicate that regular physical activity and high fitness level are insufficient to

prevent the “step-down” in cognitive function that occurs from healthy age-matched controls

to older patients with CHD. One explanation for this persistence difference could include irre-

versible vascular changes whereby exercise is no longer able to exert its beneficial effects on the

Fig 2. (a-d): Brain NIRS parameters during exercise in young (YC), old healthy controls (OC) and CHD patients (CHD). Post hoc for group effect = a:

young vs. old, b = young vs. CHD, * = P<0.05, † = P<0.01, ‡ = P<0.001, § = P<0.0001.

https://doi.org/10.1371/journal.pone.0183791.g002
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cerebral vasculature. Other potential explanations include a higher prevalence of irreversible

brain lesions in patients with CHD such as white matter lesions, brain infarcts and brain atro-

phy, which also would not be expected to respond to exercise training. Furthermore, CHD

patients were already receiving optimal pharmacologic therapy for vascular disease including

92% on statins and 96% on antiplatelet agents and vascular function may have already been at

the maximal achievable level.

Cerebral oxygenation during exercise and recovery

We observed higher cerebral oxygenation (ΔO2 Hb) and perfusion (ΔtHb) among healthy sub-

jects during exercise (from 50 to 100% of _VO2 peak) and recovery (0 to 5 min) relative to the

two older groups (CHD and age-matched controls). Furthermore, patients with CHD showed

evidence of reduced cerebral oxygenation (ΔO2 Hb) and perfusion (ΔtHb) during recovery

only compared to healthy age-matched controls. Two previous studies demonstrated that

Fig 3. (a-d): Brain NIRS parameters during recovery in young (YC), old healthy controls (OC) and CHD patients (CHD). Post hoc for group effect = a:

young vs. old, b = young vs. CHD, c = old vs. CHD, * = P<0.05, † = P<0.01, ‡ = P<0.001, § = P<0.0001.

https://doi.org/10.1371/journal.pone.0183791.g003
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Table 4. (A-D): Univariate and multivariate analyses used to identify predictors of each cognitive composite z score.

A: Predictors of working memory composite score

Variables Univariate analysis Multivariate analysis

R P value Beta P value

Age -0.682 <0.0001

Education 0.435 0.0006 0.066 0.0314

Height 0.277 0.0321

Gender 0.145 0.2671

Obesity -0.363 0.0044

Type 2 diabetes -0.326 0.0108 -0.644 0.0103

Hypertension -0.419 0.0009

Dyslipidemias -0.460 0.0002

Body mass -0.164 0.2102

BMI -0.413 0.0010

WC -0.347 0.0108

Fat mass -0.374 0.0045

Trunk fat mass -0.491 0.0001 -0.049 0.0014

Fasting glucose -0.374 0.0067

Tot chol 0.358 0.0099

HDL 0.314 0.0245

LDL 0.279 0.0474

TG -0.189 0.1832

TG/HDL -0.310 0.0263

_V_O2 peak /LBM 0.587 <0.0001

_V_O2 peak in % of predicted value 0.2167 0.1053

CImax 0.474 0.0001

O2Hbmax 0.457 0.0003

O2HB recovery 0.345 0.0073

HHbmax 0.264 0.0429

HHb recovery 0.164 0.2119

tHb max 0.528 <0.0001

tHb recovery 0.451 0.0003

Hb Diff max 0.404 0.0015

Hb Diff recovery 0.320 0.0134

SBP rest -0.258 0.0484

DBP rest -0.059 0.6551

B: Predictors of speed of processing composite score

Variables Univariate analysis Multivariate analysis

R P value Beta P value

Age 0.482 0.0001

Education -0.325 0.0143

Height -0.222 0.0967

Gender -0.012 0.9284

Obesity 0.109 0.4193

Type 2 diabetes 0.100 0.4558

Hypertension 0.086 0.5247

Dyslipidemias 0.292 0.0270

Body mass 0.093 0.4893

BMI 0.251 0.0596

(Continued)
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Table 4. (Continued)

WC 0.171 0.2281

Fat mass 0.330 0.0156

Trunk fat mass 0.331 0.0153

Fasting glucose 0.093 0.5245

Tot chol -0.108 0.4566

HDL -0.035 0.8082

LDL -0.086 0.5545

TG -0.012 0.9338

TG/HDL 0.052 0.7212

_V_O2 peak /LBM -0.306 0.0204

_V_O2 peak in % of predicted value 0.040 0.7699

CImax -0.434 0.0007

O2Hbmax -0.392 0.0028

O2HB recovery -0.191 0.1579

HHbmax -0.126 0.3529

HHb recovery -0.149 0.2720

tHb max -0.461 0.0003 -0.038 0.0047

tHb recovery -0.329 0.0130

Hb Diff max -0.354 0.0074

Hb Diff recovery -0.065 0.6332

SBP rest 0.069 0.6128

DBP rest 0185 0.1703

C: Predictors of executive functioning composite score

Variables Univariate analysis Multivariate analysis

R P value Beta P value

Age 0.848 <0.0001 0.035 <0.0001

Education -0.356 0.0070

Height -0.343 0.0088

Gender -0.243 0.0683

Obesity 0.386 0.0030

Type 2 diabetes 0.172 0.2002

Hypertension 0.409 0.0016

Dyslipidemias 0.525 <0.0001

Body mass 0.052 0.6995

BMI 0.312 0.0180

WC 0.305 0.0292

Fat mass 0.435 0.0011

Trunk fat mass 0.574 <0.0001

Fasting glucose 0.309 0.0304

Tot chol -0.307 0.0089

HDL -0.221 0.1257

LDL -0.323 0.0235 -0.284 0.0103

TG 0.274 0.0561

TG/HDL 0.346 0.0146

_V_O2 peak /LBM -0.768 <0.0001

_V_O2 peak in % of predicted value -0.385 0.0033

CImax -0.575 <0.0001

(Continued )
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Table 4. (Continued)

O2Hbmax -0.651 <0.0001

O2HB recovery -0.268 0.0458

HHbmax -0.252 0.0607

HHb recovery -0.219 0.1041

tHb max -0.707 <0.0001

tHb recovery -0.584 <0.0001

Hb Diff max -0.570 <0.0001

Hb Diff recovery -0.357 0.0069

SBP rest 0.249 0.0641

DBP rest 0.119 0.3822

D: Predictors of verbal memory composite score

Variables Univariate analysis Multivariate analysis

R P value Beta P value

Age -0.700 <0.0001

Education 0.431 0.0006

Height 0.258 0.0460

Gender 0.338 0.0082 0.678 0.0419

Obesity -0.325 0.0112

Type 2 diabetes -0.115 0.3798

Hypertension -0.238 0.0660

Dyslipidemias -0.305 0.0177

Body mass -0.378 0.0029

BMI -0.346 0.0110

WC -0.346 0.0110

Fat mass -0.254 0.0581

Trunk fat mass -0.400 0.0022

Fasting glucose -0.115 0.4203

Tot chol 0.241 0.0883

HDL 0.282 0.0447

LDL 0.134 0.3470

TG -0.180 0.2038

TG/HDL -0.280 0.0426

_V_O2 peak /LBM 0.656 <0.0001 0.044 0.0002

_V_O2 peak in % of predicted value 0.368 0.0047

CImax 0.337 0.0084

O2Hbmax 0.483 0.0001

O2HB recovery 0.266 0.0413

HHbmax 0.443 0.0004

HHb recovery 0.368 0.0041

tHb max 0.582 <0.0001

tHb recovery 0.480 0.0001

Hb Diff max 0.397 0.0018

Hb Diff recovery 0.335 0.0093

SBP rest -0.281 0.0307

DBP rest 0.024 0.8558

https://doi.org/10.1371/journal.pone.0183791.t004
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aging is associated with a reduction in cerebral perfusion [12, 43] during exercise. The first

study (using simultaneous arterial and jugular venous blood gases) showed a similar cerebral

oxygen extraction in young and old healthy subjects [43], whereas a second one demonstrated

lower right prefrontal cerebral oxygenation and perfusion (ΔO2 Hb, ΔtHb) using NIRS in

older subjects [12] consistent with our results. The age-related differences in cerebral oxygen-

ation and perfusion we observed could potentially be explained by cerebral vascular aging.

This phenomenon includes stiffening of the carotid arteries thereby increasing blood pulsati-

lity in the brain microcirculation, reduced cerebral vascular conductance, brain endothelial

dysfunction and reduced brain capillary density [43, 44]. The impact of CVD on cerebral oxy-

genation and perfusion would appear to depend upon the severity of cardiac dysfunction. For

example, one study observed no difference in cerebral exercise oxygenation (ΔO2 Hb) or per-

fusion (ΔtHb) among patients with New York Heart Association (NYHA) class II heart failure

and healthy controls, whereas a reduced cerebral oxygenation/perfusion was demonstrated in

patients with NYHA class III heart failure vs. the same healthy control group [10]. As well, two

other studies demonstrated reduced cerebral oxygenation (ΔO2 Hb) and perfusion (ΔtHb)

using NIRS during exercise and recovery in patients with valvular heart disease or idiopathic

dilated cardiomyopathy with reduced left ventricular ejection fraction (<40%) as compared to

older aged-matched healthy controls [8, 9]. Similarly to our results, no differences in cerebral

exercise oxygenation (ΔO2 Hb) and perfusion (ΔtHb) were observed in heart failure patients

(NHYA class II) and healthy controls [10]. We believe that the etiology of heart disease (stable

CHD vs. valvular and heart failure), our preserved patient’s aerobic capacity and left ventricu-

lar ejection fraction (data not shown) may explain the lack of difference during exercise. In

agreement with a previous study in heart failure patients [9], post-exercise cerebral oxygen-

ation (ΔO2 Hb) and perfusion (ΔtHb) were reduced in patients with CHD. These results could

be attributed to a lower overshoot of cardiac output during recovery in CHD patients vs. older

healthy controls [9, 10].

Cognitive function parameters and their relationships with _VO2 peak,

cardiac and cerebral hemodynamics

We found that _VO2 peak, maximal cardiac output (CI max) and cerebral oxygenation and per-

fusion (ΔO2 Hb, ΔtHb) during exercise and, to a lesser degree during recovery, were related to

resting cognitive function (short term and working memory, psychomotor speed, cognitive

inhibition and flexibility and long term verbal memory) in agreement with previous studies in

healthy subjects, heart failure and transplanted patients [10, 11, 45]. The results are also in

accordance with the cerebrovascular reserve hypothesis that highlight that better cognitive

function relates to better cerebrovascular responses [13]. Moreover, independent predictors

for cognitive function (composite score) were also identified. They included education, diabe-

tes, and trunk adiposity for working memory and gender and aerobic fitness for verbal mem-

ory. In two studies in obese subjects and heart failure patients, obesity, gender and education

were also predictors of memory [46, 47]. In contrast, in a previous work in CHD patients, aer-

obic fitness ( _VO2 peak) was not an independent predictor of memory function [48]. Cerebral

perfusion during exercise (tHbmax) independently predicted speed of processing in our study.

Previously, resting cerebral perfusion (MRI) was shown not to be related to trail making A (a

component of speed of processing score) in multiple linear regression models in older adults

with CV disease [14], Finally, we found that age and LDL-cholesterol were independent pre-

dictors of executive functioning. Age is a known predictor of executive function in healthy

subjects and cardiac patients [11, 46], however we have no clear explanation why LDL-choles-

terol remained in the models except as a possible marker of cerebral atherosclerosis. In
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addition, we are surprised that ( _VO2 peak) was not independently related to executive func-

tion as shown in other previous studies in healthy subjects and CHD patients [48, 49].

Limitations

Our study has limitations, including the enrolment of healthy subjects and stable selected

CHD patients (mostly men) recruited in a single centre, hence inducing a potential recruit-

ment bias. Patients with CHD were also receiving optimal or near-optimal medical therapy

and following a preventive cardiology program. Results may differ in women and in other

CHD patients (ex: following acute coronary syndromes) in the real-world setting. As well,

cerebral oxygenation and perfusion were assessed non-invasively using NIRS at the left pre-

frontal area level implicating a very limited spatial resolution and a relatively superficial brain

tissue measurement (light penetration� 2.25 cm). Therefore, our results may differ from

other more invasive and global measurement of brain oxygenation and perfusion (ex: cathe-

ters) or from other brain regions. Another limitation is that cognitive function was only

assessed at rest and not during exercise (e.g: Stroop task) in our subjects sample.

Conclusions

In this study, we demonstrate that fit CHD patients show evidence of significantly reduced

resting cognitive functions, particularly with respect to the executive and memory domains,

relative to age-matched healthy controls and younger controls. These data indicate that fit-

ness alone does not or cannot prevent the clear step-down in cognitive functions that occur

in patients with CHD relative to age-matched healthy controls. Furthermore, while the

aging process itself is associated with reduced cognitive function, based upon our results, it

is unclear what role reduced cerebral oxygenation/perfusion and cardiopulmonary and

hemodynamic responses play in explaining the impairments in cognitive function we

observed in our fit CHD cohort. Larger studies using several imaging modalities for evaluat-

ing cerebral blood flow and oxygenation/perfusion are required to better understand the

potential role of cerebrovascular and neurovascular function in explaining the cognitive

impairments we observed in our two aged cohorts. Finally, studies of pharmacological and

non-pharmacological treatments known to improve vascular function should be conducted

in order to evaluate their potential impact on cognitive functions and assess potential mech-

anisms. For example, high-intensity interval training was recently shown to have superior

effects on _VO2 peak, cardiac output, and cerebral perfusion in patients with chronic heart

failure [50] and could be a promising approach to enhance cognitive functions in subjects

with CVD.
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