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Abstract— In this work, we propose to reformulate the
objective function of Independent Component Analysis (ICA)
to make it a better posed problem in the context of Remote
photoplethysmography (rPPG). In recent previous works, lin-
ear combination coefficients of RGB channels are estimated
maximizing the non-Gaussianity of ICA output components.
However, in the context of rPPG a priori knowledge of the
pulse signal can be incorporated into the component extraction
algorithm. To this end, the contrast function of regular ICA
is extended with a measure of periodicity formulated using
autocorrelation. This novel semi-blind source extraction method
for measuring rPPG has the interesting property of being free
from manual parameter adjustment. The tedious selection of
the step-size parameter in the gradient-ascent algorithm has
been advantageously replaced by an adaptive step size. Our
method has been validated against our large in-house video
database UBFC-RPPG.

I. INTRODUCTION
Photoplethysmography (PPG) is a gold standard for mon-

itoring the proper functioning of the cardiovascular system
by measuring changes in blood volumes in tissues. Remote
photoplethysmography (rPPG) has recently been developed
to measure, without any contact, physiological signs only
based on the ambient light and a video camera. This has
the advantage of reducing user constraints while simulta-
neously eliminating the need for expensive and specialist
hardware. Most rPPG methods share a common pipeline-
based framework where regions of interest are first detected
and tracked over frames, RGB channels are then combined
to estimate the pulse signal, which is then filtered and
analyzed to extract physiological parameters such as heart
rate or respiration rate. Two recent review papers have been
published presenting an overview of the wide range of rPPG
methods [17] and [13].

The pulsatile information is mixed in the light reflected
by the tissue with other signals such as incoming light
changes or shadow casting variations. This mixed signal
is then captured by the camera. This suggests that Blind
Source Separation (BSS) techniques, such as Independent
Component Analysis (ICA) can separate the different sources
and isolate the pulse signal [16]. If the time varying color
traces for n channels captured by the camera are represented
as x = (x1, x2, ..., xn)

T , which is an instantaneous linear
mixture of the original m independent signals denoted as
c = (c1, c2, ..., cm)T , then the process of mixing can be
formulated as x = Ac, where the matrix An×m represents

the linear memoryless mixing of the channels. The goal of
ICA, then, is to estimate the unmixing matrix Wm×n to
recover all the independent components from the observed
signal with no knowledge of A and c. The recovered signal
s = (s1, s2, ..., sm)T is given by s = Wx [11].

Incorporating a priori information to guide the optimiza-
tion process is an interesting approach in signal separation.
Lu and Rajapakse [11] have used an existing reference signal
to guide the separation process by using the method of La-
grange multipliers where the distance between the reference
signal and the estimated signal is taken as the constraint.
Based on this work, Tsouri et al. [19] proposed a constrained
ICA based approach, using a rectangular pulse as a reference
signal for rPPG measurements. However, the design of an
accurate reference signal is prone to multiple complications
such as the determination of the frequency of the reference
signal. Macwan et al. [12] have proposed a more flexible
formulation of constrained ICA where a priori knowledge
about the periodicity of the blood flow signal is exploited to
guide the component extraction process. However, it remains
very difficult to select the threshold values for the constraints
or the parameters of the optimization algorithm.

In this work, we propose to reformulate the objective
function of ICA to make it a better posed problem by making
three augmentations. First, we require only one component,
i.e., the rPPG pulse from the mixture of the temporal traces.
As a result, the problem of component separation can be
modified into that of component extraction. Second, we
know that the blood volume pulse embedded in the RGB
temporal traces is by nature periodic (or at least pseudo-
periodic). Consequently, we use the periodicity of the rPPG
signal as an a priori information to help extract the most
periodic component. To this end, we use autocorrelation as
the measure of periodicity for guiding the ICA separation
algorithm. The rPPG pulse extraction is accomplished by
using a multi-objective optimization approach to maximize
both mean squared autocorrelation and negentropy [8], a
measure of non-gaussianity fit for remote photoplethysmog-
raphy. Third, an adaptive step-size is used in the gradient-
ascent optimization algorithm so that the method is free from
manual parameter tuning.

The algorithm has been validated with the second dataset
of our in-house database UBFC-RPPG [2], comprising of 46
videos, which is made publicly available.



II. PROPOSED METHOD

We exploit the inherent periodicity property of biomedical
signals guiding the component extraction process to choose
the component with the highest periodicity. To this end, we
use autocorrelation along with negentropy formulated as a
multi-objective optimization problem. The use of autocorre-
lation as a periodicity measure and formulation of the multi-
objective optimization problem is presented next.

A. Autocorrelation as a periodicity measure

Autocorrelation is the correlation of a signal with it-
self at different lag times. For a time series signal y =
[y1, y2, . . . , yN ] of N elements, its discrete autocorrelation
rk at lags k ∈ [−(N − 1), · · · , N − 1] is given by

rk =

N−1∑
j=0

yj �
k

yj (1)

where
k

yj is the jth element of the signal y lagged (or led if
k < 0) by k units and padded with zeros to the left (or right
if k < 0) and � is the element-wise multiplication operator.
A periodic signal typically has a higher correlation with itself
compared to a non-periodic one which can be quantified by
the mean of the squared autocorrelation of the signal and
consequently can be used as a measure of the periodicity of
a signal.

To aid the use of autocorrelation as a periodicity measure
and simplify its computation, two modifications need to be
made. First, since the autocorrelation is symmetric, we only
compute the correlation for lags k ∈ [0, · · · , N−1]. Second,
since the correlation at lag 0 is always high, we set the
autocorrelation to 0 at lag k = 0. Thus, the autocorrelation
is given by r = [r0, r1, · · · , rN−1] comprising of N values
given by Eq. (1) and r0 = 0.

B. Multi-objective optimization

In this section we describe the formulation of the rPPG
extraction module using Multi-objective optimization with
Autocorrelation as a periodicity measure and ICA now on
referred to as MAICA.

Our two objective functions correspond to negentropy and
autocorrelation respectively of the output y = wTx where
the ideal orthogonal row vector w ∈ R3, obtained after
optimization, extracts the desired component from the RGB
temporal traces x:

maximize
w

J(y), R(y) (2)

where R(y) = R(wTx), which is eventually a function of
w, is the mean squared autocorrelation given by

R(y) = E{r2} (3)

with r = [r1, r2, · · · , rN ] being the autocorrelation and rk
is given by Eq. (1). J(y) is the generic contrast function
for ICA defined by [9] as H(ygauss) − H(y). H(.) is the
differential entropy and ygauss is a random variable with a

variance equal to that of the output signal y. In practice, an
approximation of negentropy is used for ease of computation
and flexibility given by

J(y) ≈ ρ[E{G(y)} − E{G(v)}]2 (4)

where ρ is a positive constant, v is a Gaussian variable having
zero mean and unit variance. G(.) can be any non-quadratic
function as suggested by [8].

A simple way to incorporate the a priori information in
the optimization problem is to scalarize the multi-objective
optimization by forming a single-objective optimization such
that the solutions to the scalarized problem are the set
of feasible solutions commonly known as Pareto optimal
solutions [5]. The linearly scalarized version of the multi-
objective contrast function then becomes

maximize
w

J(y) +R(y) (5)

where J(y) = s1(J(y) − Jmin) and R(y) = s2(R(y) −
Rmin) are the normalized versions of the respective objective
functions in order to compensate for the disparities in scale
and s1 = 1

Jmax−Jmin
and s2 = 1

Rmax−Rmin
. Ideally,

the boundary values of the objective functions correspond
to their global maximum and minimum values. However,
to emulate a live scenario as much as possible, all the
processing are performed over a temporal window of 30
seconds. Consequently, Jmin, Rmin, Jmax and Rmax were
calculated by using a sinusoidal signal emulating an ideal
blood volume pulse, ys = sin(t) where t corresponds to
the time coordinates of the current temporal window. This
was done by taking the maximum values of the objective
functions over the frequency range of human heart rates,
F ∈ [0.7, 3] Hz. The minimum values were calculated in
the same manner for a uniform random signal yr for the
temporal window t.

Jmax = max
F

J(ys), Rmax = max
F

R(ys) (6)

Jmin = min
F

J(yr), Rmin = min
F

R(yr) (7)

Finally, the entire problem is solved using a first-order
iterative optimization algorithm procedure with the following
objective function:

L = J(y) +R(y) (8)

To find the maximum of L in Eq. (8), gradient-ascent
iteratively adapt w with

wk+1 = wk + µ1J
′

wk
(y) + µ2R

′

wk
(y) (9)

where k is the iteration index, µ1 and µ2 are the step-size for
negentropy and autocorrelation part of the objective function,
J
′

wk
(y) and R

′

wk
(y) are the first derivatives of J(y) and

R(y) at step k w.r.t w.
Following the above equations, the optimization procedure

converges to the optimum point w∗ representing the final
weighting matrix which is then used to obtain the final rPPG
signal.



C. Adaptive step-size

Most BSS algorithms use a fixed step-size parameter.
However, use of a fixed step-size creates several problems. To
maximize the objective function rapidly, the step-size should
be set to a large value when the objective function is small.
To get a precise weighting matrix w, on the contrary, the
step-size should be set to a small value. In (9), the step-
size selection is even more critical because it defines the
relative importance between negentropy and autocorrelation
in the update procedure. Several adaptive step-size have been
proposed in the literature based, for instance, on an exact
line search of µ [22] or solving the optimum step-size that
minimizes the cost function with an iterative process based
on a gradient method [6]. In this work, we use the adaptive
step-size proposed by Nakajima et al. [14] where the step-
size is set anti-proportional to the first gradient of the cost
function. The adaptive step-size method are formulated as
follows

µ′1 =
J(y)

2
∥∥∥J ′wk(y)

∥∥∥2 and µ′2 =
R(y)

2
∥∥∥R′wk(y)

∥∥∥2 (10)

where ‖.‖2 means the Frobenius norm. Even if the complete
procedure is almost entirely free from any manual parameter
adjustment, we experimentally observe that a threshold on
the value of µ1 can be useful because the derivative of the
negentropy is sometimes quite unstable.

D. System Framework

The workflow of the procedure as depicted in Fig. 1
is presented here. Temporal RGB traces, x = [x1, x2, x3]

T

where each xm, m ∈ [1, 2, 3], corresponds to a temporal
trace of size N of each channel were generated by frame-
wise spatial averaging of the skin pixels. To obtain these
skin pixel averages, face detection and tracking was first
performed using the Viola-Jones and the Kanade-Lucas-
Tomasi implementations provided by the computer vision
toolbox of MATLAB. Then, corner detection in the detected
face was performed for tracking to crop the face based on
facial landmarks. Skin detection as formulated by Conaire et
al. [3] was then performed to select the candidate pixels
which were then spatially averaged to obtain a triplet of
RGB values per frame and concatenated to obtain the RGB
temporal traces.

These temporal RGB traces were then detrended [18]
to remove low frequency trends in the signal. Next, after
normalization, two additional preprocessing steps which are
generally recommended for ICA to simplify calculations
were performed. First, centering was performed so that
the obtained signal y in y = Wx is zero-mean. Next,
whitening was performed to ensure that the components were
uncorrelated and their variances equal to unity. The traces
were then passed to the rPPG extraction module where the
MAICA algorithm was used to extract the rPPG signal.

After the rPPG signal was obtained, the per window heart
rate was calculated from the highest peak of the FFT filtered
within the acceptable range of heart rate F ∈ [0.7, 3] Hz over

MAE SNR r
MAICA 3.18 0.06 0.90

MAICAfix 3.41 0.06 0.89
ICA 6.02 -1.11 0.79
PCA 9.65 -3.45 0.67
Green 7.73 -2.78 0.68

CHROM 3.81 -0.93 0.87
POS 4.73 -1.60 0.80
G-R 9.79 -3.10 0.65

TABLE I: Performance comparisons between the various
methods using Mean Absolute Error (MAE), Signal-to-Noise
Ratio (SNR) and Pearson’s correlation coefficient (r)

a 30 second moving window using a step size of 0.5 second
for our in-house datasets. All the processing was performed
over a 30 seconds window, using the weighting matrix wk

obtained at window k as an initial estimate for calculation
of wk+1 at the next window. This 30 seconds window size
was chosen as a trade-off between speed and availability of
enough data for convergence. The window-wise heart rate
estimations were then smoothed using a Kalman filter. The
Kalman filter helped to remove spurious outliers resulting
from sudden variation in illumination and/or motion. We
present the results of the experiments in the next section.

III. EXPERIMENTS AND RESULTS

The in-house UBFC-RPPG database [2] is used to test
the MAICA method. This database comprises of 46 videos
where the subjects were required to play a time sensitive
mathematical game in order to vary the heart rate and also
simultaneously emulate the scenario of the typical activity of
using a computer. All the videos were taken under ambient
light with limited illumination variations. The UBFC-RPPG
database is made publicly available along with the ground
truth data from the pulse oximeter for rPPG measurement
analysis1.

The video frames were obtained with a custom C++
application using a Logitech C920 web camera placed at
a distance of about 1m from the subject with a resolution of
640x480 in 8-bit uncompressed RGB format at 30 frames per
second. A CMS50E transmissive pulse oximeter was used to
obtain the ground truth PPG data.

Table I shows the accuracy comparisons between the
proposed method MAICA with adaptive step-size, with a
fix step-size (MAICAfix), ICA[15] and other state of the
art methods, viz., PCA [10], Green [20], CHROM [4], POS
[21], and G-R [7]. The metrics used are Mean Absolute Error
(MAE), signal-to-noise ratio (SNR) and Pearson’s correlation
coefficient (r) between heart rate calculated using the rPPG
signal and the heart rate calculated using the ground truth
PPG waveform [1]. The SNR (dB) was calculated as the
ratio of the power of the main pulsatile component of the
PPG to that of the background noise to accommodate the
wide dynamic range of the signals.

Even if the SNR values are quite low, it is interesting to
observe that the MAE values are acceptable for most state-

1https://sites.google.com/view/ybenezeth/ubfcrppg



Fig. 1: Flowchart of the proposed method

of-the-art methods. The CHROM method [4] is undoubtedly
the most reliable rPPG techniques from the literature because
it systematically outperforms other methods. Then, it can
be observed that the addition of the autocorrelation term
greatly improves ICA. Finally, the results obtained with the
adaptive step-size are only slightly better than the ones with
a fixed step-size, but the proposed method has the undeniable
advantage of not having to empirically fix the optimal value
of the threshold.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a parameter-free adaptive step-
size multiobjective optimization method applied to remote
Photoplethysmography with mean squared autocorrelation
and negentropy as the objective functions. The method
provides better results than other state of the art methods
while removing the extra step for choosing the best parameter
values. Our method can also be combined with other methods
like smart ROI selection [2] to further obtain better rPPG es-
timations. The assumption that the most periodic component
is the cardiac pulse signal does not hold in scenarios with
periodic motion e.g. in fitness. Our method can thus benefit
from motion compensation and improve HR estimations in
a more realistic scenario with motion disturbances.
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