
HAL Id: hal-01678244
https://u-bourgogne.hal.science/hal-01678244v1

Submitted on 9 Jan 2018 (v1), last revised 24 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remote heart rate variability for emotional state
monitoring

Yannick Benezeth, Peixi Li, Richard Macwan, Keisuke Nakamura, Randy
Gomez, Fan Yang

To cite this version:
Yannick Benezeth, Peixi Li, Richard Macwan, Keisuke Nakamura, Randy Gomez, et al.. Remote
heart rate variability for emotional state monitoring. IEEE International Conference on Biomedical
and Health Informatics, 2018, Las Vegas, United States. �hal-01678244v1�

https://u-bourgogne.hal.science/hal-01678244v1
https://hal.archives-ouvertes.fr


Remote heart rate variability for emotional state monitoring

Yannick Benezeth1, Peixi Li1, Richard Macwan1, Keisuke Nakamura2, Randy Gomez2, Fan Yang1

1 Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, Dijon, France
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Abstract— Several researches have been conducted to rec-
ognize emotions using various modalities such as facial ex-
pressions, gestures, speech or physiological signals. Among
all these modalities, physiological signals are especially inter-
esting because they are mainly controlled by the autonomic
nervous system. It has been shown for example that there
is an undeniable relationship between emotional state and
Heart Rate Variability (HRV). In this paper, we present a
methodology to monitor emotional state from physiological
signals acquired remotely. The method is based on a remote
photoplethysmography (rPPG) algorithm that estimates remote
Heart Rate Variability (rHRV) using a simple camera. We
first show that the rHRV signal can be estimated with a
high accuracy (more than 96% in frequency domain). Then,
frequency-feature of rHRV is calculated and we show that there
is a strong correlation between the rHRV feature and different
emotional states. This observation has been validated on 12 out
of 16 volunteers and video-induced emotions which opens the
way to contactless monitoring of emotions from physiological
signals.

I. INTRODUCTION

In the last 10 years, many modalities have been studied
for the analysis of emotions. Facial expression is one of the
most studied modality (e.g. in [1]), probably because facial
expression recognition is quite easy for people. Recently,
research on facial expression analysis has shifted its focus
from posed facial expression to spontaneous expressions [2].
Facial features have also been used with 3D [3] or thermal
sensors [4]. However, emotion recognition is so complicated
that even the relation between internal bodily feelings and ex-
ternally observable expression is still an open research area.
As a consequence, another avenue of research in emotion
recognition is based on the analysis of physiological sig-
nals. To this end, electrocardiogram, photoplethysmogram,
skin temperature, electrodermal activity or electromyography
have been studied [5], [6], [7]. These technologies have many
advantages but require the use of contact sensors.

Among many physiological features, Heart Rate Variabil-
ity (HRV) is an interesting indicator of autonomic function.
The rhythmic beating of the heart at rest was once believed
to be regular, however the heart rhythms are now commonly
used to recognize emotions, detect stress or more generally
changes in Autonomic Nervous System (ANS) [8], [9],
[10]. HRV is derived from the electrocardiogram and is a
measurement of the beat-to-beat changes in heart rate. The
variability in heart rate is regulated by the synergistic action
of the two branches of the ANS, namely the sympathetic and

parasympathetic nervous system. The heart rate represents
the net effect of the parasympathetic nerves which slow heart
rate, and the sympathetic nerves, which accelerate it. These
changes are influenced by emotions, stress and physical
exercise [11]. Even if the gold standard for HRV mea-
surement is the electrocardiogram, photoplethysmography
(PPG) have been successfully used in several studies (e.g.
in [12]). Photoplethysmography is a technique for detecting
microvascular blood volume changes in tissues. The principle
of this technology is actually very simple as it only requires a
light source and a photodetector. The light source illuminates
the tissue and the photodetector measures the small variations
in transmitted or reflected light associated with changes in
perfusion in the tissue [13].

Interestingly, it has been shown recently [14] that it is
possible to recover the cardiovascular pulse wave measuring
variations of back-scattered light remotely, using only am-
bient light and low-cost vision systems. Since this seminal
work, there has been rapid growth in the literature pertaining
to remote photoplethysmography (rPPG) techniques (e.g.
[15], [16]). Interested reader may refer to recent reviews on
rPPG [13], [17], [18]. The unobtrusive character of rPPG
technology significantly increases patient comfort. However,
the measured signal has a notably lower Signal to Noise
Ratio (SNR), precisely the ratio between the rPPG signal
and all possible noises, than the contact measurements. This
observation is fundamental because the pulse waveform sig-
nal must be very precise to estimate the HRV. HRV requires
accurate estimation of time interval between consecutive
peaks in the pulse waveform signal and rPPG signals are
very sensitive which may lead to poor HRV estimation
if false peaks are detected. However, remote measurement
of physiological signals correlated with emotional states is
highly desirable for realistic and unbiased experiments on
emotions. Decoding human underlying emotions in real-
time enables improved human-computer interaction on an
emotional level.

In this paper, we present a methodology to monitor
emotional state from physiological signals acquired remotely.
Frequency-feature of HRV estimated using a simple camera
is calculated and we show that there is a strong correlation
between this feature and different emotional states. Exper-
iments have been conducted using data collected from 16
volunteers and video-induced emotions.

Section 2 presents the data collection; the rPPG algorithm
and the rHRV feature are described in section 3 while



experimental results are given in section 4.

II. MATERIAL AND DATA COLLECTION

All experiments of this paper have been conducted using
our own dataset. The video frames were obtained with a
custom C# application using a USB3 color camera1 placed at
a distance of about 1m from the subject. The camera collects
1024 × 786 images in 8-bit uncompressed RGB format
at 50 frames per second. In addition, two direct DC light
sources were used providing a favorable and stable lighting
condition. A CMS50E transmissive pulse oximeter was used
to obtain the ground truth PPG data. Figure 1 presents two
sample images of our dataset.

Fig. 1. Two sample images for the experiment from the neutral session.

Sixteen healthy subjects, aged from 23 to 50, participated
as volunteers in the experiment. Participants were informed
about the protocol and about the purpose of the study. During
the experiment, participants were seated in a comfortable
chair in a controlled environment while watching videos with
emotional content. The affective elicitation was comprised of
2 sessions: after an initial neutral session of 2 minutes, one
arousal session of 2 minutes were recorded. For each session,
videos from the Internet were shown to the volunteers
as video-acoustic stimuli. For the arousal session, selected
videos were supposed to elicitate unpleasant emotion of fear
or anxiety.

III. HRV FEATURES ESTIMATION FROM VIDEO DATA

The acquired video data are then used to estimate the
physiological signals. These signals will be later used for
emotional state monitoring. To this end, facial expressions
are never used, but we quantify the small variations of
light reflected back from the skin due to blood perfusion
variations. These pulse waveforms are then used to estimate
the HRV.

For each video frame, face detection was first performed
using the well-known Viola-Jones face detector [19] im-
plementation provided by the computer vision toolbox of
MATLAB. In order to avoid spurious movements of the
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detected face, we also use Kanade-Lucas-Tomasi tracking
[20] algorithm. Skin detection as formulated by Conaire
et al. [21] was then performed to select the skin pixels
which were then spatially averaged to obtain a triplet of
RGB values per frame and concatenated to obtain the RGB
temporal trace. The RGB temporal traces are then pre-
processed by zero-mean, detrended using smoothness priors
approach [22] and band-pass filtered with Butterworth filter
(with cut-off frequencies of 0.7 and 3.5Hz). The rPPG signal
is then extracted using the chrominance-based method (later
called CHROM) [23]. This method applies simple linear
combinations of RGB channels and obtains very interesting
performance with low computational complexity. Let yc(t)
be the RGB time series obtained after pre-processing, where
c ∈ {R,G,B} is the color channel, CHROM method projects
RGB values onto two orthogonal chrominance vectors X and
Y :

X(t) = 3yR(t)−2yG(t),

Y (t) = 1.5yR(t)+ yG(t)−1.5yB(t).
(1)

The rPPG signal S is finally calculated with S(t) =
X(t)−αY (t) where α = σ(X)/σ(Y ) and σ(.) the standard
deviation. Because X and Y are two orthogonal chrominance
signals, PPG-induced variations will likely be different in
X and Y , while possible motion affects both chrominance
signals identically.

Peaks in the rPPG signal were then detected to calculate
the remote Heart Rate Variability (rHRV) signal. RHRV
signals were resampled to avoid nonuniform sampling before
calculating the rHRV spectrograms. The same procedure was
applied to the PPG signal to obtain the HRV spectrograms.

Many features can be estimated from the rHRV temporal
signal or the rHRV spectrogram. Nardelli et al. [24] have
presented an interesting comparison of these HRV features
in the context of emotion recognition induced by affective
sounds. In this paper, we propose to use the (V LF+LF)/HF
power ratio with V LF the very low frequency component of
rHRV spectrogram, i.e. below 0.04 Hz, LF the low frequency
component ranging between 0.04 and 0.15 Hz and HF the
high frequency component comprising frequencies between
0.15 to 0.4 Hz. With respect to the regular LF/HF ratio,
this new frequency feature has the advantage of taking
into account the V LF component that can also reflect the
sympathetic activities.

Similarly than Nardelli et al. [24], we experimentally
observed that it is necessary to normalize our spectral HRV
feature by the feature estimated in the neutral state. More
details are given in the next section.

IV. RESULTS

A. Accuracy of Remote HRV Measurements

First, we compare HRV calculated using the camera data
to those calculated from the contact sensor. Figures 2 and
3 present a representative example for the qualitative com-
parison between HRV and rHRV in temporal and frequency



domain. It can be observed that the result is very good and
the curves match perfectly.

Fig. 2. Comparison between HRV and rHRV temporal signals.

Fig. 3. Comparison between HRV and rHRV spectrograms.

Second, we have also quantitatively evaluated the accuracy
of rHRV by comparing the integral of energy of V LF , LF
and HF components of the HRV and rHRV spectrograms
with:

Accuracy(V LF) = 1− |rV LF−V LF |
V LF

Accuracy(LF) = 1− |rLF−LF |
LF

Accuracy(HF) = 1− |rHF−HF |
HF

(2)

where V LF , LF and HF are the integral of the HRV
spectrum estimated with the PPG sensor in the corresponding
frequency range while rV LF , rLF and rHF are obtained
using the rHRV spectrogram estimated from the video.
These metrics have been averaged using the 2 sessions of
the 16 videos presented in the previous subsection. We

obtain Accuracy(V LF) = 98.25%, Accuracy(LF) = 97.59%
and Accuracy(HF) = 96.90%. The accuracies estimated in
these three spectral ranges are also very satisfactory and show
that the camera can accurately capture the HRV signal.

B. Correlation between emotional states and remote HRV

In this paper, we have conducted an experiment to observe
the correlation of the (V LF +LF)/HF rHRV feature with
two different emotional states, i.e. one neutral and one with
high arousal elicited by video-acoustic stimuli.

We compare the remotely measured HRV on the two
sessions of this experiment. Figure 4 shows (V LF+LF)/HF
rHRV feature values in neutral and arousal sessions. Inter-
estingly, 12 participants of the total 16 (75%) have higher
values of the feature in the arousal session than in the neutral
session. This interesting result validates the methodology and
show that the precision of the remote HRV is sufficient to
build physiological-based emotional state monitoring using
a simple camera.

Fig. 4. Normalized (V LF +LF)/HF feature in different emotional states.

In order to remark the importance of normalization pro-
cedure in the proposed algorithm, Figure 5 presents non-
normalized feature values. It is straightforward to note that
a global classifier would fail to recognize the session with-
out normalization. In this case, the obtained classification
accuracy would not be significantly different from random
guess. Nevertheless, this result remains very interesting and
promising because it demonstrates that it is possible to
measure changes in the emotional state of a person based
on remote physiological data.

Results of 4 participants did not behave as expected. In
our opinion, this is not due to the methodology of signal
and video processing but rather to the experimental protocol.
All the volunteers confirmed that they had been ”disturbed”
by the arousal-session videos, but the neutral session was
probably not satisfactory. Perhaps this was because the
participants found the experiment itself stressful. In this case
the neutral session may not have represented a truly relaxed
state.



Fig. 5. Non-normalized (V LF +LF)/HF feature in different emotional
states.

V. CONCLUSIONS AND FUTURE WORK

Several methods and devices have been proposed for
measuring physiological signals and have been used widely
in emotion recognition applications. However, physiological
sensors usually need to be attached to the human body, which
might be intrusive and represents a major hurdle in collecting
physiological data in daily life over long term. In this paper,
remote HRV frequency-feature is estimated from video data
collected with a simple camera. We experimentally show that
there is a high agreement between the camera-based HRV
and the contact sensor proving that it is possible to accurately
capture the HRV signal remotely. Then, using data collected
from 16 volunteers and video-induced emotions, we show
that there is a strong correlation between the rHRV feature
and different emotional states for 12 participants.

Non-contact measurement of physiological signals cor-
related with emotional states is highly desirable. rHRV is
clearly an interesting modality for that matter. However, our
work has several limitations that should be addressed in
future works. The user-dependence of our feature is very
strong and prevent from using an emotion classifier without
normalizing the data with a neutral emotional state. Nev-
ertheless, this feature allows to monitor the emotional over
time and possibly to detect changes. More work should be
conducted on user-independence in order to further open the
field of possible applications. The use of multiple features,
possibly from other modalities can be investigated to solve
this issue. Then, the experimental protocol can also be
improved making sure the volunteers are relaxed enough to
start the measurements and using more than two emotional
states.
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