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Abstract The mammalian retina contains a high level of
polyunsaturated fatty acids, including docosahexaenoic acid
(22:6) (DHA), which are highly susceptible to oxidation. It
has been shown that one of the products of DHA oxidation
—carboxyethylpyrrole (CEP), generated in situ, causes
modifications of retinal proteins and induces inflammation
response in the outer retina. These contributing factors may
play a role in the development of age-related macular
degeneration (AMD). It is also possible that some of the
lipid oxidation products are photoreactive, and upon irra-
diation with blue light may generate reactive oxygen spe-
cies. Therefore, in this work we analysed oxidation-induced
changes in photoreactivity of lipids extracted from bovine
neural retinas. Lipid composition of bovine neural retinas
closely resembles that of human retinas making the bovine
tissue a convenient model for studying the photoreactivity
and potential phototoxicity of oxidized human retinal lipids.
Lipid composition of bovine neural retinas Folch’ extracts
(BRex) was determined by gas chromatography (GC) and
liquid chromatography coupled to an electrospray ionization
source-mass spectrometer (LC-ESI-MS) analysis. Lipo-
somes prepared from BRex, equilibrated with air, were
oxidized in the dark at 37 °C for up to 400 h. The

photoreactivity of BRex at different stages of oxidation was
studied by EPR-oximetry and EPR-spin trapping. Photo-
generation of singlet oxygen (1O2,

1Δg) by BRex was
measured using time-resolved detection of the characteristic
phosphorescence at 1270 nm. To establish contribution of
lipid components to the analysed photoreactivity of Folch’
extract of bovine retinas, a mixture of selected synthetic
lipids in percent by weight (w/w %) ratio resembling that of
the BRex has been also studied. Folch’s extraction of bovine
neural retinas was very susceptible to oxidation despite the
presence of powerful endogenous antioxidants such as α-
tocopherol and zeaxanthin. Non-oxidized and oxidized
BRex photogenerated singlet oxygen with moderate quan-
tum yield. Blue-light induced generation of superoxide
anion by Folch’ extract of bovine neural retinas strongly
depended on the oxidation time. The observed photo-
reactivity of the studied extract gradually increased during
its in vitro oxidation.

Keywords Retina ● Lipids ● Polyunsaturated fatty acids ●

Oxidation ● Photor

Introduction

Retina, being a part of a central nervous system, shares its
unique lipid composition [1–3]. Thus, up to 40% of phos-
pholipids present in the retina contain polyunsaturated fatty
acids (PUFAs) esterified mainly in the SN-2 position, and,
to much lesser extent, also in the SN-1 position [4–7]. The
most abundant PUFAs in the outer retina, especially in
photoreceptor outer segments (POS), are docosahexaenoic
acid (DHA (22:6)) and arachidonic acid (ARA (20:4)),
which account for 21 and 10% of total fatty acids residues,
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respectively [1, 4, 8]. High concentration of PUFAs in POS
is essential for maintaining the appropriate fluidity of their
membranes, which is necessary for efficient visual trans-
duction [9, 10]. However, high level of unsaturation makes
PUFAs susceptible to oxidation. The outer retina, being
exposed to intense irradiation from focused light, high
oxygen concentration [11] and the presence of endogenous
sensitizers, such as rhodopsin photobleached products [12,
13] or age pigment—lipofuscin [14, 15], is at elevated risk
of oxidative stress.

Lipid peroxidation products are considered as an
important factor causing irreversible modifications of cel-
lular components, which in the long run may lead to the
onset of degenerative processes, including age-related
macular degeneration (AMD) [16]. It has been shown that
4-hydroxynonenal (4-HNE) or 4-hydroxyhexenal (4-HHE)
[17, 18] and carboxyethyl pyrrole (CEP)—products of
peroxidation of arachidonic and docosahexaenoic acids
respectively, bind to cellular proteins forming advanced
lipooxidation end-products (ALEs) [19, 20]. ALEs may
induce an inflammatory response, which is supposed to play
a role in the pathogenesis of AMD. The presence of CEP
protein adducts in the outer retina are considered to be an
early marker of high risk of AMD development [16, 21, 22].

Even though possible consequences of oxidation of retinal
lipids for the onset and development of AMD were dis-
cussed, their potential photoreactivity and possible photo-
toxicity have not been considered. This is an important issue,
considering that reactive products of lipid oxidation present
in the outer retina, may be exposed to short-wavelength
visible radiation [23–25]. If photoreactive, peroxidised ret-
inal lipids may act as acquired endogenous sensitizers
increasing the risk of retina photodamage. In this work, we
analysed photoreactivity of Folch’ extract of bovine neural
retinas (BRex) and oxidation-induced changes in its potential
photoreactivity in heterogeneous model systems and in
homogenous solutions. Since lipid composition of bovine
neural retinas closely resembles that of human neural retinas,
the bovine tissue becomes a convenient model for studying
the postulated photoreactivity of human retinal lipids.

To establish contribution of lipid components to the
analysed photoreactivity of Folch’ extract of bovine retinas,
a mixture of selected synthetic lipids in percent by weight
(w/w %) ratio resembling that of the BRex has been also
studied. Photoreactivity of samples collected at selected
oxidation times was analysed in liposomes and in their
Folch’ extracts.

Material and Methods

Chemicals, at least reagent grade, unless otherwise stated,
were purchased from Sigma-Aldrich Inc. (All trans Retinal

(atRAL), 5,5-dimethyl-1-pyrroline-N-oxide [DMPO], 5,10,
15,20-tetraphenyl-21H,23H-porphine [TPP], α-tocopherol
(α-TOH), chelex), Avantor Performance Materials Poland
(sodium phosphate, potassium phosphate, sodium chloride,
potassium chloride, liquid chromatography grade benzene,
chloroform, methanol) and used as supplied.

Cholesterol, Sphingomyelin (Brain, Porcine), 1-palmi-
toyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylethano-
lamine (PE 16:0/22:6), 1-stearoyl-2-arachidonoyl-sn-
glycero-3-phosphoethanolamine (PE 18:0/20:4), 1-palmi-
toyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE 16:0/
18:1), 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phos-
phatidylcholine (PC 16:0/ 22:6), 1-stearoyl-2-arachidonoyl-
sn-glycero-3-phosphocholine (PC 18:0/20:4), 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (PC 16:0/18:1), 1,2-
stearoyl-sn-glycero-phosphatidylcholine (PC 18:0/18:0)
were purchased from Avanti Polar Lipids, Inc.

Bovine eyeballs were obtained from the local abattoir
and transported to the laboratory on ice. The following
procedure of bovine neural retinas collection was performed
at dim light at 4 °C. Briefly: intact bovine eye globes were
hemisected by an incision around the pars plana, the
anterior segments (i.e., cornea, lens, vitreous) were removed
and the neural retina was gently peeled and cut off from the
optical nerve.

Extraction of Lipids from BRex

Lipids and other hydrophobic components of bovine neural
retinas were extracted from the tissue following slightly
modified Folch’ method [26]. Shortly: collected bovine
retinas were homogenized in a small amount of PBS (20
mM) using glass/PTFE manual homogenizer. Then sus-
pension of homogenized tissue was mixed with Folch’
extraction mixture (chloroform: methanol, 2:1, v/v) in 5:8
(v/v) ratio and vortexed vigorously for a few minutes.
Sample was centrifuged (15,000 rpm, 5 min, at 15 °C) and
the chloroform layer was collected. To determine a dry
mass of the obtained extract, chloroform was dried under a
stream of argon and traces of organic solvent were removed
by drying the sample under reduced pressure for 2 h.
Obtained extract was stored under inert conditions and used
for further experiments.

Phospholipid composition of collected Folch’ extracts
bovine neural retinas, limited to phosphatidylcholines (PC)
and phosphatidylethanolamines (PE), were analyzed using
liquid chromatography coupled to an electrospray ionization
source-mass spectrometer (LC–ESI–MS) as described
elsewhere [4, 5], while free and phospholipid-esterified fatty
acids after conversion to methyl esters using boron tri-
fluoride (BF3) in methanol (7% w/v) were analysed with
GC as previously described [27, 28].
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Detection of α-Tocopherol in BRex

The presence of α-tocopherol, endogenous, hydrophobic
antioxidant in BRex was confirmed using HPLC-DAD
Shimadzu at 290 nm. Separation was performed on C18
column (Beckman-ODS, 15 cm) with a mobile phase
composed of mixture of methanol:acetonitrile:water:iso-
propanol (78:11:5.5:7.5; v/v) with the flow rate 1 ml/min.
Pure α-TOH (12.5 mM) as a standard and freshly prepared
BRex (2 mg/ml) were dissolved in a small amount of
methanol and the injection volume was 10 μl. Retention
time of α-TOH at the parameters used was 16 min.

A Mixture of Synthetic Lipids

According to the BRex lipid composition determined by
LC/MS and gas chromatography (GC) methods, a mixture
of selected synthetic lipids, modelling those naturally pre-
sent in the bovine neural retina and its Folch’ extract, were
prepared. Such mixtures of lipids (25 mg/ml of total con-
centration) typically contained phospholipids (85 w/w %),
cholesterol (10 w/w %) and sphingomyelin (5 w/w %).
Detailed composition of this sample is given in Table 1.

Preparation of Multilamellar Liposomes

Multilamellar liposomes were prepared by the film
deposition method as previously described [29–31].
Shortly, both Folch’ extract of bovine neural retinas
obtained as described above and the mixture of selected
synthetic lipids were dissolved in chloroform saturated with
argon to prevent oxidation. Then, the chloroform was eva-
porated with a stream of argon or nitrogen gas, and the lipid
film formed on the bottom of the test tube was thoroughly
dried under reduced pressure for 6–12 h. A PBS (10 mM,
pH 7.4), previously incubated at least 24 h with chelex to
remove a trace of transition metal ions, was added to the
dried Folch extract of bovine retinas and to the mixture of
synthetic lipids at the room temperature and vortexed

vigorously to complete removal of lipid film from the test
tubes. The final concentration of BRex or the mixture of
synthetic lipids in the obtained suspension of multilamellar
liposomes was 25 mg/ml.

All preparations were performed in darkness or under
dim light and, where possible, under nitrogen or argon.

Oxidation of Liposomes

Both, multilamellar liposomes prepared from BRex and
liposomes prepared from synthetic lipids at concentration
25 mg/ml were placed in a glass tubes, in a water bath at
37 °C in the dark. At zero time of oxidation, a part of
liposomes was collected for analysis as a non-oxidized
sample (0 h of oxidation), while the rest of sample was
oxidized up to 400 h in the equilibrium with air. Con-
centration of BRex and synthetic lipids in liposomes was
kept at 25 mg/ml by controlling the volume of oxidizing
sample and, if necessary, by filling up with redistilled water
previously incubated with chelex. At the selected time
points of oxidation, part of liposomes was collected for
analysis. To perform measurements in homogenous solu-
tions, liposomes collected at various time points of oxida-
tion underwent Folch’ extraction again and dried extract
mass was determined. In following experiments, studied
samples were normalized to their dry mass.

Direct Detection of Singlet Oxygen (1Δg,
1O2*)

Phosphorescence at 1270 nm

Before measurements, freshly prepared and oxidized BRex
in liposomes underwent Folch’ extraction again (2nd Folch
extraction) to obtain homogenous solution of BRex in
benzene and to determine quantum yield of 1O2 generation.
The 2nd Folch’ extracts of non-oxidized and oxidized
BRex, dried under stream of nitrogen, were re-dissolved in
benzene, placed in a quartz fluorescence cuvette (QA-1000;
Hellma, Mullheim, Germany) and excited with light gen-
erated by an integrated nanosecond DSS Nd:YAG laser

Table 1 Composition of
liposomes composed of selected
synthetic lipids, naturally
present in bovine neural retina

Lipids (w/w %)

Cholesterol (10%)

Sphingomyelin (5%)

Phospholipids (85%) PE (40%) PE 16:0/22:6 SFAs (50 %) MUFAs (12 %) PUFAs (38 %)

PE 18:0/20:4

PE 16:0/18:1

PC (60%) PC 16:0/22:6

PC 18:0/20:4

PC 16:0/18:1

PC 18:0/18:0
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system equipped with a narrow bandwidth optical para-
metric oscillator (NT242–1k-SH/SFG; Ekspla,Vilnius,
Lithuania), which delivered pulses at repetition rate 1 kHz,
with energy up to several hundred microjoules in the visible
region, and up to several tens of microjoules in the
UVA–UVB region. Quantum yield of singlet oxygen (1O2*,
1Δg), generation upon excitation with 360 and 410 nm was
determined by a comparative method, employing atRAL
and TPP as standards [15, 32, 33]. In these experiments,
initial intensities of singlet oxygen phosphorescence in the
studied samples and in standards excited with laser pulses
of selected wavelength were measured at increasing laser
energies. Absorbance of the samples and standards was
adjusted to ~ 0.10 at the excitation wavelengths (360 or 410
nm). Folch’ extracts of non-oxidized and oxidized lipo-
somes composed of synthetic lipids were treated as
described above. Quantum yield of singlet oxygen (1O2*,
1Δg) generation was determined upon excitation with 360
nm only.

The near-infrared luminescence was measured perpen-
dicularly to the excitation beam in a photon-counting mode
using a thermoelectric cooled NIR PMT module (H10330-
45; Hamamatsu, Japan) equipped with a 1100 nm cut-off
filter and an additional dichroic narrow band filter NBP,
selectable from the spectral range 1150–1355 nm (NDC
Infrared Engineering Ltd, Bates Road, Maldon, Essex, UK).
Data were collected using a computer-mounted PCI board
multichannel scaler (NanoHarp 250; PicoQuant GmbH,
Berlin, Germany). Data analysis, including first-order
luminescence decay fitted by the Levenberg–Marquardt
algorithm, was performed by custom-written software.

Electron Paramagnetic Resonance (EPR)-Oximetry and
EPR-Spin Trapping

To monitor visible light-induced consumption of oxygen in
liposomes prepared from Folch extracts of bovine neural
retinas, electron paramagnetic resonance (EPR) oximetry
with the mHCTPO (0.1 mM) spin probe was employed.
Measurements were carried out during in situ irradiation of
the samples, placed in the resonant cavity as previously
described [14, 34]. Visible light (395–700 nm, 34–40 mW/
cm2) was derived from a 300W high pressure compact arc
xenon lamp (Cermax, PE300CE-13FM/Module300W; Per-
kinElmer Optoelectronics, GmbH, Wiesbaden, Germany)
equipped with a water filter, heat reflecting hot mirror and
cutoff filter blocking light below 395 nm. In case of sample
irradiation with blue light, blue additive dichroic filter
505FD64–25 (Andover Corporation, Salem, NC, USA) was
also used.

EPR measurements were performed using the following
instrument parameters: microwave power 1.06 mW, mod-
ulation amplitude 0.006 mT, scan width 0.3 mT, and scan

time 5.2 s using a Bruker EMX-AA 1579 EPR spectrometer
(Bruker BioSpinGermany).

EPR spin trapping measurements were performed using
DMPO (0.1M, H2O) as a spin trap. Samples containing
non-oxidized or oxidized BRex (1.3 mg/ml) in a mixture
containing benzene:DMSO:H2O (1:8:1, v/v/v) were irra-
diated with blue light (404–515 nm, 50–58 mW/cm2),
employing the same light source and filters as those
described above. Time-dependent photo-accumulation of
the DMPO-OOH spin adducts was measured.

EPR spin-trapping measurements were performed at
employing the following parameters: microwave power
10.6 mW, modulation amplitude 0.05 mT, scan width 8 mT,
and scan time 84 s.

Results

Detection of α-TOH

Bovine neural retinas Folch’ extract, besides lipids, also
contained hydrophobic antioxidants such as α-tocopherol
and zeaxanthin. Representative chromatograms at 295 nm
of non-oxidized BRex and α-TOH used as a standard, are
shown in Fig. 1 Retention time of α-TOH was about 16 min,
consistent with literature data [35]. The level of α-
tocopherol (1.5–3 μM) in BRex is comparable to that
reported by Dilley and McConnell [36] and reaches 0.1%
mol relative to phospholipids [36, 37]. The presence of
zeaxathin in BRex was confirmed using Raman Confocal
Microscopy (data not shown).

Fig. 1 Representative HPLC chromatograms of α-tocopherol in: Folch
extract of bovine retinas a and solution of measured amount of α-
tocopherol used as a standard b. Sample absorbance was measured at
290 nm and the, retention time for α-tocopherol was 16 min
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Lipid Composition Analysis

Individual fatty acids identified in freshly prepared BRex,
shown in Table 2, are grouped as saturated (SFAs),
monounsaturated (MUFAs) and PUFAs. The predominant
fatty acids of the SFAs group are palmitic (16:0) and stearic
(18:0) acids, which constituted up to 40% of all fatty acids
in the examined extract. MUFAs is represented by oleic
acid (18:1, n-9), which is also the most abundant fatty acid
of its group reaching over 70% of all MUFAs. Nearly 40%
of all fatty acids residues in BRex are PUFAs with DHA
(22:6) and ARA (20:4), which account for 22.9 and 8.7% of
total FA residues in the bovine neural retina, respectively.

Phospholipids constitute 78% of a dry mass of the extract
(according to phosphorus content detected, data not shown).
The most abundant phospholipids in BRex are phosphati-
dylcholines and phosphatidylethanolamines and the primary
components of both groups are presented in Tables 3 and 4,
respectively. Most of SFAs are esterified in phosphati-
dylcholines, while PUFAs in phosphatidylethanolamines
(Tables 3 and 4).

Photo-Induced Oxygen Uptake

The rate of oxygen uptake in liposomes prepared from
BRex depended on oxidation time and was apparently
enhanced by irradiation of the samples (Fig. 2). Oxygen
uptake rate monitored in all BRex containing liposomes in
the dark was very low and did not exceed the value of 0.2
μM/min. However, in non-oxidized liposomes irradiated
with visible light (395–700 nm, 34–40 mW/cm2) the oxy-
gen consumption rate reached 4.7 μM/min and increased to
7 and 11 μM/min in samples oxidized for 168 and 332 h,
respectively. The observed increase in oxygen photo-
consumption rate in liposomes oxidized for 332 h com-
pared to control (non-oxidized BRex) was statistically sig-
nificant (P< 0.005). Also the difference in oxygen
photoconsumption rates between liposomes oxidized for

168 h and those oxidized for 332 h was statistically sig-
nificant (P< 0.02) (Fig. 2).

Results of experiments performed on the mixture of
synthetic lipids, indicate that oxygen photo-uptake rate in
non-oxidized sample reached 11 μM/min (Fig. 3) and was
two times higher than that detected in non-oxidized BRex
(Fig. 2). Moreover, although the rate of oxygen uptake in
BRex slowly increased with oxidation time (Fig. 2), in
liposomes composed of synthetic lipids and oxidized just
130 h, it increased more abruptly to a higher level (61 μM/
min) (Fig. 3). These results confirm the role of hydrophobic
endogenous antioxidants present in Folch’ extract of bovine
retinas.

Singlet Oxygen Generation

To determine the mechanism responsible for the observed
oxygen uptake in irradiated samples, photogeneration of
singlet oxygen by BRex in homogenous solution was stu-
died. Non-oxidized and oxidized BRex for 168 and 332 h in
liposomes were extracted again (the 2nd Folch extraction)
and re-dissolved in benzene at concentration 2 mg/ml.
Excitation of the studied extracts with laser pulses at 360 or
410 nm, induced phosphorescence, which decayed with
time constant characteristic for singlet oxygen lifetime
(Fig. 4). Disappearance of the observed infrared lumines-
cence occurred after prolonged saturation of the examined

Table 2 Fatty acids composition of total lipids extracted from bovine
neural retinas by the Folch method determined by gas chromatography

Fatty acids BRex Main fatty acids

(% of all FA in BRex)

SFA [%] 41.03± 3.07 16:0 (20.29± 1.02)

18:0 (19.46± 2.00)

MUFA [%] 13.67± 0.80 18:1n-9 (10.23± 0.76)

PUFA [%] 39.88± 3.78 22:6n-3 (22.93± 2.69)

20:4n-6 (8.74± 0.49)

Mean content (in % of all identified fatty acids) of SFA, MUFA, and
PUFA as well as the most abundant representatives of each group of
fatty acids in the studied extract are presented

Table 3 Most abundant choline-phospholipids (in % of all
phosphatidylcholines) in bovine retinas Folch’s extract identified by
liquid chromatography coupled with tandem mass spectrometry

Molecular species of
phosphatidylcholine

% of all PC identified in
BRex

PC 16:0/16:0 (DPPC) 14.34± 1.54

PC 16:0/18:1 (POPC) 19.55± 0.09

PC 16:0/20:4 and/or PC 18:2/18:2 4.19± 0.69

PC 16:0/22:6 and/or PC 18:2/20:4 6.44± 0.38

PC 18:0/22:6 and/or PC 20:2/20:4 10.94± 0.84

PC 16:0/18:0 (PSPC) 5.05± 0.14

Table 4 Most abundant ethanolamine-phospholipids (in % of all
phosphatidylethanolamines) in bovine retinal Folch’s extract identified
by liquid chromatography coupled with tandem mass spectrometry

Molecular species of
phosphatidylethanolamine

% of all PE identified
in BRex

PE 16:0/18:1 (POPE) 2.39± 1.37

PE 18:0/18:1 (SOPE) 2.06± 0.71

PE 18:0/20:4 7.98± 0.96

PE 18:0/22:6 38.18± 0.29

PE 18:1/22:6 4.13± 0.26

PE 22:6/22:6 1.94± 0.06
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samples with argon. Representative results acquired in air-
equilibrated and Ar-saturated solution of oxidized (168 h)
BRex excited with 360 or 410 nm are shown in Fig. 4a and
b. Efficient reduction in lifetime of the detected phosphor-
escence at 1270 nm was observed in the presence of sodium
azide (100 mM), a well-known singlet oxygen physical
quencher (data not shown).

Using atRAL [15] and TPP [33] as singlet oxygen gen-
eration standards, quantum yield of 1O2 generation by non-
oxidized and oxidized BRex was determined (Table 5). The
determined quantum yield of 1O2 generation upon excita-
tion at 360 and 410 nm was 0.08 and 0.06 in the case of
BRex oxidized for 332 h, respectively. In turn, quantum
yield of singlet oxygen generation by non-oxidized mixture

of synthetic lipids, determined upon excitation with 360 nm
reached 0.095 and slightly increased up to 0.13 after 130 h
of oxidation (Table 6). However, after 380 h of oxidation,
the quantum yield of singlet oxygen generation decreased to
0.11 following the same trend, which was observed in the
case of BRex (Table 5).

Although in the case of BRex, the quantum yield of
singlet oxygen generation upon excitation with 360 nm
seems to be independent on oxidation time, the amount of
1O2 generated by BRex upon excitation with 410 nm,
slightly increased with the oxidation time (Table 5).

Dependence of the initial intensity of 1O2 phosphores-
cence on excitation wavelength was examined for non-

Fig. 3 Oxygen consumption in liposomal samples composed of a
mixture of synthetic lipids, naturally present in the bovine retinas, in
ratio resembling that of Folch’ extract of bovine retinas, subjected to
selected oxidation times. Black and white bars represent dark and blue
light-induced (395–700 nm, 34–40 mW/cm2) initial rates of oxygen
uptake (μM/min), respectively. Increase in oxygen photo-consumption
rate observed after 130 and 380 h of oxidation of studied samples is
statistically significant in comparison to non-oxidized sample (P<
0.001). Also, the difference in oxygen photo-uptake rate between
samples oxidized 130 and 380 h is statistically significant (P< 0.02)

Fig. 4 Time-resolved singlet oxygen (1Δg,
1O2) phosphorescence at

1270 nm detected in samples of oxidized (168 h) Folch extract of
bovine retinas upon excitation with 360 nm (a) and 410 nm (b) laser

pulses. 1270 nm luminescence was acquired in air equilibrated (grey
line) or argon-saturated (black line) samples dissolved in benzene

Fig. 2 Oxygen consumption in liposomal samples containing Folch
extracts of bovine retinas subjected to selected oxidation times. Black
and white bars represent dark and light-induced (395–700 nm, 34–40
mW/cm2) initial rates of oxygen uptake (μM/min), respectively.
Increase in oxygen photo-consumption rate observed after 332 h of
oxidation of BRex in liposomes is statistically significant in compar-
ison to non-oxidized (P< 0.005) and oxidized for 168 h samples
(P< 0.02)
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oxidized (0 h) and oxidized BRex for 168 and 332 h.
The obtained action spectra in the spectral range the
360–550 nm are shown in Fig. 5 Interestingly, initial
intensity of the detected luminescence strongly depended on
excitation wavelength and differed significantly from the
absorption spectra of the studied extracts (Fig. 4). Oxidation
of the studied extract apparently reduced the intensity of
1O2 phosphorescence in the UV excitation range. However,
an increased efficiency of singlet oxygen generation by
oxidized BRex, in comparison with non-oxidized sample,
was observed in the short-wavelength visible light region
(Fig. 5).

The observed differences in initial intensities of singlet
oxygen luminescence generated by non-oxidized and oxi-
dized for 168 h bovine retinas Folch’ extracts are statisti-
cally significant as indicated in Fig. 5 for the excitation
wavelength 375 and 450 nm, (P< 0.03 and P< 0.02,
respectively).

Generation of Free Radicals

Using EPR spin-trapping method with DMPO as a spin
trap, formation of a characteristic spin adduct was observed
in samples containing non-oxidized and oxidized BRex
irradiated with blue-light. The 2nd Folch extracts of non-
oxidized and oxidized BRex in liposomes were re-dissolved
in benzene and EPR spectra acquired at various time of
illumination of oxidized for 398 h BRex are presented in
Fig. 6. The hyperfine coupling constants (hsc) AN= 12.9 G,
AH1= 10.71 G and AH2= 1.27 G of the collected spectra
indicate that the observed spin adduct is DMPO-OOH—a
product of the interaction of DMPO with superoxide anion
radical (O2

●−). Indeed the reported hyperfine splitting
constants arising from the superoxide anion adduct with
DMPO are: AN= 12.63 G, AH1= 10.14 G and AH2= 1.28
G [38]. A small amount of oxidized lipid-derived peroxyl
radical spin adduct (DMPO-OOR) may also contribute to

Table 5 Quantum yield (Φ) of
singlet oxygen (1O2,

1Δg)
generation by non-oxidized (0 h)
and oxidized (168 h or 332 h)
Folch’ extract of bovine retinas
determined in homogenous
benzene solution upon excitation
with 360 nm or 410 nm laser
pulse

Oxidation time Quantum yield (Φ) of 1O2 generation
in BRex upon excitation with:

Lifetime of 1O2 (μs)

360 nm 410 nm

0 h 0.088± 0.006 0.042± 0.005 22.3± 0.4 **

168 h 0.091± 0.025 0.050± 0.019 22.6± 0.2

332 h 0.083± 0.022 0.057± 0.019 24.2± 0.1 **

Standards: at RAL 0.30a 32.1± 0.4

TPP 0.63b 30.1± 0.2

Singlet oxygen generation standards used: all trans retinal (Φ= 0.3) and TPP (Φ= 0.63). The last column
are lifetimes of singlet oxygen in the samples studied. Difference between singlet oxygen lifetime generated
in non-oxidized BRex and BRex oxidized for 332 h is statistically significant (P< 0.01)
a Rozanowska et al. (1998) [15]
b Bonnett et al. (1988) [33]

** Significance at the 0.01 probability level

Table 6 Quantum yield (Φ) of
singlet oxygen (1O2,

1Δg)
generation by non-oxidized (0 h)
and oxidized (130 h or 380 h)
Folch’ extract of liposomes
composed of mixture of
synthetic lipids in ratio
resembling that of Folch’ extract
of bovine retinas

Oxidation time Quantum yield (Φ) of 1O2 generation in extract of liposomes
composed of synthetic lipids naturally present in BRex upon
excitation with:

Lifetime of 1O2

(μs)

360 nm

0 h 0.095± 0.020 28.6± 0.2

130 h 0.130± 0.005 27.6± 0.2

380 h 0.110± 0.004 27.0± 0.1

Standards: at RAL 0.30a 32.1± 0.4

TPP 0.63b 30.1± 0.2

Quantum yields were determined in homogenous benzene solution upon excitation with 360 nm laser pulse.
Singlet oxygen generation standards used: all trans retinal (Φ= 0.3) and TPP (Φ= 0.63). The last column
are lifetimes of singlet oxygen in the samples studied
a Rozanowska et al. (1998) [15]
b Bonnett et al. (1988) [33]
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the detected EPR spectrum in sample of oxidized for 398 h
BRex (Fig. 6) [39, 40]. Intensities of EPR spectra of the
DMPO-OOH/DMPO-OOR spin adducts in all studied
samples gradually increased with time of blue-light irra-
diation (Fig. 7).

Discussion

The observed photoreactivity of non-oxidized Folch’ extract
of bovine neural retinas may be attributed to the presence of
endogenous sensitizers such as products of visual pigment
bleaching, flavins or porphyrins [12, 41, 42]. These endo-
genous photosensitizers could be responsible for the rela-
tively low oxygen consumption rate (5 μM/min) induced by
visible light (Fig. 2). Very low rate of oxygen consumption
(below 0.2 μM/min) was observed in the dark regardless of
the degree of BRex oxidation.

The observable rate of oxygen photoconsumption may
be affected by the presence of endogenous antioxidants.
Even though the estimated level of α-TOH in BRex was
quite low, it was comparable to the amount of α-TOH in the
dark adapted bovine neural retina (42 ± 1 nmol/g of dry
tissue), as previously reported [43], while in the rod outer
segments (ROS) α-TOH accounted for about 1 nmole per 1
mg of protein [36]. Such an amount of α-TOH is roughly
equivalent to 0.1 mol% in relation to phospholipids in
bovine ROS [44]. It was also reported that the level of
α-TOH in the monkey retina positively correlated with
retinal PUFAs concentration and the age of donors [45].
Macular pigments (MP)—lutein and zeaxanthin, are also

Fig. 6 EPR-spin trapping of superoxide anion in irradiated sample of
oxidized (398 h) Folch’ extract of bovine retinas. Sample, at the con-
centration 1.3 mg, was dissolved in a mixture of DMSO:benzene:water,
(8:1:1, v/v/v). EPR spectra of the detected spin adduct were recorded in
sample irradiated with blue light (404–515 nm, 50–58 mW/cm2) for 0
min (a), 6 min (b), 16 min (c), 23 min (d) and 30min (e). Simulated
spectrum of the DMPO-OOH spin adduct is shown in (f)

Fig. 7 Time-dependent changes in the intensity of DMPO-OOH spin
adduct during blue light irradiation of non-oxidized (0 h) and oxidized
for 44, 135, 226 and 398 h Folch’ extract of bovine retina. Other
experimental conditions as in Fig. 6

Fig. 5 Action spectra of photo-generation of singlet oxygen by non-
oxidized and oxidized for 168 and 332 h Folch’ extracts of bovine
retinas in benzene. For comparison, the corresponding absorbance
spectra of studied samples are also shown. Initial intensities of singlet
oxygen phosphorescence at 1270 nm, normalized to equal laser power,
are plotted as a function of excitation wavelength. Differences in initial
intensities of singlet oxygen luminescence generated by non-oxidized
and oxidized for 168 h bovine retinas Folch’ extracts are statistically
significant as indicated in the plot for selected excitation wavelength
(375 and 450 nm, P< 0.03 and P< 0.02, respectively)
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present in the bovine ROS [46], albeit in a very low amount
(0.2–0.4 ng/mg of protein) [47], comparable to that found in
human peripheral retina [48, 49].

The effect of endogenous antioxidant present in BRex
was also apparent when generation of singlet oxygen was
analysed (Table 5), particularly in comparison with that in
extract of liposomes containing synthetic lipids only
(Table 6). Quantum yields of 1O2 generation by non-
oxidized BRex and by a mixture of synthetic lipids suggest
that a minor contribution to the observed generation of
singlet oxygen may be due to the presence of other than
lipid components. However, it cannot be ruled out that in
the case of synthetic lipids, some of its components, espe-
cially these phospholipids containing PUFA, were partially
oxidized contributing to the UV-induced singlet oxygen
generation, as it has been reported [50–52]. On the other
hand, freshly prepared BRex may contain small amounts of
all-trans retinal, which would contribute to photogeneration
of 1O2 by BRex. It is apparent that the presence of endo-
genous antioxidants in BRex reduces the amount of the
photogenerated singlet oxygen and its lifetime by several
percent in both non-oxidized and oxidized samples.

In benzene, the lifetime of singlet oxygen generated by
TPP and atRAL was found to be 32.1 ± 0.4 and 30.1 ± 0.2
μs, respectively, in agreement with reported data [53, 54].
However, the lifetime of singlet oxygen was significantly
shorter, if it was photogenerated, under the same experi-
mental conditions, by non-oxidized (22.3 ± 0.4 μs) and
oxidized for 168 h and 332 h BRex (22.6 ± 0.2 and 24.2 ±
0.1 μs, respectively). Difference between singlet oxygen
lifetime generated in non-oxidized BRex and BRex oxi-
dized for 332 h is statistically significant (P < 0.01). Such a
shortening of singlet oxygen lifetime was not observed
when 1O2 was photo-generated in extract of non-oxidized
(28.6 ± 0.2 μs) and oxidized for 130 h and 380 h liposomes
containing only synthetic lipids (27.6± 0.2 and 27.0 ± 0.1
μs, respectively) (Table 6). Even though the main com-
ponent of the examined extract were phospholipids PL
(78%), at the BRex concentration used, the estimated effect
of phospholipids on 1O2 lifetime would be too small to
significantly shorten the observable singlet oxygen life-
time, consistent with the results observed in samples
containing only synthetic lipids. Assuming that the average
rate constant of PL interaction with 1O2 is 1× 105 M−1s−1

[55], the expected shortening of singlet oxygen lifetime
should not exceed several percent. Although the reported
rate constant of 1O2 quenching by α-TOH is 2× 108

M−1s−1 [56], concentration of this antioxidant in BRex
was too low to have an impact on the observable singlet
oxygen lifetime. On the other hand, macular pigments
(MP): zeaxanthin and lutein, interact with 1O2 with much
higher rate constants being 1.26× 1010 M−1s−1 and
1.70× 1010 M−1s−1 respectively [57]. Thus, even at a low

concentration MP in BRex, such as 1 μM, they could
reduce the observable lifetime of 1O2 by approximately
30%. Of course, presence of any other compounds that are
also able to interact with 1O2 would also contribute to the
observable effect.

Interestingly, long-term (332 h) oxidation of BRex
increased the detected lifetime of singlet oxygen by 10%
(Table 5). It may suggests that concentration of possible
quenchers of 1O2 was reduced by prolonged oxidation of
the extract. Although the predominant mode of singlet
oxygen quenching by xanthophylls and tocopherols is
physical, singlet oxygen can also induce oxidation of these
antioxidants [43, 48]. Indeed, Khachik et al reported not
only the presence of lutein and zeaxanthin in the human
retina but also their oxidation products [47].

The main aim of this study was to analyse the postulated
photoreactivity of retinal lipids and to determine if the
photoreactivity is modulated by oxidation of the lipids. The
Folch’ extraction is regarded as one of the most reliable
methods for isolation of a broad range of lipid classes from
biological materials [58, 59]. The predominant component
of the Folch’ extract of bovine retinas are lipids, which were
analysed in this study. Phospholipids, mainly phosphati-
dylcholines and phosphatidylethanolamines, constituted
78% of the extract dry mass. Phosphatidylserines, which
usually account for less than 10% of PL in the vertebrate
retinas, for technical reasons, were not analysed in this
study [1]. Detailed analysis of fatty acids esterified in the
main class of phospholipids studied, i.e., PC and PE
revealed that most of saturated FA were esterified in PC,
while polyunsaturated FA in PE (Tables 3 and 4), which is
in agreement with previously published data [6, 60, 61].

It must be emphasized that the fatty acids and phos-
pholipid composition of the bovine neural retinas is quite
similar to that of the human neural retina [1, 47, 61], which
makes bovine retinas a convenient model system of the
human retina when analysing processes leading to oxidative
modifications of the retinal lipids.

The rate of oxygen consumption induced by irradiation
with short-wavelength visible light was significantly higher
in oxidized BRex, compared to non-oxidized samples
(Fig. 2). Also, the amount of 1O2 generated by BRex upon
excitation with 410 nm, slightly increased with the oxida-
tion time (Table 5) and the difference in initial intensities of
singlet oxygen luminescence generated by non-oxidized
and oxidized for 168 h BRex is statistically significant at
450 nm excitation wavelength (P < 0.02) (Fig. 5).

The higher rate of oxygen photoconsumption in such
samples was accompanied by their increased ability to
generate superoxide radical (Fig. 7).

The proper function and well-being of the retina depends
on efficient interactions between photoreceptor cells,
responsible for collecting and processing visual stimuli, and
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retinal pigment epithelium cells (RPE), which plays an
important supporting role and is involved in biological
renewal of photoreceptor outer segments [62]. Both types of
the retina cells are characterized by high lipid metabolism
[63, 64]. Discs containing visual pigment, continuously
formed in photoreceptor inner segments, are directed to
POS, where they form stacks in rods or series of invagi-
nations in the case of cone photoreceptor cells [63, 65]. POS
maintain a roughly constant length by exfoliating mature
discs from the top, which in turn are subsequently phago-
cytosed by adjacent RPE cells [66]. Photoreceptor renewal
is one of the most efficient mechanism, which prevents the
retina from degeneration [67]. POS plasma membrane and
POS discs membranes are especially rich in lipids con-
taining PUFAs [68, 69]. This unique lipid composition,
localization, and role they play in the outer retina, increase
the risk of oxidative stress. Disks undergo shedding and
phagocytosis 9–12 days after assembling and subsequent
displacement in direction to the top of POS [66, 70]. It is
probable that lipids present in discs, being phagocytized, are
oxidized to some extent [71, 72].

The detection methods and characterization of the nat-
ure and biological role of oxidation products of different
class phospholipids have been amply described in
numerous papers [73–76]. Lipid oxidation products are
commonly consider as an efficient protein modification
factor and/or signalling molecules involved in various
processes [77–79], also occurring in the retina [23, 80–83].
However, to our best knowledge, none of these reports
discussed the significance of potential photoreactivity of
lipid oxidation products, upon irradiation with visible
light in the retina, where they might serve as potential
photosensitizers.

Age-related decrease in the efficiency of RPE cells to
digest phagocytised POS can lead to elevated accumulation
of partly degraded and undigested material in secondary
lysosomes in RPE cells [84, 85]. It must be stressed that the
increasing photoreactivity of human RPE cells that occur
with senescence can also result from accumulation of the
age pigment lipofuscin, which in model systems exhibited
substantial photoreactivity and was shown to be phototoxic
in RPE cells in vitro [15, 86–88]

Conclusion

Freshly prepared bovine retinas Folch extract exhibited
moderate photoreactivity, when irradiated with blue light,
and the photoreactivity increased as a result of oxidation
carried out under mild conditions.

In vitro oxidation of liposomes prepared from BRex
induced broadening of absorbance spectra and appearance
of blue light absorbing components.
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