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Remote photoplethysmography 
with constrained ICA using periodicity 
and chrominance constraints
Richard Macwan* , Yannick Benezeth and Alamin Mansouri

Background
Photoplethysmography (PPG) is a technique of measuring the variation in the absorp-
tion of light by human skin, first introduced by Hertzman in 1937 [1]. The experiment 
comprised of placing a finger between a photoelectric cell and a light source. Then on, 
PPG has been ubiquitously used for heart rate measurements since it is easy to use, 
low-cost and non-invasive. Even more non-invasive is the technique of remote photo-
plethysmography, henceforth referred to as rPPG, which aims at measuring the same 
parameters as PPG remotely, i.e. without any contact.

Abstract 

Background: Remote photoplethysmography (rPPG) has been in the forefront 
recently for measuring cardiac pulse rates from live or recorded videos. It finds advan-
tages in scenarios requiring remote monitoring, such as medicine and fitness, where 
contact based monitoring is limiting and cumbersome. The blood volume pulse, 
defined as the pulsative flow of arterial blood, gives rise to periodic changes in the skin 
color which are then quantified to estimate a temporal signal. This temporal signal can 
be analysed using various methods to extract the representative cardiac signal.

Methods: We present a novel method for measuring rPPG signals using constrained 
independent component analysis (cICA). We incorporate a priori information into the 
cICA algorithm to aid in the extraction of the most prominent rPPG signal. This a priori 
information is implemented using two constraints: first, based on periodicity using 
autocorrelation, and second, a chrominance-based constraint exploiting the physical 
characteristics of the skin.

Results and conclusion: Our method showed improved performances over tradi-
tional blind source separation methods like ICA and chrominance based methods with 
mean absolute errors of 0.62 beats per minute (BPM) and 3.14 BPM for the two datasets 
in our inhouse video database UBFC-RPPG, and 4.69 BPM for the public MMSE-HR data-
set. Its performance was also better in comparison to other state of the art methods 
in terms of accuracy and robustness. Our UBFC-RPPG database is also made publicly 
available and is specifically aimed towards testing rPPG measurements.

Keywords: Remote photoplethysmography, Constrained independent component 
analysis, Semiblind source separation, Periodicity constraint, Chrominance constraint
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Verkrussysse et al. [2] showed that remote PPG signal extraction could be performed 
by using a simple consumer level camera. Their work postulated that the G channel of 
the RGB temporal traces contained the most prominent photoplethysmographic signal. 
These RGB temporal traces were obtained by quantifying frame-wise skin pixel data, for 
instance by spatial averaging, and then concatenating them. The feasibility of rPPG in a 
medical scenario, for patients in the neonatal intensive care unit, has also been investi-
gated in [3]. They corroborated the ability of rPPG to obtain a signal strong enough to 
extract the heart rate of all the infant subjects, measured from manually selected regions 
of interest (ROIs). One of the paradigms in ongoing research is centered around using 
simple web cameras to extract clean rPPG signals employing blind source separation 
(BSS) techniques. Independent Component Analysis (ICA), a very common BSS algo-
rithm has been used in several works [5–7].

ICA is a technique used to decompose a multivariate signal into the constituent signals 
under the assumption that the input signals be uncorrelated [8]. In this context, rPPG 
signal extraction can be formulated as a signal separation problem where the periodic 
cardiac pulse, manifested as minute chromatic variations of the skin color, is linearly 
mixed into the temporal traces obtained from the video data from cameras.

Let s = (s1, s2, ..., sn)
T be the time varying color traces from n channels, obtained by 

linear mixing of m independent source signals denoted as c = (c1, c2, ..., cm)
T . The linear 

mixing process is then expressed as s = Ac, where the linear memoryless mixing of the 
channels is represented by the matrix An×m. ICA aims to obtain the linear unmixing 
matrix Wm×n to recover all the independent components with minimum knowledge of 
A and c. The separated components y = (y1, y2, ..., ym)

T , are obtained by y = Wx [9].
This linear formulation of ICA suffers from two inescapable ambiguities [10, 11]. First, 

the independent components cannot be obtained in a deterministic order. The same inde-
pendent components can be obtained by a different permutation of the columns of W. 
Second, the independent components cannot be obtained to the exact amplitude and sign.

In addition, with respect to the task of rPPG signal measurement, the nature of the 
required component is not entirely unknown. That is to say, we are not entirely blind in 
this case. Excluding scenarios that have periodic movements, like fitness-based applica-
tions, it is evident that the most periodic signal, linearly mixed into the RGB temporal 
traces, must correspond to the cardiac pulse. Furthermore, we only require one compo-
nent, viz., the rPPG pulse signal, which simplifies the optimization process and changes 
the weighting matrix from Wm×n to the vector wm×1. This condition of extracting a sin-
gle component is not uncommon and is perceived in various biomedical scenarios. The 
On–Off simulation scheme of an fMRI experiments [9] is one such example. As a con-
sequence, incorporation of such a priori knowledge into the component extraction algo-
rithm can help in alleviating the indeterminacy issue.

To inspect this incorporation of a priori information, we performed analysis of the ICA 
weighting vectors that extract the best component. We used a challenging video for this 
analysis where ICA fails to extract the best rPPG signal continuously as is visible in the first 
30 s of Fig. 1b. The weights extracted using the cICA algorithm proposed later in this paper 
are also shown in Fig. 1c for comparison. Acknowledging the ability of the cICA algorithm 
to extract the more difficult rPPG signal better than ICA, we would like to emphasize on 
the later part of the video from the 30 s mark where ICA is able to extract the rPPG signal 
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successfully. It is evident from the figure that the ICA weights, although extracting the 
rPPG signal correctly, are prone to abrupt changes, as seen around the 50 s mark.

Furthermore, the fact that rPPG extraction is successful even with these abruptly 
changing weights, points to the existence of several solutions. This is where the blind-
ness of ICA is evident, i.e. a given rPPG signal can be extracted using different weights. 
This lack of a unique solution, added by the problem of indeterminacy in scale and per-
mutation of the weighting matrix, makes ICA weights estimation an ill-posed problem. 
Thus, augmenting the ICA algorithm with constraints in a systematic and flexible man-
ner to frame a constrained independent component analysis (cICA) algorithm is a prom-
ising course of action. In this paper, we present the formulation of this cICA algorithm 
to restrict the solution space in order to extract the rPPG signal more uniformly even for 
videos with challenging conditions with respect to light and motion variability.

Specifically, we propose to improve the ICA formulation by making three modifica-
tions. First, since we require only one component, the problem of component separation 
becomes that of component extraction. Second we are not entirely blind about the nature 
of the required rPPG signal, which is quasi-periodic. Adding a priori information about 
this quasi-periodicity, helps to restrict the solution space while maintaining our direc-
tion of search towards the weights for the best rPPG signal. The cICA algorithm avoids 
the ambiguities of ICA by directly converging to the best independent component, aim-
ing to eliminate the problem of multiple optima. Finally, we incorporate a priori infor-
mation about the biophysical properties of the skin, using constraints based on its tone, 
to steer the optimization in the direction of choosing the correct blood volume pulse. 
To the best of our knowledge, the incorporation of constraints based on the periodicity 

Fig. 1 Window-wise weight analysis showing ICA weights and HR in a and b vs cICA weights and HR in c, d. 
For the exact same data, different values of w = |wR ,wG ,wB| corresponding to the RGB channels can extract 
an accurate rPPG signal. Absolute values of the weights are shown for concise display
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and physical properties of the skin within an optimization framework, and the impact 
of their combination on the quality of the rPPG signal, has not been attempted yet in 
literature.

A summary of the related work is given in “Previous work” section followed by the for-
mulation of the periodicity measure and the chrominance constraints in “Proposed 
method” section. In “Results and discussion” section we validate our algorithm against 
our in-house database, UBFC-RPPG which comprises of two datasets of 9 and 46 videos 
respectively. This database will be made publicly available along with the ground truth.1 
To the best of our knowledge, this is the first publicly available dataset focusing on the 
application of rPPG analysis.

Previous work
One of the pioneer works that used ICA for rPPG measurements comprised of using 
RGB temporal traces from a simple web camera to extract the cardiac pulse, which 
although proving the basic idea, was not very robust against motion artifacts [2]. The 
advantage of ICA for rPPG measurements over principal components analysis (PCA), 
autocorrelation and cross-correlation was also investigated in [12]. McDuff et  al. fur-
ther investigated the usage of more color channels with a five band (RGBCO) camera 
and postulated that better rPPG signals were obtained using the GCO channels rather 
than traditional RGB channels [5]. In another work, Wang et al. performed ICA on pixel 
based rPPG sensors, using motion compensated pixel-to-pixel pulse extraction based on 
optical flow vectors, spatial pruning and temporal filtering to obtain a robust pulse sig-
nal [13].

In contrast to the blind source separation methods, De Haan et al. have exploited the 
effect of light on human skin due to its unique physical characteristics, introducing chro-
minance based methods [4]. The chrominance (CHROM) signals are generated from the 
RGB traces with the use of a skin-tone standardized linear combination compatible with 
different skin colors. The chrominance based methods assume that the light reflected 
from skin generally occupies similar coordinates in the RGB space under white illumina-
tion. This direction of the standard skin tone was experimentally estimated using their 
in-house database.

They further advanced upon their chrominance based methods proving that the vari-
ous absorption spectra of arterial blood manifest along a specific vector in a normalized 
RGB space, termed as the blood volume pulse vector [14]. Recently, they introduced a 
mathematical model that incorporates the relevant optical and physiological proper-
ties of skin reflection using which they proposed a new algorithm based on the Plane-
Orthogonal-to-Skin (POS) which is a plane orthogonal to the skin-tone in the temporally 
normalized RGB space, suitable for rPPG pulse extraction [15].

Another class of methods focuses on smart ROI selection paradigms. Feng et  al. 
propose to improve the extracted rPPG signal by performing K-means clustering on 
a feature space modeled to select skin ROIs corresponding to good rPPG signals [16]. 
Recently, Bobbia et  al. used temporal superpixels, corresponding to structurally and 
spatially coherent regions, to extract candidate pulse signals which were then merged 

1 https://sites.google.com/view/ybenezeth/ubfcrppg.

https://sites.google.com/view/ybenezeth/ubfcrppg
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averaged, weighted by superpixel-wise pulsatility measures, into an rPPG signal [17]. 
In a similar work, Kumar et al. proposed an automatic weighting method for different 
tracked regions to construct the rPPG signal based on maximum ratio diversity [18], 
where the weights depend on the blood perfusion and incident light intensity in the 
region [19].

Motion and illumination disturbances are a major issue in rPPG measurements and 
is an active area of research. Li et  al. used face tracking and Normalized Least Mean 
Square adaptive filtering methods to compensate against illumination variations. They 
also perform non-rigid motion elimination by discarding temporal segments of the sig-
nal having high standard deviation from the signal mean [20]. Recently, Butler et al. have 
assessed the effect of the topology and optical variations of human skin in relation to 
horizontal movements of the subject and showed that, in presence of motion, the qual-
ity of the rPPG signal is determined by the properties of the area of skin chosen [21]. 
Tasli et al. have used facial landmark locations based on active appearance models [22] 
to obtain a motion compensated temporal color signal, where free head movement by 
the subject was allowed [23].

Recently, Wang et al. have tried to improve rPPG measurements during fitness exer-
cises, from subjects running on a treadmill. Their proposed method called Sub-band 
rPPG, suppresses different distortion-frequencies using independent combinations of 
color channels, based on the idea that the degrees of freedom of noise reduction can 
be increased by decomposing the n-wavelength camera signals into multiple orthogonal 
frequency bands. In another work, they exploit the limited variation of human relative 
pulsatile amplitude to design a low cost filtering method called amplitude selective filter-
ing. The spectral amplitude of, e.g. the R channel, is used to select the frequency compo-
nents in the RGB channels inside the assumed “characteristic pulsatile amplitude range” 
for pulse extraction, while pruning the rest of components as noise.

Interestingly, machine learning has also been investigated to obtain rPPG measure-
ments. Osman et al. have trained a discriminative statistical model to estimate the blood 
volume pulse (BVP) signal from the human face using ambient light to obtain promising 
results. On the other hand, Alqaraawi et al. have used the automatic multi scale-based 
peak detection (AMPD) algorithm coupled with a Bayesian learning approach to esti-
mate reliable heart rate variability metrics. Many new rPPG measurement algorithms 
have been introduced recently. An overview of a wide range of Imaging PPG (IPPG) sys-
tems has been provided by Sun and Thakur demonstrating the research on rPPG and 
showing its ubiquity and widespread acceptance [24]. In a similar work, McDuff et al. 
provide a review on state of the art PPG imaging considering measurements other than 
pulse rate under realistic conditions such as presence of motion artifacts [25]. Another 
interesting contribution was done by Tarassenko et al. by using autoregressive models 
to eliminate the effect of light flicker on videos of patients undergoing haemodialysis, 
showing the feasibility of using rPPG measurements in a relatively uncontrolled environ-
ment [26].

Incorporation of a priori information in order to aid the optimization process is also 
an interesting approach in signal separation. Lu et  al. have used a reference signal to 
coax the separation process to converge towards the desired signal resembling the refer-
ence signal [9]. They use the Lagrange multipliers method using the difference between 
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the reference signal and the estimated signal as a constraint to be minimized. In a work 
inspired by theirs, Tsouri et al. proposed a method of constrained ICA using a rectangu-
lar pulse as a reference signal in the framework of rPPG [27].

In an rPPG signal extraction problem, employing a sufficiently accurate reference 
signal is prone to the evident complication of choosing its right frequency. This can be 
done in two possible ways. One alternative is to repeatedly compare the extracted rPPG 
signal to reference signals of different frequencies, as done by Tsouri et al. [27], which as 
expected is computationally taxing—around 30 times slower than traditional ICA. The 
other alternative is to update the frequency of the reference signal continuously, in effect 
making it a parameter to optimize. This increases the complexity of the problem and 
reduces the probability of convergence. A PPG signal is a very apt reference for rPPG 
extraction whose synthesis depends critically on the required frequency, even more so 
than the actual shape of the signal.

To avoid this limitation, we use autocorrelation as the a priori information for guiding 
the cICA separation algorithm which then chooses the most periodic component repre-
senting the blood volume pulse. To further aid the convergence, we apply chrominance-
based constraints based on the standardized skin tone as used by De Haan et al. [4]. The 
use of two constraints increases the probability of convergence towards the best rPPG 
signal. As already mentioned, there are multiple paradigms for rPPG measurements 
such as methods based on physiological properties of the skin, smart ROIs, machine 
learning approach, and of course, source separation methods. This work contributes to 
the class of methods based on semi-blind source separation, with constraints based on 
periodicity and physical properties of the skin. Next, we present the proposed method 
and explain in detail the two constraints used.

Proposed method
We start with the basic formulation of ICA where the required signal vector y of size 
N is extracted from the RGB temporal traces matrix x of size 3× n using a weighting 
matrix w of size 3× 1 according to y = wTx. As mentioned earlier, we aim to perform 
component extraction instead of separation, which is reflected in the change in the size 
of the weighting matrix from 3× 3 in basic ICA to 3× 1 for cICA. The cICA algorithm 
aims to optimize for the best weighting matrix w, which maximizes the objective func-
tion while satisfying the imposed constraints.

Typical biomedical signals like ECG and PPG signals are known to be periodic or semi-
periodic. This implicit property of periodicity of biomedical signals can be exploited to 
guide the component extraction process in converging to the component with the high-
est periodicity. Accordingly, we use autocorrelation as one of the constraints to nudge 
the algorithm towards selecting components having periodicity higher than a given 
threshold. Furthermore, we also incorporate constraints based on the physical proper-
ties of the skin, which directly effect the light reflected from the skin, and consequently 
the color or chrominance  information therein. This constraint developed using the 
CHROM method which is undoubtedly one of the most reliable techniques in literature 
[4]. These two constraints are next described in detail.
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Autocorrelation as a periodicity measure

Autocorrelation is the correlation of a signal with itself at different lag times provided it 
is sampled at a sufficiently high frequency. For a time series signal y = [y1 y2 · · · yN ] of 
N elements, its discrete autocorrelation rk at lags k ∈ [− (N− 1), . . . , N− 1] is given by

where kyj is the jth element of the signal y lagged (or led for k < 0) by k units and pad-
ded with zeros to the left (or right for k < 0) and ⊙ is the element-wise multiplication 
operator. A periodic signal typically has a higher correlation with itself compared to a 
non-periodic one. This high correlation can be quantified as the mean of the squared 
autocorrelation of the signal and consequently can be used as a measure of the periodic-
ity of a signal. Figure 2 depicts the high autocorrelation of a periodic sinusoid compared 
to that of a uniform random signal with the mean of the squared autocorrelation is much 
higher than that of the random signal.

To aid the use of autocorrelation as a periodicity measure and simplify its computa-
tion, two modifications need to be made. First, since the autocorrelation is symmetric, 
we only compute the correlation for lags k ∈ [0, . . . ,N − 1]. Second, since the correla-
tion at lag 0 will always be high we set the autocorrelation to 0 at lag k = 0. This is visibly 
prominent in Fig. 2d which exhibits a peak at lag k = 0. Thus, we use the autocorrelation 
given by r = [r1 r2 · · · rN ] comprising of N values given by Eq. 1, with the exception of 
r1 = 0. Keeping in mind that rk is a scalar, Eq. 1 can be rewritten in matrix notation as

where 
k
y is again the signal y lagged by k units. Furthermore, to simplify the derivation 

of the autocorrelation, 
k
y can be rewritten as yTk where Tk is a toeplitz-like matrix that 

incorporates the lagging at lag k and padding with zeroes and is given by

(1)rk =

N−1
∑

j=0

yj ⊙
k
yj

(2)rk = y[
k
y]T =

k
yyT

Fig. 2 Autocorrelation of a sinusoid vs a random signal. a y1 = sin(x), b y2 = randn(1,N), c autocorrelation of 
y1, d autocorrelation of y2
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Tk is an N × N  matrix composed of the first N − k rows made up of (N − k)× k zeroes 
and an identity matrix of size N − k. Thus, rk becomes

making its differential with respect to y easier to calculate. One of the important require-
ments for the optimization framework was to utilize the first and second derivatives of 
autocorrelation rk with respect to the weighting matrix w. This formulation, although 
being non-trivial, is presented in detail in the appendix to maintain continuity here.

Chrominance based constraint

Although autocorrelation does help the optimizer to converge to a weighting matrix that 
extracts the correct component for simple videos, in a more realistic scenario it is prone 
to having not so well defined maxima. Additionally, in fitness scenarios with repetitive 
movements, the assumption that the most periodic component being the rPPG signal is 
perturbed by the periodic motion component of the fitness activity. This calls for the use 
of another constraint, which is not fundamentally affected by periodic components, to 
aid the convergence for which the CHROM constraint [4] is a suitable candidate.

To confirm this requirement, and to correlate the autocorrelation with the weights, the 
mean squared autocorrelation was plotted against all the possible orthonormal weights, 
(wR,wG ,wB) whose components represent the contribution of each of the RGB channels 
in forming the rPPG signal. All these possible weight vectors in R3 are spanned by the 
standard basis w1 = (1, 0, 0),w2 = (0, 1, 0),w3 = (0, 0, 1), i.e.,

A temporal section of the RGB traces, 30 s long, xt, was used to perform this weights 
analysis. To plot the autocorrelation as a function of the vector space (wR,wG ,wB), each 
vector w was scaled by the corresponding mean squared autocorrelation of yt = wxt to 
obtain the plot in Fig. 3. This plot can be thought of as a deformation of the unit sphere, 
owing to the orthonormality of the weighting vectors, by the mean squared autocorrela-
tion of yt. The ideal weighting vector giving the maximum autocorrelation is depicted as 
wautocorr and the CHROM weighing vector is depicted as wchrom.

It can be seen from Fig. 3 that the mean squared autocorrelation is symmetric with 
respect to w, i.e., there will always be a dual of a given weighting vector which would 
give the exact same autocorrelation. This is not necessarily a disadvantage since the opti-
mizer will converge irrespective of the initial direction chosen. However, it is also visible 
that the plot is not very peaky, i.e. the maximum autocorrelation is localized to an area 
of smaller slope, which might make the convergence slower towards the end. It is also 

(3)Tk =
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noteworthy that the weighting matrix corresponding to the maximum autocorrelation, 
wautocorr and the CHROM weighting matrix, wchrom depicted as vectors point around 
the same vicinity. In other words, the rPPG signal extracted using the CHROM method 
also exhibits high autocorrelation.

On the other hand, chrominance-based methods tend to be restrictive in choosing the 
weighting matrix based on their linear formulation. According to De Haan and Jeanne 
[4], a chrominance signal which incorporates the maximum photoplethysmographic 
information is obtained using a standardized skin tone resulting in an algorithm that can 
work correctly regardless the color of the illuminant. The CHROM signal is given by

where Xf = 3Rf − 2Gf  and Yf = 1.5Rf + Gf − 1.5Bf  are the projections of the RGB 
traces on to standardized skin tone space and x = [Rf ,Gf ,Bf ]

T is the bandpass filtered 
temporal RGB trace of size 3× N . α is the ratio between the standard deviations of Xf  
and Yf  giving

where wchrom is the CHROM weighting matrix. The goal of the proposed rPPG extrac-
tion algorithm is to converge towards the weighting matrix that simultaneously gives a 
component of high periodicity and is within the vicinity of the weights wchrom up to a 
certain threshold. An analysis of the effect of the combination of these two constraints is 
presented in the next section.

Combination of periodicity and chrominance based constraints

To assess the effect of the combination of periodicity and chrominance constraints on 
the cICA algorithm, and its utility in fitness scenarios, three videos were recorded on 
a fitness bike. They are categorized as LIGHT, MODERATE and INTENSIVE based on 
the speed of motion and intensity of training. Figure 4 shows a snapshot from the three 

(6)S = Xf − αYf

(7)S = 3
(

1−
α

2

)

Rf − 2
(

1+
α

2

)

Gf + 3
α

2
Bf = wchromx

Fig. 3 Mean-squared autocorrelation, E{r2} vs the weighting matrix, w
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videos which exhibit a prominent periodic motion along with accuracy comparisons 
between recovered rPPG from CHROM, cICA using only the periodicity constraint and 
cICA using both the periodicity and the chrominance constraint. The CHROM method 
was able to extract the correct rPPG signal for the LIGHT video (Fig. 4b) whereas cICA 
with only the periodicity constraint converged to the component representing the strong 
periodic motion (Fig. 4c). As expected, the combination of the CHROM and periodicity 
constraints resulted in convergence to the correct rPPG signal (Fig. 4d).

However, the CHROM method was not able to extract the correct component for the 
MEDIUM and INTENSIVE videos where the variations due to motion overwhelm the 
rPPG variations (Fig.  4f ). Interestingly, where both CHROM and cICA with just the 
periodicity constraint failed separately, their combination resulted in a partial conver-
gence to the rPPG signal as is visible in Fig. 4h. This can be attributed to the constriction 
of the solution space resulting in the optimizer to converge to the correct rPPG signal.

Finally, for the INTENSIVE video, the motion component was much stronger and 
none of the methods succeeded in extracting the rPPG signal (Fig. 4j–l). This calls for 
the use of a motion compensation scheme to mitigate such high intensity motions.

Consequently, these two constraints, the autocorrelation being a bit too lenient and 
the chrominance based constraint being too restrictive, in choosing the best weighting 
matrix, can be combined to guide the optimizer in choosing a weighting matrix with 
optimum flexibility. The combination is also advantageous for fitness scenarios with lim-
ited periodic motion, without any motion compensation. This implementation showed 
improved results compared to both ICA and CHROM methods the analysis of which 

Fig. 4 Utility of the combination of periodicity and chrominance constraints in a fitness scenario. a LIGHT, b 
CHROM, c CICA with periodicity constraint, d CICA with periodicity and chrominance Constraints, e MEDIUM, 
f CHROM, g CICA with periodicity constraint, h CICA with periodicity and chrominance constraints, i INTEN-
SIVE, j CHROM, k CICA with periodicity constraint, l CICA with periodicity and chrominance constraints
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is presented in “Results and discussion” section. The use of these two constraints in our 
framework is described in the next subsection.

Constrained ICA

A generic contrast function for ICA as defined by [8], is the negentropy function given 
by J (y) = H(ygauss)−H(y) where H(.) is the differential entropy and ygauss is a random 
variable with a variance equal to that of the output signal y. In FastICA [8], an approxi-
mation of the negentropy was introduced for more reliability and flexibility given by

where ρ is a positive constant, v is a zero mean, unit variance Gaussian and G(.) can be 
any non-quadratic function. As suggested by [28] a good general purpose function is 
given by

with 1 < a < 2. Constrained ICA aims to alleviate the issues of ICA with the help of 
Lagrange multiplier methods. Lagrange multiplier methods [29] are a tool for perform-
ing constrained optimization problems following the general form

where f (X) is the objective function, g(X) is a set of inequality constraints and h(X) is a 
set of equality constraints.

The objective of obtaining the weighting matrix to give the optimum cardiac pulse 
using cICA can be fulfilled with the help of the inequality constraint

where w represents a single demixing weight vector of size equal to the number of input 
channels and ǫ(w) represents the set of constraints to be satisfied. The optimum w then 
extracts the optimum cardiac pulse using y = wTx. Using average of squared autocor-
relation as a constraint gives g(w) as

where ζ1 denotes the threshold for the lower bound of the optimum autocorrelation. This 
constraint guides the optimizer towards choosing the weighting matrix that results in a 
signal of high periodicity, with the minimum expectation of its mean squared autocor-
relation as ζ1. Next, the CHROM constraint is defined as

where wchrom is the CHROM weighting matrix from Eq. 7, and ζ2 is the threshold for the 
upper bound for discrepancy between the optimum and the CHROM weighting vectors. 
This constraint guides the optimizer to converge towards the CHROM weighting matrix 
wchrom.

(8)J (y) ≈ ρ[E{G(y)} − E{G(v)}]2

(9)G(y) =
log cos(ay)

a

(10)minimize f (X), subject to g(X) ≤ 0, h(X) = 0

(11)g(w) = ǫ(w)− ζ ≤ 0

(12)g1(w) = ζ1 − E{r2} ≤ 0

(13)g2(w) = �w − wchrom� − ζ2 ≤ 0
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cICA optimization algorithm

The general cICA problem can be defined as [9]

where J (y) is the one-unit contrast function as defined in Eq. 8, gi(w) is the set of 
inequality constraints to be satisfied from Eqs.  12 and 13, and h(w) constrains the 
output y to have unit variance.

The augmented Lagrangian formulation as adapted from [9] was used primarily 
because of its robustness owing to the use of penalty parameters to maintain the 
convexity assumption [29].

where ḡi(w) = µi + γigi(w), µi and � are the Lagrange multipliers corresponding to 
gi(w) and h(w) respectively. �·� denotes the Euclidean norm and the terms 12γi�·�

2 
and 12β�·�

2 are the penalty terms that makes sure that the optimization problem is 
held at the condition of local convexity assumption: ∇2

xxL >0, γi and β being the con-
straint-wise penalty parameters.

The first derivative of L w.r.t w required for the optimization given by

where ρ̄ = ±ρ depending on the sign of E{G(y)} − E{G(v)}, G′
y(y) and g ′i (w) are the first 

derivatives of G(y) and gi(w) w.r.t y and w respectively. The Hessian L′′

wk
 is calculated as

the inversion of which is not problematic because Rxx being the covariance matrix of 
the whitened and centered signal x is an identity matrix. G′′

y2
(y) and g ′′

i (w) are second 
order derivatives and L′′

wk
 is of size m×m. The first and second derivatives of autocorre-

lation in Eq. 12 are not trivial and are presented in the appendix to maintain structure.
The expectation in the equations were calculated by using all the samples of the 

input signal x. The first and second derivatives were then fed into the fmincon 
function of MATLAB using the interior point algorithm [30] to obtain the final 
weighting matrix w∗ which was then used to obtain the final rPPG signal.

System framework

Figure 5 depicts the entire workflow of the procedure. Let x = [x1 x2 x3]
T be the tem-

poral RGB traces with each xm, m ∈ [1 · · · 3] corresponding to the channel-wise tem-
poral trace vector of size N. Each xm,corresponding to each video frame, was obtained 

(14)

Maximize : J (y) = ρ

[

E{G(wTx)} − E{G(v)}
]2
,

Subject to : gi(w) ≤ 0, h(w) = E{y2} − 1 = 0

(15)

L(w,µ, �) =J (y)−
1

2γi

[{

[max{0, ḡi(w)}]2 − µ2
i

}]

− �h(w)+
1

2
β
∥

∥h(w)
∥

∥

2

(16)L
′

w = ρ̄E{xG
′

y(y)} −
1

2
µE{g

′

i (w)} − �E{xy}

(17)L
′′

wk
= ρ̄RxxE{G

′′

y (y)} −
1

2
µE{g

′′

i (w)} − �
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by spatial averaging of the skin pixels from the face. These candidate skin pixels were 
obtained by using the method proposed by Conaire et  al. [31] after performing face 
detection and tracking using the Viola–Jones and Kanade–Lucas–Tomasi implemen-
tations provided by the computer vision toolbox of MATLAB. Corner detection in the 
detected face was also performed for tracking to crop the face based on facial landmarks.

Next, the temporal RGB traces x were detrended using a smoothness priors approach 
by Karjalainen et al. [32] to remove any low frequency trends in the signal. Some pre-
processing, generally recommended for ICA, was also performed. Centering was first 
performed to transform the obtained signal y = wTx to a zero-mean signal, followed by 
whitening to ensure that the components were uncorrelated and their variances equaled 
unity. Note that whitening, which changes the standard deviation of a signal, was not 
performed for the CHROM constraint because the CHROM method relies on using the 
standard deviation of a linear combination of the RGB traces as seen in Eq.  6. These 
traces were then fed to the rPPG extraction module where the cICA algorithm was used 
to extract the window-wise rPPG signal.

Once the rPPG signal was estimated, the window-wise heart rate was calculated from 
the highest peak of the FFT filtered within the limits of normal heart rate F ∈ [0.7, 3] 
Hz over a temporal moving window using a step size of 0.5 s. ICA is generally known 
to work better with longer temporal signals, however, all the processing was performed 
over a 30 s window using the weighting matrix wk obtained at window k as an initial 
estimate for calculation of wk+1 at the next window. This was done in order to mimic the 
constraints of a live scenario thereby making the analysis more relevant. The 30 s length 
for the window was selected as a trade-off between speed and availability for enough 
data for convergence. That being said, a 15 s window had to be chosen for the MMSE-
HR database because of the variable and oftentimes short length of the videos. Finally, 
Kalman filter was applied, as it were a live scenario, to compensate for spurious outliers 
in the estimated heart rates. These outliers, although useful in scenarios such as emotion 
elicitation to extract fleeting responses, are not relevant in our study where our focus 
is on heart rate signal extraction. The choice of Kalman filter for smoothing is apt and 
useful for any rPPG extraction algorithm since there might always be spurious measure-
ments due to motion and illumination artifacts. And since all the methods are treated 
with the same Kalman filter routine, the comparison between the metrics stands valid.

Fig. 5 Flowchart of the proposed method
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Results and discussion
The cICA algorithm was validated using our in-house UBFC-RPPG database compris-
ing of two datasets comprising of 9 (about 21k frames) and 46 (about 94k frames) videos 
respectively and the public MMSE-HR [1] database comprising of 97 (about 105k frames) 
videos. The two in-house datasets are labeled as SIMPLE and REALISTIC, respectively, 
and are ethically approved by the human participants. The SIMPLE dataset consists of 
the subjects relaxed with their eyes close with a realistic background and moderately 
varying light conditions. For the REALISTIC dataset, the subjects were required to play 
a time sensitive mathematical game that aimed at augmenting their heart rate while 
simultaneously emulating a normal human-computer interaction scenario.

The UBFC-RPPG database which is focused specifically on rPPG analysis was created 
using a custom C++ application for video acquisition with a Logitech C920 web camera 
placed at a distance of about 1 m from the subject. The video was recorded with a frame 
resolution of 640 ×  480 in 8-bit uncompressed RGB format at 30 frames per second. 
A CMS50E transmissive pulse oximeter was used to obtain the ground truth PPG data 
comprising of the PPG waveform as well as the PPG heart rates. The experimental setup 
with sample images from both the databases is depicted in Fig. 6.

The MMSE-HR database is specifically geared towards research on emotion elicitation, 
but the videos are usable for rPPG analysis. Due to its focus towards emotion elicitation, 

Fig. 6 Experimental setup (top) and sample images from the UBFC-RPPG REALISTIC and SIMPLE (middle) and 
MMSE-HR (bottom) databases
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the videos in this database comprise of a large number of facial expressions and move-
ments which aids in assessing our method rigorously. Based on its working principle, 
rPPG signals should be ideally compared with PPG ground truth signals. However, the 
MMSE-HR dataset only provides ground truth heart rates, acquired using the BIOPAC 
150 data acquisition system which were calculated using contact based ECG electrodes. 
Moreover, it was also observed that the PPG heart rates were unreliable and spurious at 
many instances, most definitely because of movements of the subject. These two facts do 
make the MAE metrics in our analysis less comprehensive. This also highlights the issue 
of contact based measurements, where even the ground truth signals are not entirely reli-
able. On the other hand, our UBFC-RPPG database provides both the PPG waveforms as 
well as the PPG heart rates, thus furnishing the means for a more comprehensive analysis.

Table 1 shows the performance comparisons between ICA and cICA and other state 
of the art methods, viz., PCA [33], Green [2], CHROM [4], POS [15], and G-R [34]. In 
literature, there are several works which uses ICA for rPPG extraction. However, the 
core algorithm for it remains the same. The ICA implementation used for our analysis 
has been adapted from FastICA [8]. Furthermore, the analysis of all the methods was 
performed using exactly the same pre and post processing steps like normalization, fil-
tering and smoothing. The exact metrics of ICA from related state of the art methods 
such as [6, 7] and [5] could not be used because they all use their own private databases 
which were inaccessible to the public. However, as mentioned earlier, the core algorithm 
of ICA remains the same making the metrics in Table 1 applicable. Furthermore, com-
parison with smart ROI selection methods such as [17, 19, 20] and [13] was not deemed 
relevant in order to limit the comparison amongst source separation methods, and the 
fact that our method can easily be incorporated into an ROI selection framework. The 
best metrics per method are italicized to compare their effectiveness clearly.

The metrics used in our analysis are mean absolute error (MAE) in beats per min-
ute (bpm), signal-to-noise ratio (SNR) and Pearson’s correlation coefficient (r) between 
heart rate calculated using the rPPG signal, HRrPPG and the heart rate calculated using 
the ground truth PPG waveform, HRPPG. The MAE was calculated as the window-wise 
mean of |HRrPPG −HRPPG|, averaged per video. The windowed method is computation-
ally more taxing, owing to the smaller window length, but is more realistic. The SNR 
(dB) was calculated as the ratio of the power of the main pulsatile component of the PPG 
to that of the background noise to accommodate the wide dynamic range of the signals.

Table 1 Performance metrics

UBFC-RPPG MMSE-HR

SIMPLE REALISTIC

MAE SNR r MAE SNR r MAE r

cICA 0.62 2.01 0.99 3.14 − 0.75 0.91 4.69 0.79

ICA 0.67 2.70 0.98 6.02 − 1.11 0.79 5.84 0.67

PCA 2.04 − 1.43 0.97 9.65 − 3.45 0.67 9.15 0.49

Green 9.86 − 1.61 0.29 7.73 − 2.78 0.68 10.65 0.47

CHROM 0.72 3.04 0.99 3.81 − 0.93 0.87 5.59 0.83

POS 0.67 2.57 0.99 4.73 − 1.60 0.80 5.77 0.82

G-R 0.67 1.97 0.99 9.79 − 3.10 0.65 8.56 0.58
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However, it is to be noted that the MMSE-HR database does not provide the ground 
truth waveforms, thereby obliging the use of the main pulsatile component of the RPPG 
instead of the PPG for the SNR calculation. In this case, the SNR just represented the 
strength of the main pulsatile component, which in itself is a useful metric, but is not 
valid for the comparison with the SNR for other databases which were calculated in a 
different manner. As a result, the SNR values for the MMSE-HR database are not really 
relevant and are omitted. The MAE values, however, are relevant since it is calculated as 
the difference between rPPG and PPG heart rates, which are provided as ground truth 
for the MMSE-HR database.

It was also worth assessing the resilience of the cICA algorithm against changes in 
parameters such as image resolution and window length. This analysis was performed in 
two parts. The MMSE-HR database was chosen to assess the effect of changes in image 
resolution since it provides images of resolution 1040 × 1392 which offer the possibil-
ity to asses scaled down versions of the frames, to 75, 35% and even to 10%, in favor of 
the UBFC-RPPG database which provides images of a lower resolution, viz. 640 × 480 
pixels. On the other hand, due to the shorter duration of videos in the MMSE-HR data-
base, the UBFC-RPPG REALISTIC dataset was chosen to assess the effect of changes in 
the window length, the assessment being done against window lengths of 10 and 20 s, 
respectively.

Table 2 lists the average results of this assessment over the three datasets. The met-
rics in the last row correspond to the original results. It was observed that there was 
a slight decline in the performance with respect to the window length of 10 s, which 
is expected, owing to the lack of enough data for the ICA objective function to estab-
lish independence. Correspondingly, frames of lower resolution reflect loss of spatial 
information. Even though this loss is in itself not too deteriorating for the signal qual-
ity, the fact that it was coupled with the 15 s window length for the MMSE-HR data-
base, explains the slightly higher MAE values for frames scaled down to 35 and 70%. As 
expected, the amount of information loss is slightly more pronounced at a scale of 10%, 
depicting the slight decline in the quality of the extracted rPPG signal with reduction in 
resolution. The decline due to loss of spatial information can be attributed to the reduc-
tion in the total number of skin pixels used to get the average signal value per frame.

Table 2 Effect of window length and scale

Window length (s) UBFC-RPPG REALISTIC

MAE SNR r

10 6.19 − 1.34 0.72

20 4.09 − 1.18 0.83

30 3.14 − 0.78 0.91

Scale (%) MMSE-HR

MAE r

10 10.84 0.38

35 7.06 0.57

75 6.68 0.61

100 4.69 0.79
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Finally, since cICA is essentially an optimization algorithm where the weights are 
randomly initialized, it was worth assessing its consistency over multiple runs. Fig-
ure 7 shows the box plot comparing the MAEs with cICA for the UBFC-SIMPLE data-
set without much movement under ambient light, the UBFC-REALISTIC dataset with 
subjects working on a computer under ambient light, and the MMSE-HR dataset with 
subjects exhibiting facial expressions under indoor lighting. These tests on the data-
sets were performed 20 times. It is visible from the box plot that the cICA method 
performs consistently resulting in MAEs in the range [0.53, 1.96] bpm, [2.49, 4.1] bpm 
and [2.63, 5.86] bpm for the UBFC-SIMPLE, UBFC-REALISTIC and MMSE-HR data-
sets respectively.

The global correlation analysis using window-wise calculations between HRs from 
PPG versus RPPG obtained from all the videos in each dataset for the skin-segmented 
pixel data for one particular run is presented in Fig. 8. The metrics PRECIS 2.5 and 
PRECIS 5 show the percentage of windows where δ = |HRrPPG −HRPPG| < 2.5 and 
5 bpm respectively. n represents the total number of windows used in the analysis, 
r is Pearson’s correlation coefficient and y depicts the equation of the fitted line. It 
is worth mentioning that the MAE values in Fig. 8 and Table 1 differ from those in 
Fig. 7, which are averaged over 20 executions, but are obviously in range. Moreover, 
differences in range of 10−2 bpm are inconsequential.

The analysis of the SIMPLE dataset, as the name suggests, was quite easy for both 
ICA and cICA. However, cICA did remove the few outliers that are present in the case 
of ICA. This is reflected in the low MAE and high SNR values as shown in Table 1. This 
can be attributed to the fact that the subjects were generally relaxing, mostly with their 
eyes closed, which resulted in minimal motion artifacts. On the other hand, the REAL-
ISTIC dataset was slightly more challenging since the subjects were actually working 
on the computer and were only requested to keep their hand still for the PPG sen-
sor. Similarly, the MMSE-HR database was challenging owing to it being an emotion 
elicitation database. There were many instances where the subjects laughed out loud, 
exhibited considerable movements, while regularly manifesting various facial expres-
sions. This resulted in the usual problems arising from movement of the subjects and 
the face ROIs. Consequently, the presence of outliers was more pronounced for both 
the REALISTIC dataset and the MMSE-HR database, which cICA was able to reduce. 
Also, the fitting line was closer to the 45° line with cICA as compared to ICA.

Fig. 7 Box plot of MAE from cICA over 20 observations for the two databases
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Conclusions and future work
In this paper we presented a novel semi blind source separation method for the applica-
tion of rPPG measurements using autocorrelation and chrominance based constraints 
to guide the ICA separation process. The cICA using autocorrelation and chrominance 
constraints provides better result than simple ICA while removing the extra step for 
choosing the best component. The periodogram of the extracted signals was also con-
sistently closer to that of the PPG.

The inclusion of the chrominance constraint can also aid for rPPG measurement in 
scenarios comprising of periodic movements. Since in this case, the autocorrelation con-
straint is likely to be contaminated by the signal corresponding to the periodic move-
ment, the optimizer can favor the signal satisfying both, the autocorrelation and the 
CHROM constraints. Furthermore, for improving accuracy, better face and skin detec-
tors and trackers can be investigated. Also, even though the CHROM constraint helps 
the convergence to the correct rPPG signal for limited movements, it does fail when they 
are more pronounced in speed and intensity. The method can thus benefit with motion 
compensation which itself is another interesting subject for research. Last, but not the 
least, we average the entire skin segmented image to obtain a single value and thus loose 
any spatial information. Higher order analysis which preserves the spatial relationships 
between pixel neighborhoods is also an important avenue to look into.
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Appendix
Derivatives of the autocorrelation constraint

Here we present the first and second derivatives of the autocorrelation constraint, g1(w) 
needed by the optimization algorithm. We follow the convention that the derivative of a 
scalar w.r.t a column vector is a column vector of the same size as that of the vector. The 
first derivative of g1(w) in Eq. 12 can be obtained as follows. Considering squared auto-
correlation as r2 =

[

r21 r
2
2 · · · r

2
N

]

,

where the derivative of the squared autocorrelation r2 is then obtained using the chain 
rule of derivatives. Also, we know that y = wTx giving ∂y

∂w
= x. Expanding on the deriva-

tive of r2, we have

The size of ∂(r
2)

∂w  is then 3× N  from the product of x3×N with the Jacobian of size N × N . 
Consequently, its expectation ends up having a size of 3× 1 since it is nothing but a 

(18)g ′1(w) = −E

{

∂

∂w

([

r21 r22 · · · r2N
])
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temporal mean over N samples. The Jacobian in Eq.  23 can be concisely expressed as 
[

r1
∂r1
∂y

r2
∂r2
∂y

· · · rN
∂rN
∂y

]

 where each column is the product of the derivative ∂r1
∂y  and the 

scalar rk and is of size N × 1. Deriving Eq. 4, rk = yTky
T, listed here for convenience, 

w.r.t y using the product rule of differentiation,2

where ∂
∂y
(Tky

T ) = TT
k  comes from the fact that the differential of Tky

T , a vector, will 
remain the same even when it is transposed and the derivative is computed element-
wise. For conciseness, we will represent the sum Tk + TT

k  as Tk. Finally to be consistent 
with our convention, using the same argument of the differential being immutable to 
transpositions, the row vector ∂rk

∂y  can be transposed into a column vector and the matrix 
∂r
∂y can be built as

giving g ′1(w) in Eq. 19 as

which can be further simplified to

Since the expectation is a temporal mean the element-wise multiplication with rk can be 
replaced by multiplication with the vector rT which also simplifies the computation.

Next, to simplify the calculation of the second derivative of g(w) , we perform col-
umn-wise matrix multiplication in Eq. 26, omitting the scalar multiplication and divi-
sion, to obtain

And since differentiation and summation are interchangeable based on the sum rule, 
g ′′(w) can be obtained by

2 This result is owing to the fact that Tk is not symmetric. If it were symmetric, then the result would have been 2yTk.

(23)

∂rk

∂y
= y

∂

∂y

(

Tky
T

)

+ yTk

∂

∂y

(

yT
)

= y
∂

∂y

(

yTT

k

)

+ yTk

= yTT

k
+ yTk = y
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T
T

k
+ Tk

)

(24)
∂r

∂y
=
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r1T1y
T · · · rNTNy

T
]

g ′1(w) = − 2xE
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r1T1y
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T
]}

(25)g ′1(w) = − 2x
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T1y
T · · · TNy

T
]

rT /N

(26)g ′1(w) =− x
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T1r1y
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The derivative of Tkrky
T  w.r.t y is then obtained by the product rule of differentiation.

which is of size N × N . Consequently, the size of g ′′1 (w) turns out to be 3× 3 since 
the sum of ∂(Tk rky

T )

∂y  over N samples is also of size N × N . g ′′1 (w) is further used in 
the Lagrange multipliers method for cICA , implemented as an augmented lagrangian 
method, presented in “Constrained ICA” section.
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