

Crystal structure of bis (diisopropylammonium) cis -diiodidobis (oxolato- κ 2 O 1 , O 2) stannate (IV)

Bougar Sarr, Cheikh Abdoul Khadir Diop, Mamadou Sidibé, Yoann Rousselin

▶ To cite this version:

Bougar Sarr, Cheikh Abdoul Khadir Diop, Mamadou Sidibé, Yoann Rousselin. Crystal structure of bis(diisopropylammonium) cis -diiodidobis(oxolato- κ 2 O 1 , O 2)stannate(IV). Acta crystallographica Section E: Crystallographic communications [2015-..], 2018, 74 (4), pp.502 - 504. 10.1107/S2056989018003602 . hal-01856673

HAL Id: hal-01856673 https://u-bourgogne.hal.science/hal-01856673

Submitted on 12 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Received 10 February 2018 Accepted 1 March 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; tin(IV) oxalate; N— H···O hydrogen bonding; bifurcated N— H···(O,O) hydrogen bonds.

CCDC reference: 1826865

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(diisopropylammonium) cis-diiodidobis(oxolato- $\kappa^2 O^1, O^2$)stannate(IV)

Bougar Sarr, a Cheikh Abdoul Khadir Diop, a
* Mamadou Sidibé and Yoann Rousselin $^{\rm b}$

^aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bICMUB, UMR CNRS 6302, Universite Bourgogne Franche Comte, 9 avenue Alain Savary, 21078 Dijon cedex, France. *Correspondence e-mail: bouks89@gmail.com

In the title compound, $({}^{i}Pr_{2}NH_{2})_{2}[SnI_{2}(C_{2}O_{4})_{2}]$, which was prepared by reacting $({}^{i}Pr_{2}NH_{2}^{+})_{2}\cdot C_{2}O_{4}^{2-}$ with SnI₄ in a 2:1 molar ratio in a mixed ethanol-acetonitrile solvent, the Sn atom is coordinated by two chelating oxalate ions and two iodide ions, with the latter in a *cis* configuration. In the crystal, the cations are linked to the anions by N-H···O and bifurcated N-H···(O,O) hydrogen bonds, generating [101] chains.

1. Chemical context

As a result of their numerous applications (treatment of cancer, fertilizers, PVC stabilizers, catalysts or reaction intermediates), organotin compounds have been studied for many years (Christie *et al.*, 1979; Seik & Kumar Das, 1993; Ramaswamy *et al.*, 2008; Reichelt & Reuter, 2014). As a continuation of our work on organotin compounds (Diop *et al.*, 2002, 2003; Sarr *et al.*, 2013), we now describe the synthesis and crystal structure of the title compound, (I).

OPEN d ACCESS

2. Structural commentary

Compound (I) crystallizes in the monoclinic system, space group P2₁/c with Z = 4 formula units. The asymmetric unit contains two diisopropylammonium cations and one anionic complex $[SnI_2(C_2O_4)_2]^{2-}$ (Fig. 1). The Sn^{IV} atom of the stannate anion is six-coordinated by four oxygen atoms arising from two chelating oxalate dianions and two iodo anions in the *cis*-positions, generating a distorted octahedral geometry $[I2-Sn1-I1 = 99.164 (7), O1-Sn1-O4 = 78.96 (6), O8-Sn1-O6 = 78.60 (5)^{\circ}]$. The C-O bond lengths for the oxygen atoms involved in the coordination of the metal atom [C1-O1 = 1.298 (3), C2-O4 = 1.288 (3), C3-O6 = 1.286 (3), C4-O8 = 1.293 (3) Å] are significantly longer than the non-coordinating

Figure 1

The molecular structure of (I), with displacement ellipsoids depicted at the 50% probability level and $N-H\cdots O$ hydrogen bonds shown as dashed lines.

C-O bonds [C2-O3 = 1.223 (3), C3-O5 = 1.221 (3), C4-O7 = 1.215 (3), C1-O2 = 1.217 (3) Å]. The Sn-I distances <math>[Sn1-I1 = 2.7190 (2), Sn1-I2 = 2.7039 (2) Å] as well as the Sn1-O distances [Sn1-O1 = 2.0826 (15), Sn1-O4 = 2.1164 (15), Sn1-O6 = 2.1203 (15), Sn1-O8 = 2.0890 (14) Å] are typical and consistent with previous studies (Reichelt & Reuter, 2014; Skapski *et al.*, 1974; Sow *et al.*, 2013). Atoms I1, I2, O4 and O6 are equatorial while O1 and O8 occupy the apical positions in the tin coordination sphere. The angle O1-Sn1-O8 measures 158.49 (6)°: this value deviates considerably from 180°, which may be due to steric hindrance of the iodine atoms. In the equatorial plane the atoms I1, I2, O4 and O6 and the tin(IV) atom are almost coplanar (sum of equatorial angles = 360.3°).

3. Supramolecular features

In the crystal of (I), the oxalate ions accept hydrogen bonds from the protonated cations: each cation forms one simple $N-H\cdots O$ hydrogen bond and one asymmetric bifurcated

The crystal packing for (I) viewed down [100].

N−H···(O,O) bond. In the N1 cation, N1−H1A···(O2ⁱ,O3ⁱ) [N···O = 2.909 (2), 3.006 (3) Å; symmetry code: (i) -x + 1, -y + 1, -z] and a simple hydrogen bond N1−H1B···O3 [2.916 (2) Å] (Table 1); it is notable that O3 accepts a simple and a bifurcated bond. The N2 cation forms a bifurcated N2− H2B···(O5,O7) bond [2.847 (2), 3.027 (2) Å] and a simple bond N2−H2A···O7ⁱⁱ [2.968 (2) Å; symmetry code: (ii) -x + 2, -y + 1, -z + 1]. Together, these generate [101] infinite chains as represented in Fig. 2. The packing also features some weak C−H···O interactions but the main inter-chain interactions are van der Waals forces as shown in Fig. 3.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.39 plus one update, November 2017; Groom *et al.*, 2016) reveals 229 hits for diisopropylammonium $[{}^{i}Pr_{2}NH_{2}]^{+}$ but no hits for the $[SnI_{2}(C_{2}O_{4})_{2}]^{2-}$ anion.

5. Synthesis and crystallization

The title compound was obtained in mixed solvents of ethanol/ acetonitrile (50/50) by the reaction of bis(diisopropyl-

Perspective view of an infinite chain in (I), showing the two types of hydrogen bonds as light-blue dashed lines.

research communications

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1-H1A\cdots O2^{i}$	0.91	2.05	2.909 (2)	156
$N1-H1A\cdots O3^{i}$	0.91	2.37	3.006 (3)	127
$N1 - H1B \cdots O3$	0.91	2.02	2.916 (2)	168
$N2-H2A\cdots O7^{ii}$	0.91	2.07	2.968 (2)	167
$N2-H2B\cdots O5$	0.91	1.96	2.847 (2)	165
$N2-H2B\cdots O7$	0.91	2.48	3.027 (2)	119
$C5-H5C\cdots O2^{i}$	0.98	2.60	3.359 (3)	135
$C13-H13B\cdots O2^{iii}$	0.98	2.45	3.397 (3)	162
$C14-H14\cdots O5^{iv}$	1.00	2.52	3.508 (3)	170

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z + 1; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

ammonium) oxalate $({}^{i}Pr_{2}NH_{2})_{2}\cdot C_{2}O_{4}$ (0.20 g; 0.63 mmol) with tin(IV) iodide (SnI₄) (0.20 g; 0.32 mmol) in a 2:1 molar ratio. The yellow solution obtained was stirred for 1 h and then filtered. Yellow prisms of (I) were obtained by slow solvent evaporation of the filtrate after two weeks.

The bands at 3039 and 1698 cm⁻¹ in the IR spectrum of (I) are assigned respectively to the stretching and deformation vibrations ν N—H and δ N—H while the broad band at 1676 and those at 1369, 1237 cm⁻¹ are attributed to the asymmetric and symmetric vibrations of the oxalate –CO₂ groups. The shape of the band at 1676 cm⁻¹ may be due to a superposition of several bands, which may correlate with the different hydrogen-bonding patterns of the oxalate O atoms. The IR spectrum is available in the supporting information.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.98–1.00 Å and an N—H distance of 0.91 Å. All displacement parameters of H atoms $U_{iso}(H)$ were set to $1.2U_{eq}(C,N)$ or $1.5U_{eq}(Cmethyl)$.

Funding information

The authors thank Cheikh Anta Diop University, Dakar, Senegal and the CNRS in X-ray Cystallography, Dijon, France, for financial support. All measurements were performed at the Pôle Chimie Moléculaire, the technological platform for chemical analysis and molecular synthesis (http:// www.wpcm.fr) which relies on the Institute of Molecular Chemistry of the University of Burgundy and Welience, a Burgundy University private subsidiary.

Table 2	
Experimental detail	ls

Crystal data	
Chemical formula	$(C_6H_{16}N)_2[Sn(C_2O_4)_2I_2]$
Mr	752.92
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	115
a, b, c (Å)	9.8129 (5), 18.3694 (8), 14.7122 (7)
β (°)	99.769 (2)
$V(\dot{A}^3)$	2613.5 (2)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	3.38
Crystal size (mm)	$0.33 \times 0.26 \times 0.19$
Data collection	
Diffractometer	Nonius Kappa APEXII
Absorption correction	Multi-scan (SADABS; Bruker,
	2015)
T_{\min}, T_{\max}	0.601, 0.746
No. of measured, independent and	53617, 6000, 5464
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.025
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.038, 1.13
No. of reflections	6000
No. of parameters	270
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.53, -0.66

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

References

- Bruker (2015). *APEX3, SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Christie, A. D., Howie, R. A. & Moser, W. (1979). *Inorg. Chim. Acta*, **36**, L447–L448.
- Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327–328.
- Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ramaswamy, P., Datta, A. & Natarajan, S. (2008). Eur. J. Inorg. Chem. 2008, 1376–1385.
- Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.
- Sarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m581-m582.
- Seik, W. N. & Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175–179.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim, 278, 1377–1379.
- Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107.

supporting information

Acta Cryst. (2018). E74, 502-504 [https://doi.org/10.1107/S2056989018003602]

Crystal structure of bis(diisopropylammonium) *cis*-diiodidobis(oxolato- $\kappa^2 O^1, O^2$)stannate(IV)

Bougar Sarr, Cheikh Abdoul Khadir Diop, Mamadou Sidibé and Yoann Rousselin

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Bis(diisopropylammonium) *cis*-diiodidobis(oxolato- $\kappa^2 O^1, O^2$)stannate(IV)

Crystal data

 $\begin{array}{l} (C_{6}H_{16}N)_{2}[Sn(C_{2}O_{4})_{2}I_{2}]\\ M_{r}=752.92\\ \text{Monoclinic, }P2_{1}/c\\ a=9.8129\ (5)\ \text{\AA}\\ b=18.3694\ (8)\ \text{\AA}\\ c=14.7122\ (7)\ \text{\AA}\\ \beta=99.769\ (2)^{\circ}\\ V=2613.5\ (2)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Nonius Kappa APEXII diffractometer Radiation source: X-ray tube, Siemens KFF Mo 2K-180 Graphite monochromator Detector resolution: 512 x 512 pixels mm⁻¹ φ and ω scans' Absorption correction: multi-scan (SADABS; Bruker, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.038$ S = 1.136000 reflections 270 parameters 0 restraints F(000) = 1448 $D_x = 1.914 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9952 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 3.38 \text{ mm}^{-1}$ T = 115 KPrism, clear light yellow $0.33 \times 0.26 \times 0.19 \text{ mm}$

 $T_{\min} = 0.601, T_{\max} = 0.746$ 53617 measured reflections 6000 independent reflections 5464 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$ $h = -12 \rightarrow 9$ $k = -23 \rightarrow 23$ $l = -18 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0083P)^2 + 3.7038P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinal	es and isotropic o	r equivalent isot	tropic displacem	ent parameters (Ų)	ļ
		-	1 1	-	

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sn1	0.78573 (2)	0.31450 (2)	0.25379 (2)	0.01392 (4)
I2	0.99273 (2)	0.25442 (2)	0.17904 (2)	0.02417 (4)
I1	0.78310 (2)	0.22030 (2)	0.39605 (2)	0.02759 (4)
O4	0.75849 (16)	0.39502 (8)	0.14940 (11)	0.0192 (3)
08	0.92027 (14)	0.39011 (8)	0.32756 (10)	0.0168 (3)
O6	0.64543 (15)	0.38330 (8)	0.30781 (11)	0.0184 (3)
01	0.61143 (16)	0.27511 (8)	0.16703 (10)	0.0185 (3)
O3	0.59844 (17)	0.43524 (9)	0.03477 (12)	0.0265 (4)
C3	0.7012 (2)	0.43729 (12)	0.35596 (14)	0.0157 (4)
C4	0.8615 (2)	0.44251 (12)	0.36505 (14)	0.0160 (4)
C2	0.6436 (2)	0.38963 (11)	0.09265 (15)	0.0181 (4)
05	0.64018 (15)	0.48291 (8)	0.39423 (11)	0.0205 (3)
07	0.92302 (16)	0.49320 (9)	0.40632 (11)	0.0237 (4)
O2	0.44899 (17)	0.31071 (9)	0.05028 (11)	0.0250 (4)
N2	0.77987 (17)	0.54725 (9)	0.56021 (12)	0.0141 (3)
H2A	0.873537	0.542656	0.572405	0.017*
H2B	0.750338	0.526638	0.504073	0.017*
C11	0.7460 (2)	0.62725 (11)	0.55284 (16)	0.0183 (4)
H11	0.780729	0.651151	0.613398	0.022*
C14	0.7209 (2)	0.50374 (12)	0.63123 (15)	0.0179 (4)
H14	0.617667	0.505053	0.615884	0.022*
C12	0.8204 (3)	0.65960 (13)	0.47974 (17)	0.0262 (5)
H12A	0.920144	0.651556	0.497267	0.039*
H12B	0.801782	0.711982	0.474547	0.039*
H12C	0.787330	0.636123	0.420273	0.039*
C13	0.5906 (2)	0.63719 (13)	0.5296 (2)	0.0298 (6)
H13A	0.554419	0.609123	0.474071	0.045*
H13B	0.569223	0.688867	0.518454	0.045*
H13C	0.547803	0.620006	0.581158	0.045*
C15	0.7659 (3)	0.53661 (15)	0.72612 (17)	0.0293 (5)
H15A	0.866283	0.544033	0.736978	0.044*
H15B	0.741206	0.503573	0.773029	0.044*
H15C	0.719419	0.583483	0.729668	0.044*
C16	0.7691 (3)	0.42562 (13)	0.62586 (19)	0.0276 (5)
H16A	0.738383	0.406800	0.563414	0.041*
H16B	0.729842	0.395753	0.670199	0.041*
H16C	0.870287	0.423841	0.640488	0.041*
N1	0.67810 (18)	0.58445 (10)	0.08654 (13)	0.0188 (4)

H1A	0.616623	0.608623	0.043775	0.023*
H1B	0.662980	0.535988	0.076743	0.023*
C6	0.8219 (2)	0.60163 (13)	0.06907 (17)	0.0240 (5)
H6	0.837304	0.655336	0.075377	0.029*
C8	0.6461 (2)	0.60273 (14)	0.18069 (16)	0.0260 (5)
H8	0.722502	0.583589	0.228434	0.031*
C10	0.5125 (3)	0.56523 (15)	0.19254 (19)	0.0322 (6)
H10A	0.436853	0.583129	0.145719	0.048*
H10B	0.492012	0.575786	0.254106	0.048*
H10C	0.522388	0.512540	0.185450	0.048*
C9	0.6388 (3)	0.68473 (16)	0.1915 (2)	0.0367 (6)
H9A	0.728046	0.706354	0.185379	0.055*
H9B	0.616971	0.696324	0.252461	0.055*
H9C	0.566489	0.704460	0.143656	0.055*
C7	0.9297 (2)	0.56314 (14)	0.13818 (19)	0.0304 (6)
H7A	0.927002	0.582008	0.200145	0.046*
H7B	1.021584	0.571705	0.122522	0.046*
H7C	0.910520	0.510758	0.136630	0.046*
C5	0.8285 (3)	0.57961 (17)	-0.0294 (2)	0.0396 (7)
H5A	0.816851	0.526780	-0.035890	0.059*
H5B	0.918410	0.593638	-0.044577	0.059*
H5C	0.754643	0.604200	-0.071496	0.059*
C1	0.5582 (2)	0.31967 (11)	0.10212 (15)	0.0174 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Sn1	0.01150 (7)	0.01436 (7)	0.01526 (7)	-0.00066 (5)	0.00046 (5)	-0.00098 (5)
I2	0.02246 (8)	0.02548 (8)	0.02626 (8)	0.00472 (6)	0.00897 (6)	-0.00448 (6)
I1	0.02680 (8)	0.03201 (9)	0.02397 (8)	-0.00116 (7)	0.00428 (6)	0.01047 (6)
O4	0.0185 (8)	0.0158 (7)	0.0215 (8)	-0.0027 (6)	-0.0017 (6)	0.0029 (6)
08	0.0091 (7)	0.0211 (8)	0.0200 (8)	0.0002 (6)	0.0014 (6)	-0.0063 (6)
O6	0.0096 (7)	0.0216 (8)	0.0235 (8)	-0.0014 (6)	0.0014 (6)	-0.0053 (6)
01	0.0194 (8)	0.0141 (7)	0.0195 (8)	-0.0032 (6)	-0.0038 (6)	0.0001 (6)
O3	0.0292 (9)	0.0197 (8)	0.0271 (9)	0.0005 (7)	-0.0053 (7)	0.0064 (7)
C3	0.0106 (10)	0.0202 (10)	0.0158 (10)	-0.0007 (8)	0.0012 (8)	0.0020 (8)
C4	0.0119 (10)	0.0220 (11)	0.0145 (10)	-0.0027 (8)	0.0032 (8)	-0.0008 (8)
C2	0.0198 (11)	0.0149 (10)	0.0190 (11)	0.0001 (8)	0.0019 (9)	-0.0021 (8)
05	0.0128 (7)	0.0242 (8)	0.0248 (8)	0.0016 (6)	0.0038 (6)	-0.0057 (7)
O7	0.0138 (8)	0.0288 (9)	0.0291 (9)	-0.0045 (7)	0.0051 (6)	-0.0135 (7)
O2	0.0223 (8)	0.0205 (8)	0.0277 (9)	-0.0024 (7)	-0.0082(7)	-0.0018 (7)
N2	0.0100 (8)	0.0167 (9)	0.0159 (9)	-0.0015 (7)	0.0031 (7)	0.0007 (7)
C11	0.0210 (11)	0.0130 (10)	0.0228 (11)	-0.0018 (8)	0.0089 (9)	0.0007 (8)
C14	0.0126 (10)	0.0201 (11)	0.0217 (11)	-0.0006 (8)	0.0048 (8)	0.0069 (9)
C12	0.0276 (13)	0.0232 (12)	0.0300 (13)	-0.0040 (10)	0.0115 (10)	0.0074 (10)
C13	0.0224 (12)	0.0203 (12)	0.0499 (16)	0.0076 (10)	0.0148 (11)	0.0099 (11)
C15	0.0301 (13)	0.0374 (14)	0.0221 (12)	-0.0046 (11)	0.0089 (10)	0.0049 (10)
C16	0.0244 (12)	0.0211 (12)	0.0376 (14)	0.0026 (10)	0.0062 (10)	0.0091 (10)
				. ,		

supporting information

N1	0.0161 (9)	0.0198 (9)	0.0196 (9)	0.0009 (7)	0.0004 (7)	0.0028 (7)
C6	0.0196 (11)	0.0216 (12)	0.0319 (13)	-0.0025 (9)	0.0073 (10)	0.0039 (10)
C8	0.0207 (12)	0.0389 (14)	0.0172 (11)	0.0048 (10)	-0.0005 (9)	0.0028 (10)
C10	0.0293 (14)	0.0379 (15)	0.0322 (14)	0.0070 (11)	0.0126 (11)	0.0109 (11)
C9	0.0291 (14)	0.0429 (16)	0.0372 (15)	-0.0037 (12)	0.0034 (11)	-0.0158 (13)
C7	0.0165 (12)	0.0302 (13)	0.0432 (16)	-0.0014 (10)	0.0015 (10)	0.0038 (11)
C5	0.0365 (16)	0.0491 (18)	0.0366 (16)	0.0084 (13)	0.0163 (12)	0.0075 (13)
C1	0.0199 (11)	0.0142 (10)	0.0173 (10)	-0.0005 (8)	0.0003 (8)	-0.0053 (8)

Geometric parameters (Å, °)

Sn1—I2	2.7039 (2)	C13—H13B	0.9800
Sn1—I1	2.7190 (2)	C13—H13C	0.9800
Sn1—O4	2.1164 (15)	C15—H15A	0.9800
Sn1—O8	2.0890 (14)	C15—H15B	0.9800
Sn1—O6	2.1203 (15)	C15—H15C	0.9800
Sn1—O1	2.0826 (15)	C16—H16A	0.9800
O4—C2	1.288 (3)	C16—H16B	0.9800
O8—C4	1.293 (3)	C16—H16C	0.9800
O6—C3	1.286 (3)	N1—H1A	0.9100
O1—C1	1.298 (3)	N1—H1B	0.9100
O3—C2	1.223 (3)	N1—C6	1.510 (3)
C3—C4	1.560 (3)	N1—C8	1.509 (3)
C3—O5	1.221 (3)	С6—Н6	1.0000
C4—O7	1.215 (3)	C6—C7	1.513 (3)
C2—C1	1.553 (3)	C6—C5	1.517 (4)
O2—C1	1.217 (3)	C8—H8	1.0000
N2—H2A	0.9100	C8—C10	1.517 (3)
N2—H2B	0.9100	C8—C9	1.518 (4)
N2—C11	1.507 (3)	C10—H10A	0.9800
N2—C14	1.507 (3)	C10—H10B	0.9800
C11—H11	1.0000	C10—H10C	0.9800
C11—C12	1.520 (3)	С9—Н9А	0.9800
C11—C13	1.515 (3)	С9—Н9В	0.9800
C14—H14	1.0000	С9—Н9С	0.9800
C14—C15	1.516 (3)	C7—H7A	0.9800
C14—C16	1.517 (3)	С7—Н7В	0.9800
C12—H12A	0.9800	С7—Н7С	0.9800
C12—H12B	0.9800	C5—H5A	0.9800
C12—H12C	0.9800	C5—H5B	0.9800
C13—H13A	0.9800	С5—Н5С	0.9800
I2—Sn1—I1	99.164 (7)	C14—C15—H15A	109.5
O4—Sn1—I2	90.07 (4)	C14—C15—H15B	109.5
O4—Sn1—I1	170.69 (4)	C14—C15—H15C	109.5
O4—Sn1—O6	81.10 (6)	H15A—C15—H15B	109.5
O8—Sn1—I2	91.75 (4)	H15A—C15—H15C	109.5
O8—Sn1—I1	96.37 (4)	H15B—C15—H15C	109.5

O8—Sn1—O4	84.45 (6)	C14—C16—H16A	109.5
O8—Sn1—O6	78.60 (5)	C14—C16—H16B	109.5
O6—Sn1—I2	167.44 (4)	C14—C16—H16C	109.5
O6—Sn1—I1	89.96 (4)	H16A—C16—H16B	109.5
O1—Sn1—I2	101.80 (4)	H16A—C16—H16C	109.5
O1—Sn1—I1	97.85 (4)	H16B—C16—H16C	109.5
01—Sn1—O4	78.96 (6)	H1A—N1—H1B	107.3
01—Sn1—O8	158.49 (6)	C6—N1—H1A	108.0
01— $Sn1$ — 06	85.34 (6)	C6—N1—H1B	108.0
C2 - O4 - Sn1	113.94 (13)	C8—N1—H1A	108.0
C4 - O8 - Sn1	115 37 (13)	C8 - N1 - H1B	108.0
$C_3 = O_6 = S_{n1}$	115.97(12) 115.07(12)	C8 - N1 - C6	117 10 (18)
C1 - O1 - Sn1	113.07(12) 114 70(13)	N1 - C6 - H6	108 7
06-C3-C4	115.05 (18)	N1 - C6 - C7	110.82 (19)
05-03-06	125.09 (10)	N1 - C6 - C5	1074(2)
05 - C3 - C4	118 97 (19)	C7 - C6 - H6	107.4 (2)
03 - 03 - 04 - 03	115.73 (18)	C7 - C6 - C5	1123(2)
03 - 04 - 03	124 36 (10)	$C_{1} = C_{0} = C_{2}$	112.3(2)
07 - C4 - C3	124.30(19) 110.00(10)	$N_1 = C_2 = H_2$	108.7
0^{\prime} C^{2} C^{1}	115.50(19) 115.57(18)	N1 = C6 = 110	108.8(2)
03 C2 04	115.57(10) 125.0(2)	N1 = C8 = C10	108.8(2) 109.8(2)
03 - 02 - 04	125.0(2) 110.46(10)	$C_{10} C_{8} H_{8}$	109.8 (2)
H_{2} H_{2	107.2	$C_{10} = C_{8} = C_{10}$	108.0 112.4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.2	$C_{10} = C_{0} = C_{3}$	112.4 (2)
C11 N2 H2P	107.9	$C_{9} = C_{8} = C_{10} = H_{10A}$	100.0
C11 = N2 = C14	107.9	$C_8 = C_{10} = H_{10}R$	109.5
C14 N2 H2A	107.0	C_{3} C_{10} H_{10}	109.5
C14 N2 H2P	107.9	$H_{10A} = C_{10} = H_{10P}$	109.5
C14 $H2B$	107.9		109.5
$N_2 = C_{11} = H_{11}$	109.0	H10A - C10 - H10C	109.5
N2 - C11 - C12	107.79(17) 100.50(17)		109.5
$N_2 - C_{11} - C_{13}$	109.39 (17)	$C_{0} = C_{0} = H_{0}$	109.5
	109.0	С8—С9—Н9В	109.5
	109.0		109.5
$\begin{array}{c} C13 \\ \hline \\ C14 \\ \hline \\ U14 \\ U14 \\ \hline \\ U14 \\ U14 \\ \hline \\ U14 \\ \hline \\ U14 \\ \hline \\ U14 \\ U14 \\ \hline \\ U14 \\ U14 \\ U14 \\ \hline \\ U14 \\$	112.5 (2)	H9A = C9 = H9B	109.5
$N_2 - C_{14} - H_{14}$	100.9	H9A - C9 - H9C	109.5
$N_2 - C_{14} - C_{15}$	109.93(18) 107.70(18)	$H^{9}B \rightarrow C^{9} \rightarrow H^{9}C$	109.5
$N_2 - C_{14} - C_{10}$	107.79 (18)	$C_0 - C_1 - H_1 A$	109.5
C15 - C14 - H14	108.9	$C_0 - C_1 - H_1 B$	109.5
	112.3 (2)	$C_0 - C_1 - H_1 C_1$	109.5
C16 - C14 - H14	108.9	H/A - C / - H/B	109.5
CII—CI2—HI2A	109.5	H/A = C/ = H/C	109.5
CII—CI2—HI2B	109.5	H/B - C/ - H/C	109.5
CII—CI2—HI2C	109.5	С6—С5—Н5А	109.5
H12A—C12—H12B	109.5	Со-Со-Нов	109.5
H12A—C12—H12C	109.5	Co-Co-HoC	109.5
H12B—C12—H12C	109.5	H5A—C5—H5B	109.5
С11—С13—Н13А	109.5	H5A—C5—H5C	109.5
C11—C13—H13B	109.5	H5B—C5—H5C	109.5

supporting information

C11—C13—H13C H13A—C13—H13B H13A—C13—H13C H13B—C13—H13C	109.5 109.5 109.5 109.5	01—C1—C2 02—C1—O1 02—C1—C2	115.59 (18) 125.3 (2) 119.15 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170.08 (18) -8.8 (2) 4.8 (2) -176.05 (18) 0.5 (2) -179.06 (18) 7.6 (2) -171.97 (18) 1.0 (3) -179.5 (2) -3.6 (3)	$\begin{array}{c} 03 - C2 - C1 - 01 \\ 03 - C2 - C1 - 02 \\ 05 - C3 - C4 - 08 \\ 05 - C3 - C4 - 07 \\ C11 - N2 - C14 - C15 \\ C11 - N2 - C14 - C16 \\ C14 - N2 - C11 - C12 \\ C14 - N2 - C11 - C13 \\ C6 - N1 - C8 - C10 \\ C6 - N1 - C8 - C9 \\ C8 - N1 - C6 - C7 \\ C1 - C1 - C1 - C1 \\ C1 - C1 - C1 - C1$	-178.0 (2) 1.6 (3) 175.99 (19) -3.2 (3) -57.1 (2) -179.84 (18) 178.03 (18) -59.5 (2) -166.20 (19) 70.4 (2) 57.7 (3) 170.2 (2)
O6—C3—C4—O8 O6—C3—C4—O7	-3.6 (3) 177.2 (2)	C8—N1—C6—C7 C8—N1—C6—C5	57.7 (3) -179.3 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H…A
N1—H1A···O2 ⁱ	0.91	2.05	2.909 (2)	156
N1—H1A···O3 ⁱ	0.91	2.37	3.006 (3)	127
N1—H1 <i>B</i> ···O3	0.91	2.02	2.916 (2)	168
N2—H2A····O7 ⁱⁱ	0.91	2.07	2.968 (2)	167
N2—H2 <i>B</i> ···O5	0.91	1.96	2.847 (2)	165
N2—H2 <i>B</i> ···O7	0.91	2.48	3.027 (2)	119
C5— $H5C$ ···O2 ⁱ	0.98	2.60	3.359 (3)	135
C13—H13 <i>B</i> ····O2 ⁱⁱⁱ	0.98	2.45	3.397 (3)	162
C14—H14…O5 ^{iv}	1.00	2.52	3.508 (3)	170

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z+1.