
HAL Id: hal-01860284
https://u-bourgogne.hal.science/hal-01860284

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamic management of a partial reconfigurable
hardware architecture for pedestrian detection in

regions of interest
Metzli Ramirez-Martinez, Francisco Sanchez-Fernandez, Philippe Brunet,

Sidi-Mohammed Senouci, El-Bay Bourennane

To cite this version:
Metzli Ramirez-Martinez, Francisco Sanchez-Fernandez, Philippe Brunet, Sidi-Mohammed Senouci,
El-Bay Bourennane. Dynamic management of a partial reconfigurable hardware architecture for pedes-
trian detection in regions of interest. 2017 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Dec 2017, Cancun, Mexico. �10.1109/RECONFIG.2017.8279787�. �hal-
01860284�

https://u-bourgogne.hal.science/hal-01860284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Dynamic management of a partial reconfigurable

hardware architecture for pedestrian detection in

regions of interest

Metzli Ramirez-Martinez∗, Francisco Sanchez-Fernandez∗, Philippe Brunet∗, Sidi M. Senouci∗ and El-Bay Bourennane†

∗DRIVE EA 1859 Laboratory

Univ. Bourgogne Franche Comté

F58000, Nevers, France

Email: Metzli.Ramirez−Martinez@u−bourgogne.fr
†LE2I Laboratory

Univ. Bourgogne Franche Comté

F21000, Dijon, France

Email: elbey.bourennane@u−bourgogne.fr

Abstract—In this paper, we propose a video streaming archi-
tecture implementing an IP core design based on Histograms
of Oriented Gradients (HOG) algorithm, by using a high-level
synthesis workflow. Also, we present a decision algorithm for
a dynamically reconfigurable architecture, applied to people
detection in video over a Region Of Interest (ROI). Our method
dynamically manages the resource consumption in our hardware
accelerator. In the test performed with only one reconfigurable
module, our method achieves a power reduction up to 7% and a
speed of 51 fps, but these results could be improved according to
the number of reconfigurable modules. For implementation, we
used a Xilinx Zynq 7000 series platform and our experimental
results are compared with other software and hardware imple-
mentations. Our hardware architecture can be used in a vast
number of vision systems, including advanced driver assistance
systems (ADAS).

I. INTRODUCTION

Pedestrian detection is considered as one of the most critical

elements in several domains such as automotive, industrial

automation, and surveillance. However, there is a high demand

to perform a low latency and accurate pedestrian detection.

Current software detection running on traditional CPUs can

reach high levels of accuracy with recent algorithms, but

these platforms have several constraints that inhibit a real time

performance [1]. Therefore, embedded platforms powered by

image processing capabilities are becoming a major actor on

different applications. On these platforms, energy, weight, size,

and computational latency play an important role, especially

for small battery powered devices, as intelligent cars, robots,

and unmanned aerial vehicles. These types of systems use

image feature extraction to detect and track objects, maintain

camera pose, estimate motion, classify and recognize objects.

Hence, feature extraction and analysis must be efficient and

effective [2]. For enabling a reliable pedestrian detection, a

robust visual object recognition based on a feature set for

humans is required. Different feature extraction methods have

been proposed and evaluated for this purpose, among which

HOG is considered as the most efficient and promising for

pedestrian detection.

Another aspect that could be considered for improving the

performance of feature extraction architectures is the manage-

ment of resources in the device, wherein the Dynamic Partial

Reconfiguration (DPR) could be a useful tool. Specifically,

the DPR is the ability to configure a part of a hardware

architecture during the running time. It removes the need to

fully reconfigure and reestablish logic, and it gives a flexibility

that allows implementing a wide variety of algorithms on the

embedded reconfigurable devices [3]. In addition, it could be

used to efficiently manage the resources in area, energy and

even in time.

Other kind of techniques to reduce the computational cost

of some object detection algorithms are based on selecting

one or more ROI. In this way, the image processing is only

limited to specific regions. Some advantages of this kind of

methods are that they decrease the amount of data to process,

and consequently, the speed of the algorithm increases and

the resource utilization decreases. Additionally, if the ROI is

carefully computed, it helps to reduce the false positive rate,

when the useless information is discarded. In [4]–[6] we can

see some examples of this kind of algorithms.

In this paper, we explore a dynamic FPGA implementation

of the well know HOG algorithm, it is used to extract features

for pedestrian detection in ROI. A key focus has been to

explore the use of a new heterogeneous solution for accom-

plishing feature extraction. We give details of the processes

that influence the performance of HOG and how the entire

algorithm has been decomposed to allow optimization in order

to be deployed on FPGA hardware. The main contribution

of this paper is a dynamically reconfigurable HW-SW imple-

mentation of a pedestrian detection for a SoC, which offers

a dynamic and efficient resource management and reconfigu-

1



ration versatility but with the software programmability. We

create a complete feature extraction architecture including the

processing engine, drivers, hardware interfaces, and sensors.

The most compute intensive parts of HOG are accelerated

based on Xilinx HLS tools using the FPGA. Also, we show

the performance advantages of using a reconfigurable hetero-

geneous platform for HOG features extraction compared to a

software-only solution and static hardware implementations.

II. RELATED WORK

HOG algorithm is a feature detection algorithm frequently

used to detect people on images, Dalal and Triggs proposed

the HOG algorithm [7] in 2005. HOG has been investigated by

many researchers througth mapping efficiently this algorithm

on accelerators, such as FPGAs, digital signal processors

(DSPs) and graphics processing units (GPUs). Kadota et al. [8]

proposed several modifications to simplify the computation,

such as implementing the square root by means of look-up-

table (LUT), and approximating the normalization factor to a

power two value. Their FPGA architecture is used to achieve

real-time requirements. However, these simplifications degrade

the accuracy rate for pedestrian detection. They reached a

performance of 30 fps VGA (640x480) by using 10 instances

of their proposed hardware.

In [9], it is presented an FPGA pipelined architecture

for HOG feature extraction. It uses approximation methods

to replace the complex operations for adopting the paral-

lel processing, like square root approximation for gradient

computation and Newton-Raphson method to compute the

inverse square root. This design can be implemented with

a lower cost while performing high throughput. Also, logic

cells utilization is reduced for achieving a higher operating

frequency in an FPGA. Jacobsen et al. [1] present an FPGA

implementation of a pedestrian detector, this architecture uses

the LUV color space and HOG features to detect pedestrians.

These features are extracted from a RGB frame of video and

are evaluated at runtime using an attentional cascade of stages.

The offline trained boosted detector evaluates each frame using

HOG features in the LUV color space, pedestrian targets are

identified at 27 scales. It can process VGA video at a frame

rate of 30-40 fps.

Other type of platforms used for implementing pedestrian

detection are DSPs. Chiang et al. [10] propose a pedestrian

detection technique using the HOG algorithm for embedded

driver assistance systems. The system is implemented on a

DSP resulting in a processing time of 8 fps for VGA image

size and reaching a detection accuracy over 92%.

III. HOG FEATURE EXTRACTION METHOD

The main idea behind HOG feature extractor is related

to the fact that the local appearance of an object can be

described by using the local intensity gradient distribution.

This distribution has a great robustness because even without

precise information of the intensity and its gradient for each

pixel, the object shape could be characterized well enough

for achieving a high detection rate [7]. This section explains

Fig. 1. HOG feature extraction process based on cell and block descriptor
generation

how to extract HOG features, which consists in computing

several histograms of orientated gradients in specific pixels

structures on an image. The HOG descriptor is computed by

dividing the input image in 8x8 pixels that are called cells.

Also, a group of cells is called a block, the size of the block

is 16x16 pixels, so it consists of four cells. Fig. 1 depicts

an idea of cells and blocks used for HOG feature extraction.

When computation of the current block is finished, the overlap

of the next computation is one cell. In this overview, HOG

feature extraction process is divided into the following steps.

A. Two-dimensional gradient computation

The first step consists in computing the magnitude m(x, y)
and direction θ(x, y) for every single pixel located at coor-

dinate (x, y). For computing the gradient, we assume that

a pixel is located at coordinate (x, y) and the value of its

luminance is denoted by f(x, y). Now, we need to apply 1st

order differential coefficients. The gradient filters used for

feature extraction are [−1, 0, 1] and [−1, 0, 1]T . Applying these

filters to every pixel, we obtain the gradients of the x and y

axes, which are denoted by fx(x, y) and fy(x, y), respectively,

and they are computed by the following equations:

fx(x, y) = f(x+ 1, y)− f(x− 1, y) (1)

fy(x, y) = f(x, y + 1)− f(x, y − 1) (2)

Once gradients for x and y direction are computed, we proceed

to calculate the gradient magnitude as follows:

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (3)

The direction is given as:

θ(x, y) = arctan
fy(x, y)

fx(x, y)
(4)

When an RGB image is employed as input, the gradients are

computed for every pixel on each color channel separately, the

gradient with the largest magnitude would be selected to be

used in the next stages in the HOG algorithm.

2



B. Histogram generation and voting

The next step in the algorithm is the generation of a

histogram for groups of 8x8 pixels. We need to generate a

histogram of orientations for each cell in the image based

on the values m(x, y) and θ(x, y). The orientation interval

is evenly divided over 0◦-180◦according to the number of

orientations for producing the orientation bins needed for

computing the histogram. In the original HOG algorithm, it

was deduced that using 9 orientations bins, it is possible to

reach a very high detection rate in the case of pedestrian

detection.

Basically, histogram generation is created using the next

steps:

1) Determine the membership of θ(x, y) by comparing with

the direction of all orientation bins.

2) Increment the value of the class related to the direction

found in the previous step.

3) Repeat preceding operations for all gradients belonging

to a cell.

In order to mitigate aliasing effect, we should update the

two nearest bins to each gradient direction. This updating

process is accomplished by defining two different weighting

rules based on the distance of θ(x, y) to the edge angle of

each bin. The main weighting rule α can be computed as:

α = (n+ 0.5)− b ∗ θ(x, y)
π

(5)

Where b is the number of bins and n is the bin to which

θ(x, y) belongs. Now, both values of the two neighboring

bins are incremented. mn indicate a class number where

θ(x, y) belongs and mnearest is the nearest bin to θ(x, y).
The incremented values mn and mnearest are given by:

mn = (1− α) ∗m(x, y) (6)

and

mnearest = α ∗m(x, y) (7)

Basically, every gradient at pixel (x, y) would contribute to

the histogram by a vote which is a function of the gradient

magnitude.

C. Block normalization

Finally, a normalization process across blocks is required

in HOG feature extraction. Once the histogram of each cell

is computed, the histograms of adjacent cells are grouped

together to form a spatial block. Every block has a de-

fined number of overlapped adjacent cells. In the original

work, every block is comprised of 2x2 neighboring cells.

A histogram normalization is generated by combining all

histograms belonging to one block, i.e. a set of four cells. After

the large combined histogram is obtained, it is normalized as

follows:

vi =
Vi

√

‖V ‖2
2
+ ε

(8)

Where V is a vector corresponding to a combined histogram

of the cells in a block, v is a normalized vector, which is a

final HOG feature, and ε is a small constant to avoid a zero

enumerator.

IV. HOG HARDWARE IMPLEMENTATION

Due to the intensive computations required for extracting

HOG feature descriptors and the inadequacy of a software

implementation to achieve the real-time requirements, it is

imperative to implement a hardware module to fulfill these

needs. HOG feature extraction implementation is based on

a pipelined architecture, where as in previous architectures,

floating point operations and trigonometric computations are

replaced by a fixed point representation and Look-Up Tables

(LUT) implementations. Also, a pipelined architecture of the

implementation contributes to achieve better timing results

and throughput, while the resource utilization is considerably

low. Implementing an object detection algorithm like HOG

implies two main challenging tasks that need to be overcome

for reaching a reliable and real-time implementation. The first

is the parallelism exploration of the algorithm, allowing cal-

culations being completed simultaneously. Usually, it consists

in splitting the algorithm into smaller functional blocks and

defining all data dependencies between these blocks for im-

proving the data exchange among them, in order to accelerate

feature extraction process.

The second challenge that inhibits a high throughput is

related to a high demand of memory access in feature extrac-

tion algorithms. Every algorithm contains different stages in

the processing, and each stage produces different values that

should be stored and accessed in future stages. In different

situations, the computed values in a stage could not be sent

directly to the next, because the following stage requires

performing several computations and obtaining other values

before to be able to use data from a previous stage. We observe

that in feature extraction algorithms is inevitable to use storage

elements, but it is necessary to consider that updating storage

elements at the end of one stage and reading back the data

in the following step will create a delay in the data flow of

the processing blocks, and consequently, throughput will be

reduced.

In the previous section, HOG feature extraction is decom-

posed in three main stages. In the following sections, we

explain how they are adapted for an FPGA architecture without

decreasing robustness.

A. Gradient extraction

This is the first step for computing a HOG feature, we could

observe from Equation 3 that two squared and one square

root operations are needed to compute the magnitude of a

pixel. However, the cost of both operations is really high on

a hardware architecture. Our proposed implementation uses

the square root approximation method proposed in [11], it is

used for avoiding complex operations that are highly costly in

hardware and it could be computed as follows:

m(x, y) ≈ max((0.875a+ 0.5b), a) (9)

3



Where:

a = max(fx(x, y), fy(x, y)) (10)

b = min(fx(x, y), fy(x, y)) (11)

Using an approximation for substituting the magnitude com-

putation allows utilizing shift units instead of multiplier oper-

ations that consume more hardware resources. The gradient of

the pixel (x, y) is calculated by using its surrounding values.

The pixel values are forwarded line by line of the image as a

stream. Therefore, row buffers are needed in order to buffer

two image rows and three pixels of a third row.

The second step in gradient computation is θ(x, y) esti-

mation, which was calculated previously and the resulting

rounded values were saved in a LUT table. This provides a

fast and reliable method for obtaining the bin where θ(x, y)
belongs, additionally, the rounding and the repetitive nature of

the tangent functions allows to reduce the amount of stored

data.

B. Histogram voting

For generating a histogram of HOG features, we need the

values m(x, y) and θ(x, y), these parameters are used to

determine α which is fundamental for a proportional voting of

m(x, y) in order to decrease aliasing. However, one disadvan-

tage of using a rounding approximation for computing θ(x, y)
is that α could not be accurately computed. As a consequence,

we consider α as a constant with a value of 0.5. Therefore,

Equations 6 and 7 becomes a shift operation in hardware as

follows:

mn ≈ m(x, y) >> 1 (12)

mnearest ≈ m(x, y) >> 1 (13)

C. Feature normalization

In this step of the hardware implementation, the resulting

feature vector from the previous step is normalized with

respect to neighboring cells that form a block. We observe

from Equation 8 that it consists in the division of each element

of the block by the summation of all histogram elements of

the block, to result in a normalized histogram. This equation

consumes several resources in hardware because division and

square root are high-complexity operations. Subsequently, it

will always result in decimals and floating point numbers

which are complicated to implement and manage in the FPGA.

In order to improve resource utilization and speed, we

simplify the inverse square root by using the Newton-Raphson

method as follows:

y =
1√
x
⇒ f(y) =

1

y2
− x = 0 (14)

f ′(y) = − 2

y3
(15)

It is possible to obtain an approximate value yn ≈ y by

executing several iterations of the Newton-Raphson equation:

yn+1 = yn − f(yn)

f ′(yn)
⇒ yn+1 =

yn(3− xy2n)

2
(16)

However, using a right value could impact directly in the time

execution, by reducing the number of iterations performed to

find a convergence. Hence, we implement the initial value

Iv = 0x5f3759df , used in [9] for finding the yn in only

one iteration. The first step for computing the approximation

of the inverse square root is:

ynIEEE754 = (xIEEE754 >> 1)− Iv (17)

Where xIEEE754 and ynIEEE754 are the IEEE754 single

precision binary floating-point format of values x and yn,

respectively. The next step is to transform ynIEEE754 into a

decimal representation, expressed as yn. Finally, the approxi-

mate value of y is computed with Equation 16. The idea is to

reduce complex operations and iterations for saving resources

and execution time, respectively.

V. DYNAMIC PARTIAL RECONFIGURATION

As previously mentioned, our implementation is designed to

work together with a method to detect a ROI. A fundamental

point for the reconfigurable architecture is selecting a ROI in

each frame of the video, in this way, the image processing is

limited only to this specific region. The ROI could be selected

through different methods as in [4], [5] or [12], particularly,

we test using saliency map algorithms [6], [13], [14], which

select the outstanding regions of an image at speed of up to 91

fps. This application could be useful in specific environments

as film sets, where the background and the outstanding objects

are clearly determined.

The general idea is to propose a dynamically reconfigurable

system that, taking in consideration the amount of data to

process, is capable of selecting the necessary number of HOG

modules executed in parallel to achieve a specific speed, with-

out spending extra resources. Due to the area limitations of the

current FPGAs, this architecture was tested and implemented

with a maximum of two HOG modules in parallel, but in the

future, it could be expanded to several modules.

Our implemented dynamic architecture is capable of recon-

figuring itself for using one or two HOG modules in parallel

depending on the ROI size, which is equivalent to the amount

of data to process, and therefore, it is directly related to the

system speed. In our implementation, we propose a target

speed of 50 fps. Therefore, taking into consideration this

target speed and the speed of our HOG module, we selected

a threshold of the 50% of the ROI size to change between the

possible configurations. It basically means that if the ROI is

smaller than 50% of the full image size, only one module

HOG will be used and the other module will be set as a

black-box, i.e. the second module will be empty, allowing to

reduce the area and energy consumption. This configuration is

denominated C1. By the contrary, in the configuration C2, if

the ROI is bigger or equal to 50% of the full image size, the

second module will be reconfigured to work as a second HOG

module in parallel, this allows to achieve the requirements of

speed, but also, the resource consumption increases.

To choose a configuration, we define different measures:

4



Fig. 2. FPGA architecture with reconfigurable modules

• to is the time to process every frame according to the

desired speed, e.g. if we want a minimum speed of 50

fps, then to = 0.02s.

• tr is the time spent in each reconfiguration (in our

implementation tr = 0.006s)

• tmi is the time required by the configuration i to process

the current ROI. It is computed as:

tmi =
size roi

vi ∗ 100
(18)

Where size roi is the percentage size of the current ROI

and vi is the speed of the configuration i. In our case, we

only have two configurations C1 with v1= 25 fps and C2

with v2=50 fps.

• tac is the accumulated time. It refers to the gained or lost

time in previous frames. As we can see, the processing

time depends on the ROI size, for example, if we have

a ROI of 70%, and we choose the second configuration,

we will be able to process this frame in 0.014 s, faster

than the required 0.02 seconds. Therefore, we obtain a

theoretical gain of time tac = +0.006s. The tac could

be positive or negative in the case of not achieving the

required time.

Additionally, we define the variable DTi, if the configura-

tion i at the time k is different from configuration selected at

the time k-1, then DTi is determined by:

DTi = to − tr + tac − tmi (19)

Otherwise:

DTi = to + tac − tmi (20)

Subsequently, we update tac and choose the configuration

according to:

Configurationk = arg min(DTi > 0) (21)

tac = min(DTi > 0) (22)

In this way, we take into consideration the time available to

process the current frame without fail the desired speed. It is

important to highlight that this decision algorithm is useful to

be applied in a bigger architecture with multiple HOG modules

in parallel.

VI. HARDWARE ARCHITECTURE

The architecture design for pedestrian detection is imple-

mented in the Zynq Xilinx platform. The main feature of

this device is that it combines a dual core ARM Cortex-

A9 processor with an FPGA logic fabric. Zynq is connected

internally by industry standard Advanced eXtensible Inter-

faces (AXI), which provide high bandwidth and low latency

connections between the processors and the FPGA, resulting

in an outstanding communication performance by removing

or reducing the overhead in the interaction between the two

physically separate devices.

Our design was implemented on a Xilinx Zynq 7020 device.

The Video frames are sent from the CPU, they are buffered

in off-chip DRAM, and then they are streamed through a

processing pipeline. Frame management is performed by a

Video Direct Memory Access (VDMA) module. The pipeline

performs color space conversion, ROI extraction, HOG feature

extraction and normalization by blocks. The HOG feature

extraction is parallelized and optimized for using FPGA logic.

The entire pipeline is parallelized to extract HOG features in

real-time from the video stream. That part of the architecture

designed in the FPGA is shown in Fig. 2.

The control of the reconfiguration is performed in the

dual-core ARM Cortex-A9 processor of the ZYNQ device,

5



it reconfigures the programmable logic in the FPGA through

the Processor Configuration Access Port (PCAP), which is a

32-bit interface that configures the FPGA at a maximum rate

of 100 MHz. In our architecture, we propose to use several

modules HOG in parallel, in this way we can increase the

speed by processing several frames at the same time.

Our implemented reconfigurable HOG module is composed

of four submodules: the VDMA module, the module to crop

the ROI, histograms generation by cells, and normalization

by blocks. The overall module achieves a speed up to 25

fps, with a full frame of 640x480 pixels, however the speed

increments inversely proportional to the ROI size. Finally, a

personal computer is utilized for implementing high-level tasks

such as ROI computation and the descriptor classification. A

brief graphical representation is shown in Fig. 3.

Fig. 3. Dynamic reconfigurable architecture design for pedestrian detection
showing the different devices for its implementation

In our architecture, a ROI is computed by frame in a

personal computer. If there is more than one ROI they are

joined in a global ROI. Subsequently, the input and output are

configured by the ARM processor, and the images and ROI

data are stored for extracting HOG features. Depending on the

desired processing speed and the number of Reconfigurable

Modules (RM) implemented, we choose a configuration by us-

ing the algorithm explained in V. In our case, we implemented

two RM and we propose an objective speed of 50 fps. After

that, a series of reconfigurable HOG modules are used to crop

the current ROI from the source frame, and to extract features

only in the ROI from the incoming video frame. Finally, HOG

block features are stored in DDR memory, to later, transmitting

to a CPU to concatenate them into a final descriptor for the

classification.

VII. RESULTS

We provide a comparison of our approach in different

configurations in a database, we tested 6 different video

sequences of the Marx Plank Institute computing department

[15], [16]. The first analysis is related to the HOG hardware

accelerator. As explained above, HOG feature extraction is

computationally complex and unsuitable for hardware im-

plementation, therefore, all floating point operations were

replaced by fixed-point and some approximate techniques were

adopted to reduce implementation complexity and to improve

feature extraction speed. However, performed approximations

could decrease HOG accuracy. In Table I, we show the number

of True Positives (TP), True Negatives (TN), and the accuracy

of our hardware accelerator in the FPGA in comparison to

a HOG software-based implementation. We observe that the

approximations slightly decrease the performance of hardware

accelerator, but it is still acceptable for many pedestrian

detection applications.

TABLE I
ACCURACY COMPARISON BETWEEN SW AND HW IMPLEMENTATION

Method TP TN Accuracy

Standard HOG algorithm 94.8% 87.5% 91.1%

Approximation HOG 95.4% 83.3% 89.4%

Accuracy difference: 1.7%

In table II, we observe hardware resources consumed for

implementing our architecture. We present resource utilization

of our HOG feature extraction module and both reconfigurable

configurations, which includes all the necessary blocks to

process the video streaming. In [9] and [17] we can find some

interesting comparison tables of other FPGA architectures,

which let us see that our implementation module utilization

is competitive and in many cases it outperforms other imple-

mentations.

TABLE II
TOTAL ARCHITECTURE UTILIZATION (INCLUDES RECONFIGURABLE

MODULES AND VDMA)

Resources
C1

(1 module)
C2

(2 modules)
HOG module (individually)

LUT 21964 34665 13250

LUTRAM 918 1139 328

FLIP-FLOP 20237 29587 9783

BRAM 26 51 25

DSP 47 90 43

Our proposed decision algorithm is designed to work with

multiple modules HOG in parallel, but due to limited resources

of the FPGA, we only tested the implementation with two

HOG modules. Both configurations compute the histograms

and normalization, but the first configuration uses only one

module, and the second configuration uses two modules in

parallel for computing the same calculations. It means that in

the second configuration, two frames are processed in parallel,

therefore, the speed and resources increase.

TABLE III
USAGE STATISTICS OF RECONFIGURABLE RECONFIGURATION FOR

FEATURE EXTRACTION.

Method Power
Frames not

processed in time
Average

speed

Only configuration C1 2.176 W 86% 37 fps

Only configuration C2 2.485 W 0% 75 fps

Our method 2.296 W 0.5% 51 fps

In our implementation with two HOG modules in parallel

(C2), we achieve a minimum speed of 50 fps in the worst case

(when the ROI is the 100% of the image size) and our goal is to

keep that speed using the least amount of resources. However,

6



the ROI sizes vary between 97% and 28% of image size, and

on average, only 8% of the images have a ROI smaller than

50%, but thanks to the consideration of the accumulated time

in the decision algorithm, we achieve to select the smallest

configuration (C1) in the 52% of the frames, reducing the

energy consumption without reducing the minimum processing

speed of 50 fps.

Table III shows different approaches and their results in

power, the frames percentage that surpasses the objective time

assigned to every frame (to), and the average speed. The

different methods compared are:

• Only configuration C1: All the frames are processed using

the configuration with only one HOG module.

• Only configuration C2: All the frames are processed using

the configuration with two HOG module in parallel.

• Our method: We implement the proposed decision algo-

rithm explained in section V, to switch between config-

urations.

According to the table III, C1 does not achieve the desired

speed, and C2, the fastest configuration, process the video at

75 fps, which far surpass the target, but the power consumption

and resource utilization are the highest. On the contrary, our

method slightly surpasses the objective speed with 51 fps on

average, and almost 100% of the time, we can wait for an

output in the period to. Additionally, the power consumption

is close to the smallest and the area utilization is substantially

reduced, leaving space for other operations. As we can see, the

difference between C1 and C2 is 0.309 W, which corresponds

to a single HOG module, but in multi-module implementation,

this difference in energy increases considerably. Finally, we

highlight the fact that despite the power difference between the

C2 implementation and our method is only 7%, the amount

of saved energy is meaningful when we consider that these

kinds of system are designed to work hours or even whole

days without interruption.

VIII. CONCLUSIONS

In this article, we presented a dynamic approach to ef-

ficiently manage speed and resource utilization for people

detection task. We proposed a multi-module system capable of

being reconfigured according to the size of a ROI previously

computed. In this way, we can activate or deactivate a different

number of modules depending on the amount of data to

process. The algorithm for the reconfiguration control could

be applied to a different number of modules, depending on the

available resources. Also, it is flexible enough to be adapted to

different detection methods based on tiles, and different ways

of selecting the ROI. In our case, we perform the test with

two different configurations. We set a target speed of 50 fps,

which was met without problem. The system used the cheapest

configuration 52% of the time, even if the 91.5% of the frames

tested has a ROI bigger than 50% of the full frame size.

This could be traduced as an efficient resource management,

and it is the result of considering the accumulated time in

previous frames in the decision algorithm of the dynamic

reconfiguration. Additionally, our implementation of the HOG

algorithm in the hardware architecture is quite accurate, it only

has a reduction accuracy up to 1.7%.

Furthermore, we describe all the architecture design

methodology, including all the necessary elements to im-

plement the full system, like the peripherals, memories and

the VDMA module, which is a fundamental piece for many

embedded video applications.

REFERENCES

[1] M. Jacobsen, Z. Cai, and N. Vasconcelos, “FPGA implementation of
HOG based pedestrian detector,” in 2015 International SoC Design

Conference (ISOCC). IEEE, nov 2015, pp. 191–192.
[2] G. van der Wal, D. Zhang, I. Kandaswamy, J. Marakowitz, K. Kaighn,

J. Zhang, and S. Chai, “FPGA acceleration for feature based processing
applications,” in 2015 IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW). IEEE, jun 2015, pp. 42–47.
[3] S. G. S. B, Y.-h. E. Yang, and A. Panangadan, Applied Reconfigurable

Computing, ser. Lecture Notes in Computer Science, V. Bonato,
C. Bouganis, and M. Gorgon, Eds. Cham: Springer International
Publishing, 2016, vol. 9625.

[4] S. Lee, K. Kim, J.-Y. Kim, M. Kim, and H.-J. Yoo, “Familiarity based
unified visual attention model for fast and robust object recognition,”
Pattern Recognition, vol. 43, no. 3, pp. 1116–1128, mar 2010.

[5] A. Oliva, A. Torralba, M. Castelhano, and J. Henderson, “Top-down
control of visual attention in object detection,” in Proceedings 2003

International Conference on Image Processing (Cat. No.03CH37429),
vol. 1, no. x. IEEE, 2003, pp. I–253–6.

[6] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu,
“Global Contrast Based Salient Region Detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp.
569–582, mar 2015.

[7] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp.
886–893.

[8] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and
Y. Nakamura, “Hardware architecture for HOG feature extraction,”
in IIH-MSP 2009 - 2009 5th International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, no. 3. IEEE,
sep 2009, pp. 1330–1333.

[9] Pei-Yin Chen, Chien-Chuan Huang, Chih-Yuan Lien, and Yu-Hsien
Tsai, “An Efficient Hardware Implementation of HOG Feature
Extraction for Human Detection,” IEEE Transactions on Intelligent

Transportation Systems, vol. 15, no. 2, pp. 656–662, apr 2014.
[10] Chuan-Yen Chiang, Yen-Lin Chen, Kun-Cing Ke, and Shyan-Ming

Yuan, “Real-time pedestrian detection technique for embedded driver
assistance systems,” in 2015 IEEE International Conference on

Consumer Electronics (ICCE). IEEE, jan 2015, pp. 206–207.
[11] D. D. Gajski, in Principles of Digital Design, Upper Saddle River, NJ.

USA: Prentice Hall, 1997.
[12] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-Aware Saliency

Detection,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, no. 10, pp. 1915–1926, oct 2012.
[13] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual

Attention for Rapid Scene Analysis,” IEEE Transactions on Automatic

Control, vol. 20, no. 11, pp. 1254–1259, 1998.
[14] F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency filters:

Contrast based filtering for salient region detection,” in 2012 IEEE

Conference on Computer Vision and Pattern Recognition. IEEE, jun
2012, pp. 733–740.

[15] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited:
People detection and articulated pose estimation,” in 2009 IEEE

Conference on Computer Vision and Pattern Recognition, IEEE. IEEE,
jun 2009, pp. 1014–1021.

[16] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian
detection,” in 2009 IEEE Conference on Computer Vision and Pattern

Recognition, IEEE. IEEE, jun 2009, pp. 794–801.
[17] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and

M. Yoshimoto, “Architectural study of HOG feature extraction processor
for real-time object detection,” in IEEE Workshop on Signal Processing

Systems, SiPS: Design and Implementation, 2012.

7


