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a method for solving the rights arbitration problem (one of the historical problems of bankruptcy) for n claimants when the estate E is equal to the largest claim. However, when the greatest claim is for less than the estate, the question of what to do with the dierence between E and the largest claim is posed. Alcalde et al.'s (2005) Generalized ibn Ezra Value (GiEV), solves the problem in T iterations, of n steps. By using Monte-Carlo experiments, we show that: (i) T grows linearly with the number of claimants, which makes GiEV rapidly impracticable for real applications. (ii) The more E is close to the total claim d, the more T grows: T linearly grows when E exponentially approaches d by a factor 10. Moreover, we proved through theory that GiEV fails to provide a solution in a nite number of iterations for the trivial case E = d, whereas

it should obviously nd a solution in one iteration. So, even if GiEV is convergent, the sum of claims d appears as an asymptote: the number of iterations tends to innite when the estate E approaches the claims total d. We conclude that GiEV is inecient and usable only when: (1) the number of claimants is low, and (2) the estate E is largely lower than the total claims d.

Introduction

In an allocation problem, when the estate to be shared E is larger than the sum of claims d, each claimant is obviously served without any rationing. The allocation problem, the so-called bankruptcy problem, begins when the value of the estate amounts to less than the sum of the claims. When the estate to be shared E is just equal to the sum of the claims d, i.e., E = d, the whole estate can be allocated without any competition between the claimants, each one trivially receiving exactly what he claims. Ibn Ezra (ibn Ezra 1146;[START_REF] Rabinovitch | Probability and Statistical Inference in medieval Jewish Literature[END_REF][START_REF]A problem of rights arbitration from the Talmud[END_REF]Bergantiños and Méndez-Naya 2001;[START_REF] Chun | Convergence under replication of rules to adjudicate conicting claims[END_REF][START_REF] Alcalde | The minimal overlap rule revisited[END_REF] proposed a method for solving the bankruptcy problem that he called the rights arbitration problem 1 where the estate E is equal to the greatest claim of n claimants. As expounded by [START_REF]A problem of rights arbitration from the Talmud[END_REF], it can be solved in n steps and poses no diculty. However, when the maximum claim is for less than the available estate, the question is: what do we do with the dierence between the estate and the largest claim? Who receives it? A number of solutions are possible. The most popular is O' Neill's (1982) Minimal Overlap Rule. 2 Alcade et al. (2005) criticize this procedure because it mixes two principles of equity: Up to a certain amount of estate we should follow the recommendations by Ibn Ezra and, after it, we should divide divide the extra estate trying to equalize agents' loses (Alcalde et al. 2005, p. 15). 3 This is why they propose another attractive solution, the Generalized ibn Ezra Value, by imposing that the general principle in which the recommendations by this author [ibn Ezra] are inspired should remain xed (Alcalde et al. 2005, p. 15). This method is iterative, that is, we have T iterations (each one including the n steps of ibn Ezra -O'Neill). In this paper, we examine the computational and mathematical properties of the algorithm of the Generalized ibn Ezra Value to explain why the method poses problems. 1 It is one of the historical problems of bankruptcy, posed years ago.

2 See also [START_REF] Chun | Convergence under replication of rules to adjudicate conicting claims[END_REF] or [START_REF] Alcalde | The minimal overlap rule revisited[END_REF]. The Minimal Overlap Rule is also called Minimal Overlap Value. Moreover, to prevent either claimant from beating the other by claiming an innite amount, the claims are truncated (Bergantiños and Méndez-Naya 2001, p. 225;Moulin 2003, p. 3738, 262), that is, replaced by E when d i > E: the claims turn out to be di = min (d i , E) for any i. As explained by [START_REF]A problem of rights arbitration from the Talmud[END_REF], when d n = E, the procedure runs as follows. At step 1, each of the n claimants receives d1 n ; the procedure stops for claimant

1. At step 2, if d 1 = E, the procedure stops for good. Otherwise, if d 1 < E, each claimant receives d1 n + d2-d1
n-1 and the procedure stops for claimant 2 who departs. And so on. This continues until step n where d n = E. A generic claimant i receives (after positing d 0 ≡ 0):

x i = i j=1 d j -d j-1 n -j + 1 for any i = 1, ..., n (1) 
We observe that and we retrieve the preceding case.

x i = x i-1 + d i -d i-1 n -i + 1 for any i = 2, ..., n
Step j Claimant i 

1 2 3 4 ... n x i 1 d1 n ... ... d1 n 2 d1 n d2-d1 n-1 ... ... x 1 + d2-d1 n-1 3 d1 n d2-d1 n-1 d3-d2 n-2 ... ... x 2 + d3-d2 n-2 4 d1 n d2-d1 n-1 d3-d2 n-2 d4-d3 n-3 ... x 3 + d4-d3 n-3 ... ... ... ... ... ... ... ... n d1 n d2-d1 n-1 d3-d2 n-2 d4-d3 n-3 ... d n -d n-1 x n-1 + d n -d n-1 Total distributed during step j d 1 d 2 -d 1 d 3 -d 2 d 4 -d 3 ... d n -d n-
d t i -d t i-1 / (n -i + 1)
following Table 1. Obviously, at iteration 1, the demands are d

(1) i = d i for any i and claimant 1 receives d 1 /n. If there is anything left to distribute out of the estate, the same process is repeated in a new iteration except the demand of each claimant i is reduced by what has already been distributed to i: d Alcalde et al. (2005) provide the following example:

(t+1) i = d (t) i -x (t) i .
Example 1. Let N = {1, 2, 3}, d = (18,22,24), d = 64 and E = 41. At iteration 1, by applying ibn Ezra's procedure we obtain:

x (1) = 18 3 = 6, 6 + 22-18 2 = 8, 8 + 24-22 1 = 10 with x (1) = 24; thus, d (2) 1 = 18 -6 = 12, d (2) 2 = 28 -8 = 14, d (2) 
3 = 24 -10 = 14, d (2) = 40, and the residual estate is E (2) = 41 -24 = 17.

At iteration 2, by applying ibn Ezra's procedure again we obtain:

x (2) = 12 3 = 4, 4 + 14-12 2 = 5, 5 + 14-14 1 = 5 with x (2) = 14; thus, d (3) = (8, 9, 9), d (3) = 26, andE (3) = 3. At iteration 3, 1 is allocated to each claimant, again by ibn Ezra's procedure, which yields the solution x = (11, 14, 16).

Therefore Alcalde et al.'s (2005) method amounts to applying ibn Ezra's procedure successively on what remains to be shared. The residual estate is never increasing. Alcalde et al. (2005, pp. 37-38) prove by a property of nite convergence that the procedure converges:

Proposition 1. The Generalized ibn Ezra Value converges: ∃T ∈ N/E (T ) = 0 (Alcalde et al.'s (2005, p. 18).

Proof. The proof is in Alcalde et al. (2005, pp. 37-38).

The procedure satises axioms 1 and 2.

4

Convergence: Numerical approach Example 2. Consider the following example: d = (4, 7, 9, 10), d = 30 and E = 26. We apply Alcalde et al.'s (2005) Generalized ibn Ezra Value. Six iterations will be necessary. thus, d (7) = (0, 0, 0, 0), d 7 = 0, and E (7) = 1 47 439 -1 47 439 = 0. So, depending on the value of E, the claims being unchanged, we may explore the change in the number of iterations that are necessary for convergence. 5

At iteration 1, x (1) = 4 4 = 1, 1 + 7-4 3 = 2, 2 + 9-7 2 = 3, 3 + 4-3 1 = 4 with x (1) = 10; thus, d (2) = (3, 5, 6, 6), d (2) = 20, and E (2) = 26 -10 = 16. At iteration 2, x (2) = 3 4 , 3 4 + 5-3 3 = 1 5 12 , 1 5 12 + 6-5 2 = 1 11 12 , 1 11 12 + 6-6 1 = 1 11 12 with x (2) = 6; thus, d (3) = 2 1 4 , 3 7 12 , 4 1 12 , 4 1 12 , d (3) = 14, and E (3) = 16 -6 = 10. At iteration 3, x (3) = 9 16 , 1 1 144 , 1 37 144 , 1 37 144 with x (3) = 4 1 12 ; thus, d (4) =
The results are depicted in Figure 1. This gure shows that the method tends to converge in a growing number of iterations when E → d. We may even suspect that the number of iterations tends toward innity when E approaches d. Paradoxically, it is when we approach the point where allocating turns out to be trivial, i.e. E = d, that the ground gives way under our feet.6 This shows that the procedure may not be computationally ecient and convergence may be very slow as the procedure may require an innite number of steps when we approach the point where the division problem turns out to be trivial. GiEV 10(1000, 0, 0, 0, 0, 0, 0, 4, 7, 9, 10, 26)

launches the program for a maximum of 1000 iterations, the vector of claims d = (4, 7, 9, 10)8 and an estate of 26 (the data of example 2). The precision is 20 digits. The stop condition is double: either the residual estate E (t) is zero at iteration t, or, to avoid an innite loop, the residual estate turns out to be constant, i.e., E (t) = E (t-1) , on the understanding that E (t) cannot be growing by construction, i.e., E (t) ≤ E (t-1) . We have explored some extended examples ranging from four (the example 2) to 10 claimants. For each of the seven examples, Table 3 gives the number of iterations T that are necessary to solve the bankruptcy problem when E → d. The table should be read as follows: the example of six claimants and E = 61 -10 -2 = 60.99 requires 44 iterations to be solved. We deduce two ndings of Table 3: 1. More claimants (when we read Table 3 from the left to the right) requires more iterations to solve the problem. Considering a very large number of claimants, as the whole population of a country, would explode the number of iterations. This could be expected because the loop for n in procedure GiEV 10 becomes longer (i.e., we have more steps), n being multiplied by T .

2. When E grows to approach d (i.e., when we read Table 3 from 

Monte-Carlo experiments

We consider the gap between E and d, so that the gap is independent of the magnitude of E and d. To do this, we conduct the experiments such that the relative gap between d and E decreases exponentially in base 10, that is,

d -E d = 10 -g
i.e., E = (1 -10 -g ) d (we take g integer): the parameter g is the exponent of the relative gap between d and E: d-E d = 10 -g . We adapt the procedure GiEV 10 so that it turns out to be a subroutine GiEV r, which is called by a new procedure, GiEV M C the arguments of which are: N the maximum number of claimants, G the maximum value for g, and M C the number of times that we compute each solution of a Generalized ibn Ezra Value problem, with the claims being randomly chosen. program GiEV M C and the subroutine GiEV r are provided in appendix 6. In GiEV r we have an instruction E = ds (1 -gap) :, where ds is for the variable d, and gap is for 10 -g , as transmitted by the procedure GiEV M C. To produce the vector d, the demand of claimant i is deduced from the demand of claimant i-1 by adding a number randomly chosen between 0 and 10 as done by the instruction d 4. All told, 39 × 9 × 100 = 35100 ibn Ezra problems are solved by calling up the GiEV r subroutine each time. As this represents a lot of computing time, we do not go further. Obviously, the average number of iterations is fractional even if the numbers of iterations are themselves integers. These experiments conrm the intuition of the two ndings of the seven examples of Table 2 andTable 3 above. This is formalized in two dual empirical results 1 and 2 below.

Empirical result 1. In the Generalized ibn Ezra Value, when the gap between E and d is measured in relative terms, for a given value of g = lg 10

d-E d

, the number of iterations linearly grows with the number of claimants n.

To obtain this empirical result, we study the linear regressions

T = an -b (2)
The coecients that best t the data of Table 4 are given in Table 5. The correlation coecient is very good: R 2 ≥ .9999. With the help of Table 5 we are able to forecast the results for more claimants by performing a linear regression on the coecients a and b. We obtain a = 2.1164g -.739 with R 2 = .9995

(3) and b = .7249g -1.0024 with R 2 = .9809

For example, when g = 9, we may expect that a = 18.3036 from (3) and b = 5.5217 from (4), so that (2) turns out to be T = 18.3036n -5.5217

(5) which gives T = 1825 for n = 100. When g = 2 (i.e., a reasonable relative dierence between E and d of 1%), ( 5) indicates that we should have roughly 3.5 billion iterations for 1 billion claimants (billion is a realistic number for a real bankruptcy). Empirical result 2. In the Generalized ibn Ezra Value, when the gap between E and d is measured in relative terms, for a given value n of the number of claimants, the number of iterations linearly grows with respect to g = lg 10

g T = an -b R 2 a b 1 
d-E d

. This result means that the number of iterations linearly grows each time the gap is divided by 10, which is consistent with Figure 1.

To obtain this result, we study the linear regressions

T = ag -b (6) 
The coecients that best t the data of Table 4 are given in Table 6. The correlation coecient is very good: R 2 ≥ .9972. Again, with the help of Table 6 we are able to forecast the results for a larger number of claimants by performing a linear regression on the coecients a and b. We obtain a = 2.1164n -.7248 with R 2 = 1 (7) and b = .7386n -1.0367 with R 2 = .9983

For example, when n = 100, we may expect that a = 210.915 from ( 7) and b = 72.823 from (8), which implies that 6 turns out to be T = 210.915g -72.823

and we have T = 1825 for g = 9: we retrieve the result obtained for the projection of empirical result 1, by duality. 1) > 0 remains to be shared. Consequently, the residual estate is still equal to the residual demand. At iteration 2, x (2) = d

n T = ag -b R 2 a b 2 
(1) = E -x (1) = d -d n = d ( 
(2) n is allocated to the whole set of claimants, so the residual demand is d (2) = d (1) -d

(2)

n = E (1) -d (2) 
n > 0. The remainder to be shared is

E (2) = E (1) -x (2) = d (1) -d (2) n = d (2) > 0
The residual estate is again equal to the residual demand. Let us assume that the property is true at iteration t: the quantity x (t) = d (t) n is allocated to the whole set of claimants, the residual demand is

d (t) = d (t-1) -d (t) n > 0.
This leaves

E (t) = d (t) > 0 (9)
to be shared and we have

E (t) -d (t+1) n > 0 (10)
Now, we prove that the property is true at iteration t + 1. By the ibn Ezra procedure, the quantity x (t+1) = d (t+1) n is allocated to the whole set of claimants.

So the residual demand is d

(t+1) = d (t) -d (t+1) n = E (t) -d (t+1) n 
> 0 by ( 9) and ( 10). There remains to be shared

E (t+1) = E (t) -x (t+1) = d (t) -d (t+1) n = d (t+1) > 0 (11) 
The residual estate E (t+1) is still equal to the residual demand d (t+1 (t) asymptotically tending to zero.

Theorem 1 means that T is innite when E = d. It expounds a particularly annoying problem if we consider the case E = d: the procedure should yield the exact solution because the bankruptcy problem turns out to be trivial, and, as the algorithm fails to reach the solution in a nite number of iterations when E = d following Theorem 1, there is a clear aw in Alcalde et al.'s (2005) Generalized ibn Ezra Value.

Remark. In mathematical terms, the function E ∈ R + → T d (E) ∈ N is not dened when E = d. d is an asymptote and the function T d (E) tends to innity when E tends to its asymptote d. 9 9 To take a comparison, the function y = 1 1-x is not dened for x = 1 and the function tends to innity when x → 1.

Conclusion

We have n claimants who want to share out an estate. The total of their claims d is larger than the estate E (otherwise, we have no problem of apportionment). When the maximum claim d n (that of the n th claimant) is equal to the estateknowing that the claims that exceed the available estate are truncated, [START_REF]A problem of rights arbitration from the Talmud[END_REF] explains clearly how the solution to ibn Ezra's problem can be easily found in n steps. However, when the greatest claim is for less than the estate, the question of what to do with the dierence E -d n is posed. An attractive answer is that proposed by [START_REF] Alcalde | Bankruptcy games and the Ibn Ezra's proposal[END_REF]: the Generalized ibn Ezra Value, which solves the problem in T iterations, of n steps; this algorithm is convergent (Alcalde et al. (2005, p. 18). However, this algorithm fails on two points:

• First, we have shown by numerical experiments that the number of iterations grows linearly with respect to the number of claimants n, which makes the Generalized ibn Ezra Value impracticable when the number of claimants is large, which is the case in most real applications (empirical result 1).

• Secondly, again by numerical experiments, we shown that the number of iterations linearly grows when the estate E tends exponentially to the total claims d: if we dene by g the exponent of the relative gap between d and E (such that d-E d = 10 -g , i.e., the percentage d-E d varies by a magnitude of 10 each time), the number of iterations grows linearly with respect to

g when E approaches to d (empirical result 2). Moreover, we have proved through theory by a fundamental theorem that the Generalized ibn Ezra Value algorithm fails to give a solution in a nite number of iterations in the trivial case E = d (theorem 1), whereas it should obviously nd a solution in one iteration. Overall, if we combine these two last results, even if the Generalized ibn Ezra Value is convergent, the sum of claims d appears as an asymptote that can only be reached to the price of a growing number of iterations, that tends to innite when the estate E approaches the claims total d.

We conclude that the Generalized ibn Ezra Value algorithm is inecient and usable only when: (i) the number of claimants is low, and (ii) the estate E is largely lower than the total claims d. This singularly reduces its interest.

For future researches, it could be interesting to examine if it is the case for other methods, such that the O' Neil's (1982) Minimal Overlap Rule and Bergantiños and Méndez-Naya's (2001) Extended Ibn Ezra Rule, by examining their convergence properties in a similar manner. 10 This is another story.

10 Beyond the replication analyses conducted by [START_REF] Chun | Convergence under replication of rules to adjudicate conicting claims[END_REF] on the Minimal Overlap Rule.
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  Ibn Ezra's problem in formalized terms A bankruptcy problem is dened as follows. Consider a nite set N = {1, ..., n} of claimants or creditors (with |N | = n), a vector d ∈ R n of claims ordered in increasing order, i.e., d 1 ≤ d 2 ≤ ... ≤ d n ; we denote d ≡ n i=1 d i and consider an estate to be distributed E ∈ R + . The resource is scarce: E ≤ d. The solution is the payo vector x ∈ R n . By denoting x ≡ n i=1 x i , the solution is such that the following axioms are fullled: 4 1. Axiom 1. 0 ≤ x i ≤ d i for any i ∈ N : no one can receive more than he claims.

2.

  Axiom 2. x = E. We suppose that d ≥ E, where d ≡ n i=1 d i , that is, the problem is a rationing problem. For E > d, the problem is trivial: it is no longer a bankruptcy game because each claimant receives what he/she claims. Remark. For E = d, any allocation problems turn out to be trivial: they turn into a simple division, with each claimant receiving exactly what he claims, that is, x i = d i for any i because each claimant can be served exactly without any competition among claimants.

  This questions the convergence of the Generalized ibn Ezra Value as stated by proposition 1. However, this intuition should be proved. This is why in what follows we illustrate it by an extended numerical example, then by an extensive numerical analysis based on Monte-Carlo experiments, and nally by a formal demonstration.

Figure 1 :

 1 Figure 1: Alcalde et al.'s (2005) generalization: number of iterations to reach convergence, depending on E with the data of Example 2 d = (4, 7, 9, 10), and d = 30).

  et al.'s example For the extended example and the Monte-Carlo experiments, we have written a program in Maple programming language. 7 It is launched by calling the procedure GiEV 10 shown in appendix 6. For example,

  the top to the bottom) we need more iterations. This result was somewhat expected because the two rst columns correspond to what is depicted by Figure 1The seven examples with a growing number of claimants: Number of iterations T depending on the estate E However, such examples may be considered as particular and arbitrary. This is why we now conduct some Monte-Carlo-like experiments to conrm or inrm the intuition of the seven examples of Table2.

  [i] := d [i -1] + r () :. Each problem converges in T iterations, a number transmitted by the subroutine GiEV r to the program GiEV M C (T is set global by the instruction global T :). The subroutine GiEV r is repeated M C times and we calculate the average number of iterations necessary to reach convergence. For example, GiEV M C(40, 9, 100) computes the average number of iterations that are necessary to converge for 100 experiments, conducted for a number of claimants ranging from two to 40 and for g = 1 ⇒ d-E d = 10% up to g = 9 ⇒ d-E d = 10 -9 . The results of GiEV M C(40, 9, 100) are given in Table

  Table 4: Monte-Carlo experiments: Number of iterations T depending on g such that d-E d= 10 -g and on the number of claimants n, for g = {1...9} and n = {2...40} claimants.

  

  

  The truncated claims are ordered such that d1 ≤ d2 ≤ ... ≤ dn with dn ≤ E. Obviously, E ≤ d. In what follows, we omit the tilde to alleviate the notations.

  Table1shows that the total distributed at the end of any step i is equal to the total of the previous step i -1 plus what is distributed at step i. Overall, only d n is distributed in all steps. This is not a problem here as d n = E and the whole estate is distributed. When d n > E, d n is truncated and replaced by E

Table 1 :

 1 1 Ibn Ezra procedure (case where d n = E)

		Total						
	distributed in all steps	d 1	d 2	d 3	d 4	...	d n	d n
		up to j						
		The diculty arises when the greatest claim is smaller than the estate (Chun
	and Thomson 2005; Alcalde et al. 2008). The problem is to decide how we
	allocate the unallocated surplus E -d n . A greatest claim smaller than the
	estate, i.e., d n < E, should be a possibility, even if it is ignored by ibn Ezra in
	the historical rights arbitration problem.			
	3	Alcalde et al.'s Generalized ibn Ezra Value
	When d n < E, Alcalde et al.'s (2005) Generalized ibn Ezra Value is based on
	the following principle: at each iteration t, the ibn Ezra procedure is applied,
	that is, each claimant i receives what claimant i -1 has already received, plus

Table 2 :

 2 Table 2 indicates the claims of each claimant (in row) for each example. For example, column 6 corresponds to an example where d =(4, 7, 9, 10, 15, 16). The seven examples with a growing number of claimants: Claims

				vectord depending on the number of claimants	
	Claimant	1 2 3 4 5 6 7 8 9 10	4 4 7 9 10	5 4 7 9 10 15	6 4 7 9 10 15 16	7 4 7 9 10 15 16 21	8 4 7 9 10 15 16 21 29	9 4 7 9 10 15 16 21 29 30	10 4 7 9 10 15 16 21 29 30 34
	Total claim	30	45	61	82	111	141	175

Table 5 :

 5 Monte-Carlo experiments: T = ag -b depending on n

		1.603	.0371	.9999
	2	3.5071	.6518	.9999
	3	5.5262	1.0797	.9999
	4	7.5914	1.5307	.9999
	5	9.7206	2.442	.9999
	6	11.888	3.2273	.9999
	7	14.039	3.7605	1
	8	16.252	4.9372	1
	9	18.46	5.9317	1

Table 6 :

 6 Monte-Carlo experiments: coecients a and b of T = ag -b depending on n demand is d (1) = d -d n > 0 and a residual estate of E

		2.9705	.1414	.9972
	3	5.3558	.7503	.9886
	4	7.5948	1.664	.9995
	5	9.8415	2.7686	.9994
	6	11.961	3.3939	.9997
	7	14.129	4.0636	.9997
	8	16.273	4.8344	.9997
	9	18.528	6.1672	.9993
	10	20.535	6.7758	.9995
	11	22.701	7.4872	.9996
	12	24.777	7.8172	.9996
	13	26.859	8.6194	.9998
	14	28.958	9.4158	.9997
	15	31.128	10.101	.9996
	16	33.294	11.161	.9996
	17	35.321	11.763	.9996
	18	37.468	12.484	.9995
	19	39.478	12.932	.9997
	20	41.687	13.692	.9996
	21	43.685	14.042	.9997
	22	46.002	14.042	.9995
	23	47.903	15.734	.9997
	24	50.118	16.759	.9996
	25	52.296	17.765	.9995
	26	54.34	18.359	.9995
	27	56.379	18.582	.9997
	28	58.586	19.776	.9996
	29	60.587	20.465	.9995
	30	62.666	20.799	.9996
	31	64.908	22.197	.9995
	32	67.095	22.635	.9996
	33	68.976	22.974	.9997
	34	71.2	24.002	.9996
	35	73.138	24.143	.9996
	36	75.52	26.065	.9995
	37	77.64	26.547	.9996
	38	79.572	27.079	.9996
	39	81.766	28.144	.9995
	40	83.813	28.335	.9995

This second rule is the so-called Constrained Equal Loss Rule.

For more about the axiomatic approach to bankruptcy problems, see Peyton[START_REF] Young | On dividing an amount to individual claims or liabilities[END_REF] or[START_REF] Thomson | Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey[END_REF].

Obviously, when E = dn = 10, we have ibn Ezra's original case: the method converges in one iteration.

When E = d any allocation problems turn out to be trivial: they turn into a simple division, with each claimant receiving exactly what he claims, that is, x i = d i for any i because each claimant can be served exactly without any competition among claimants.

Exactly, Maple 18.02. Maple is a popular mathematical software scientic computing software.

The procedure is able to handle up to 10 claimants. For four claimants, we set the rst six claims to zero.
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Convergence when E tends to d: Theoretical approach A rst intuition about the diculties of convergence of the algorithm of Alcalde et al.'s (2005) is simple. Following Table 1, ibn Ezra's procedure allocates at each iteration t only d (t) n to the total. As the Generalized ibn Ezra Value applies ibn Ezra's procedure at each iteration, it allocates a relatively minor part of the estate each time, which leads to a tardy algorithm. We will demonstrate this rigorously now. Remember that, in mathematical wording, the algorithm converges at iteration t if the residual estate E (t+1) is equal to zero. We begin by a simple example where E = d.

Example 3. We return to example 2 ( d = (4, 7, 9, 10), d = 30) but we posit

thus, d (4) = 1 11 16 , 2 49 85 , 2 81 98 , 2 81 9 , d (4) = 9 11 12 , and E (4) = 14 -4 1 12 = 9 11 12 and again d (4) = E (4) .

And so on to innity, while the result should be immediate: the trivial allocation is obviously x = (4, 7, 9, 10) with x = 30.

Lemma 1. In the Generalized ibn Ezra Value, any iteration t for which E (t) = d (t) does not reach the solution (i.e., x (t) = d (t) , that is, E (t+1) = 0).

Proof. Consider an iteration t for which E (t) = d (t) . By ibn Ezra principle,

n > 0 to be distributed.

Remark. Obviously, when E < d, there is an iteration t = T for which we have t) , which implies E (T +1) = 0: the algorithm converges (in six iterations in example 2), but it does so slowly as expounded in section 4.

Lemma 2. In the Generalized ibn Ezra Value, when E = d, it holds that E (t) = d (t) for every iterations.

When E = d, as E (t) = d (t) > 0 for any t, the situation of iteration 1 is perpetuated indenitely.

Proof. We will prove Lemma 2 by recurrence. We have by hypothesis