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Abstract

Ibn Ezra (ibn Ezra 1146; Rabinovitch 1973; O'Neill 1982) proposed a
method for solving the �rights arbitration problem� (one of the historical
problems of �bankruptcy�) for n claimants when the estate E is equal to
the largest claim. However, when the greatest claim is for less than the
estate, the question of what to do with the di�erence between E and the
largest claim is posed. Alcalde et al.'s (2005) Generalized ibn Ezra Value
(GiEV), solves the problem in T iterations, of n steps.

By using Monte-Carlo experiments, we show that: (i) T grows linearly
with the number of claimants, which makes GiEV rapidly impracticable
for real applications. (ii) The more E is close to the total claim d, the more
T grows: T linearly grows when E exponentially approaches d by a factor
10. Moreover, we proved through theory that GiEV fails to provide a
solution in a �nite number of iterations for the trivial case E = d, whereas
it should obviously �nd a solution in one iteration. So, even if GiEV is
convergent, the sum of claims d appears as an asymptote: the number of
iterations tends to in�nite when the estate E approaches the claims total
d. We conclude that GiEV is ine�cient and usable only when: (1) the
number of claimants is low, and (2) the estate E is largely lower than the
total claims d.

JEL classi�cation. D31, D63, D71, B1, B4

Keywords. Game theory; ibn Ezra; bankruptcy; rights arbitration;
cooperative game; convergence; Monte-Carlo experiments.

Running head. Convergence of the Generalized ibn Ezra Value.
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1 Introduction

In an allocation problem, when the estate to be shared E is larger than the
sum of claims d, each claimant is obviously served without any rationing. The
allocation problem, the so-called �bankruptcy problem�, begins when the value
of the estate amounts to less than the sum of the claims. When the estate to be
shared E is just equal to the sum of the claims d, i.e., E = d, the whole estate can
be allocated without any competition between the claimants, each one trivially
receiving exactly what he claims. Ibn Ezra (ibn Ezra 1146; Rabinovitch 1973;
O'Neill 1982; Bergantiños and Méndez-Naya 2001; Chun and Thomson 2005;
Alcalde et al. 2008) proposed a method for solving the bankruptcy problem
that he called the rights arbitration problem1 where the estate E is equal to
the greatest claim of n claimants. As expounded by O'Neill (1982), it can
be solved in n steps and poses no di�culty. However, when the maximum
claim is for less than the available estate, the question is: what do we do with
the di�erence between the estate and the largest claim? Who receives it? A
number of solutions are possible. The most popular is O'Neill's (1982) Minimal
Overlap Rule.2 Alcade et al. (2005) criticize this procedure because it mixes
two principles of equity: �Up to a certain amount of estate we should follow the
recommendations by Ibn Ezra and, after it, we should divide divide the extra
estate trying to equalize agents' loses� (Alcalde et al. 2005, p. 15).3 This is
why they propose another attractive solution, the Generalized ibn Ezra Value,
by imposing �that the general principle in which the recommendations by this
author [ibn Ezra] are inspired should remain �xed� (Alcalde et al. 2005, p. 15).
This method is iterative, that is, we have T iterations (each one including the n
steps of ibn Ezra - O'Neill). In this paper, we examine the computational and
mathematical properties of the algorithm of the Generalized ibn Ezra Value to
explain why the method poses problems.

2 Ibn Ezra's problem in formalized terms

A bankruptcy problem is de�ned as follows. Consider a �nite set N = {1, ..., n}
of claimants or creditors (with |N | = n), a vector d ∈ Rn of claims ordered in
increasing order, i.e., d1 ≤ d2 ≤ ... ≤ dn; we denote d ≡

∑n
i=1 di and consider an

estate to be distributed E ∈ R+. The resource is scarce: E ≤ d. The solution
is the payo� vector x ∈ Rn. By denoting x ≡

∑n
i=1 xi, the solution is such that

the following axioms are ful�lled:4

1. Axiom 1. 0 ≤ xi ≤ di for any i ∈ N : no one can receive more than he
claims.

1It is one of the historical problems of �bankruptcy�, posed years ago.
2See also Chun and Thomson (2005) or Alcalde et al. (2008). The Minimal Overlap Rule

is also called Minimal Overlap Value.
3This second rule is the so-called Constrained Equal Loss Rule.
4For more about the axiomatic approach to bankruptcy problems, see Peyton Young (1987)

or Thomson (2003).
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2. Axiom 2. x = E.

We suppose that d ≥ E, where d ≡
∑n

i=1 di, that is, the problem is a �rationing�
problem. For E > d, the problem is trivial: it is no longer a bankruptcy game
because each claimant receives what he/she claims.

Remark. For E = d, any allocation problems turn out to be trivial: they turn
into a simple division, with each claimant receiving exactly what he claims, that
is, xi = di for any i because each claimant can be served exactly without any
competition among claimants.

Moreover, to prevent either claimant from beating the other by claiming an
in�nite amount, the claims are truncated (Bergantiños and Méndez-Naya 2001,
p. 225; Moulin 2003, p. 37�38, 262), that is, replaced by E when di > E:
the claims turn out to be d̃i = min (di, E) for any i. The truncated claims are
ordered such that d̃1 ≤ d̃2 ≤ ... ≤ d̃n with d̃n ≤ E. Obviously, E ≤ d̃. In what
follows, we omit the tilde to alleviate the notations.

As explained by O'Neill (1982), when dn = E, the procedure runs as follows.
At step 1, each of the n claimants receives d1

n ; the procedure stops for claimant
1. At step 2, if d1 = E, the procedure stops for good. Otherwise, if d1 < E,
each claimant receives d1

n + d2−d1

n−1 and the procedure stops for claimant 2 who
departs. And so on. This continues until step n where dn = E. A generic
claimant i receives (after positing d0 ≡ 0):

xi =

i∑
j=1

dj − dj−1

n− j + 1
for any i = 1, ..., n (1)

We observe that

xi = xi−1 +
di − di−1

n− i+ 1
for any i = 2, ..., n

Table 1 shows that the total distributed at the end of any step i is equal to the
total of the previous step i− 1 plus what is distributed at step i. Overall, only
dn is distributed in all steps. This is not a problem here as dn = E and the
whole estate is distributed. When dn > E, dn is truncated and replaced by E
and we retrieve the preceding case.
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Step j
Claimant i 1 2 3 4 ... n xi

1 d1

n ... ... d1

n

2 d1

n
d2−d1

n−1 ... ... x1 +
d2−d1

n−1

3 d1

n
d2−d1

n−1
d3−d2

n−2 ... ... x2 +
d3−d2

n−2

4 d1

n
d2−d1

n−1
d3−d2

n−2
d4−d3

n−3
... x3 +

d4−d3

n−3

... ... ... ... ... ... ... ...

n d1

n
d2−d1

n−1
d3−d2

n−2
d4−d3

n−3
... dn − dn−1

xn−1 +
dn − dn−1

Total
distributed
during step

j

d1 d2 − d1 d3 − d2 d4 − d3 ... dn − dn−1

Total
distributed
in all steps
up to j

d1 d2 d3 d4 ... dn dn

Table 1: Ibn Ezra procedure (case where dn = E)

The di�culty arises when the greatest claim is smaller than the estate (Chun
and Thomson 2005; Alcalde et al. 2008). The problem is to decide how we
allocate the unallocated surplus E − dn. A greatest claim smaller than the
estate, i.e., dn < E, should be a possibility, even if it is ignored by ibn Ezra in
the historical rights arbitration problem.

3 Alcalde et al.'s Generalized ibn Ezra Value

When dn < E, Alcalde et al.'s (2005) Generalized ibn Ezra Value is based on
the following principle: at each iteration t, the ibn Ezra procedure is applied,
that is, each claimant i receives what claimant i− 1 has already received, plus(

dti − dti−1

)
/ (n− i+ 1)

following Table 1. Obviously, at iteration 1, the demands are d
(1)
i = di for any

i and claimant 1 receives d1/n. If there is anything left to distribute out of the
estate, the same process is repeated in a new iteration except the demand of

each claimant i is reduced by what has already been distributed to i: d
(t+1)
i =

d
(t)
i − x

(t)
i . Alcalde et al. (2005) provide the following example:

Example 1. Let N = {1, 2, 3}, d = (18, 22, 24), d = 64 and E = 41. At itera-
tion 1, by applying ibn Ezra's procedure we obtain:

x(1) =
(
18
3 = 6, 6 + 22−18

2 = 8, 8 + 24−22
1 = 10

)
with x(1) = 24; thus, d

(2)
1 =

18− 6 = 12, d
(2)
2 = 28− 8 = 14, d

(2)
3 = 24− 10 = 14, d(2) = 40, and the residual
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estate is E(2) = 41− 24 = 17.
At iteration 2, by applying ibn Ezra's procedure again we obtain:
x(2) =

(
12
3 = 4, 4 + 14−12

2 = 5, 5 + 14−14
1 = 5

)
with x(2) = 14; thus, d(3) =

(8, 9, 9), d(3) = 26, and E(3) = 3.
At iteration 3, 1 is allocated to each claimant, again by ibn Ezra's procedure,
which yields the solution x = (11, 14, 16).

Therefore Alcalde et al.'s (2005) method amounts to applying ibn Ezra's
procedure successively on what remains to be shared. The residual estate is
never increasing. Alcalde et al. (2005, pp. 37-38) prove by a property of �nite
convergence that the procedure converges:

Proposition 1. The Generalized ibn Ezra Value converges: ∃T ∈ N/E(T ) = 0
(Alcalde et al.'s (2005, p. 18).

Proof. The proof is in Alcalde et al. (2005, pp. 37-38).

The procedure satis�es axioms 1 and 2.

4 Convergence: Numerical approach

Alcalde et al.'s (2005) Generalized ibn Ezra Value is clearly attractive. However,
even if convergence of the procedure is guaranteed, it could be very slow com-

putationally as we allocate to the total only max
i

d
(t)
i at each iteration t because

the total distributed by ibn Ezra's procedure is
∑n

i=1 xi = dn when dn < E, as
seen before.

Example 2. Consider the following example: d = (4, 7, 9, 10), d = 30 and
E = 26. We apply Alcalde et al.'s (2005) Generalized ibn Ezra Value. Six iter-
ations will be necessary.
At iteration 1, x(1) =

(
4
4 = 1, 1 + 7−4

3 = 2, 2 + 9−7
2 = 3, 3 + 4−3

1 = 4
)
with x(1) =

10; thus, d(2) = (3, 5, 6, 6), d(2) = 20, and E(2) = 26− 10 = 16.
At iteration 2, x(2) =

(
3
4 ,

3
4 + 5−3

3 = 1 5
12 , 1

5
12 + 6−5

2 = 1 11
12 , 1

11
12 + 6−6

1 = 1 11
12

)
with x(2) = 6; thus, d(3) =

(
2 1
4 , 3

7
12 , 4

1
12 , 4

1
12

)
, d(3) = 14, and E(3) = 16 − 6 =

10.
At iteration 3, x(3) =

(
9
16 , 1

1
144 , 1

37
144 , 1

37
144

)
with x(3) = 4 1

12 ;

thus, d(4) =
(
1 11
16 , 2

83
144 , 2

119
144 , 2

119
144

)
, d(4) = 9 11

12 , and E(4) = 10− 4 1
12 = 5 11

12 .

At iteration 4, x(4) =
(
27
64 ,

660
919 ,

500
593 ,

500
593

)
with x(4) = 2 119

144 ;

thus, d(5) =
(
1 17
64 , 1

684
797 , 1

703
715 , 1

703
715

)
, d(5) = 7 13

144 , and E(5) = 5 11
12 − 2 119

144 = 3 13
144 .

At iteration 5, x(5) =
(

81
256 ,

295
574 ,

411
713 ,

411
713

)
with x(5) = 1 703

715 ;

thus, d(6) =
(
243
256 , 1

304
883 , 1

24
59 , 1

24
59

)
, d(6) = 5 87

439 , and E(6) = 3 13
144 − 1 703

715 = 1 47
439 .

At iteration 6, x(6) =
(
14
59 ,

69
238 ,

69
238 ,

69
238

)
with x(6) = 1 47

439 ;

thus, d(7) = (0, 0, 0, 0), d7 = 0, and E(7) = 1 47
439 − 1 47

439 = 0.
The solution is x =

(
3104
361 , 5748

791
7529
599 , 8529

599

)
∼ (3.29, 5.95, 7.89, 8.89) with x = 26.
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So, depending on the value of E, the claims being unchanged, we may explore
the change in the number of iterations that are necessary for convergence. 5

The results are depicted in Figure 1. This �gure shows that the method tends
to converge in a growing number of iterations when E → d. We may even
suspect that the number of iterations tends toward in�nity when E approaches
d. Paradoxically, it is when we approach the point where allocating turns out
to be trivial, i.e. E = d, that �the ground gives way under our feet�.6 This
shows that the procedure may not be computationally e�cient and convergence
may be very slow as the procedure may require an in�nite number of steps
when we approach the point where the division problem turns out to be trivial.
This questions the convergence of the Generalized ibn Ezra Value as stated by
proposition 1. However, this intuition should be proved. This is why in what
follows we illustrate it by an extended numerical example, then by an extensive
numerical analysis based on Monte-Carlo experiments, and �nally by a formal
demonstration.

Figure 1: Alcalde et al.'s (2005) generalization: number of iterations to reach
convergence, depending on E with the data of Example 2 d = (4, 7, 9, 10), and
d = 30).

5Obviously, when E = dn = 10, we have ibn Ezra's original case: the method converges in
one iteration.

6When E = d any allocation problems turn out to be trivial: they turn into a simple
division, with each claimant receiving exactly what he claims, that is, xi = di for any i
because each claimant can be served exactly without any competition among claimants.
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4.1 Extension of Alcalde et al.'s example

For the extended example and the Monte-Carlo experiments, we have written
a program in Maple programming language.7 It is launched by calling the
procedure GiEV 10 shown in appendix 6. For example,

GiEV 10(1000, 0, 0, 0, 0, 0, 0, 4, 7, 9, 10, 26)

launches the program for a maximum of 1000 iterations, the vector of claims
d = (4, 7, 9, 10)8 and an estate of 26 (the data of example 2). The precision is
20 digits. The stop condition is double: either the residual estate E(t) is zero
at iteration t, or, to avoid an in�nite loop, the residual estate turns out to be
constant, i.e., E(t) = E(t−1), on the understanding that E(t) cannot be growing
by construction, i.e., E(t) ≤ E(t−1). We have explored some extended examples
ranging from four (the example 2) to 10 claimants. Table 2 indicates the claims
of each claimant (in row) for each example. For example, column 6 corresponds
to an example where d = (4, 7, 9, 10, 15, 16).

vectord depending on the number of claimants
4 5 6 7 8 9 10

Claimant

1 4 4 4 4 4 4 4
2 7 7 7 7 7 7 7
3 9 9 9 9 9 9 9
4 10 10 10 10 10 10 10
5 15 15 15 15 15 15
6 16 16 16 16 16
7 21 21 21 21
8 29 29 29
9 30 30
10 34

Total claim 30 45 61 82 111 141 175

Table 2: The seven examples with a growing number of claimants: Claims

For each of the seven examples, Table 3 gives the number of iterations T that
are necessary to solve the bankruptcy problem when E → d. The table should
be read as follows: the example of six claimants and E = 61 − 10−2 = 60.99
requires 44 iterations to be solved. We deduce two �ndings of Table 3:

1. More claimants (when we read Table 3 from the left to the right) requires
more iterations to solve the problem. Considering a very large number
of claimants, as the whole population of a country, would �explode� the
number of iterations. This could be expected because the loop for n in

7Exactly, Maple 18.02. Maple is a popular mathematical software scienti�c computing
software.

8The procedure is able to handle up to 10 claimants. For four claimants, we set the �rst
six claims to zero.
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procedure GiEV 10 becomes longer (i.e., we have more steps), n being
multiplied by T .

2. When E grows to approach d (i.e., when we read Table 3 from the top to
the bottom) we need more iterations. This result was somewhat expected
because the two �rst columns correspond to what is depicted by Figure 1.
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However, such examples may be considered as particular and arbitrary. This is
why we now conduct some Monte-Carlo-like experiments to con�rm or in�rm
the intuition of the seven examples of Table 2.

4.2 Monte-Carlo experiments

We consider the gap between E and d, so that the gap is independent of the
magnitude of E and d. To do this, we conduct the experiments such that the
relative gap between d and E decreases exponentially in base 10, that is,

d− E

d
= 10−g

i.e., E = (1− 10−g) d (we take g integer): the parameter g is the exponent
of the relative gap between d and E: d−E

d = 10−g. We adapt the procedure
GiEV 10 so that it turns out to be a subroutine GiEV r, which is called by a new
procedure, GiEVMC the arguments of which are: N the maximum number of
claimants, G the maximum value for g, and MC the number of times that we
compute each solution of a Generalized ibn Ezra Value problem, with the claims
being randomly chosen. The program GiEVMC and the subroutine GiEV r are
provided in appendix 6. In GiEV r we have an instruction �E = ds (1− gap) :�,
where ds is for the variable d, and gap is for 10−g, as transmitted by the proce-
dure GiEVMC. To produce the vector d, the demand of claimant i is deduced
from the demand of claimant i−1 by adding a number randomly chosen between
0 and 10 as done by the instruction �d [i] := d [i− 1]+r () :�. Each problem con-
verges in T iterations, a number transmitted by the subroutine GiEV r to the
program GiEVMC (T is set �global� by the instruction �global T :�). The
subroutine GiEV r is repeated MC times and we calculate the average number
of iterations necessary to reach convergence.

For example, GiEVMC(40, 9, 100) computes the average number of itera-
tions that are necessary to converge for 100 experiments, conducted for a num-
ber of claimants ranging from two to 40 and for g = 1 ⇒ d−E

d = 10% up to

g = 9 ⇒ d−E
d = 10−9. The results of GiEVMC(40, 9, 100) are given in Table

4. All told, 39 × 9 × 100 = 35100 ibn Ezra problems are solved by calling up
the GiEV r subroutine each time. As this represents a lot of computing time,
we do not go further. Obviously, the average number of iterations is fractional
even if the numbers of iterations are themselves integers.
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Table 4: Monte-Carlo experiments: Number of iterations T depending on g
such that d−E

d = 10−g and on the number of claimants n, for g = {1...9} and
n = {2...40} claimants.

These experiments con�rm the intuition of the two �ndings of the seven ex-
amples of Table 2 and Table 3 above. This is formalized in two dual empirical
results 1 and 2 below.

Empirical result 1. In the Generalized ibn Ezra Value, when the gap between
E and d is measured in relative terms, for a given value of g = lg10

(
d−E
d

)
, the

number of iterations linearly grows with the number of claimants n.
To obtain this empirical result, we study the linear regressions

T = an− b (2)

The coe�cients that best �t the data of Table 4 are given in Table 5. The
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correlation coe�cient is very good: R2 ≥ .9999. With the help of Table 5
we are able to forecast the results for more claimants by performing a linear
regression on the coe�cients a and b. We obtain

a = 2.1164g − .739 with R2 = .9995 (3)

and
b = .7249g − 1.0024 with R2 = .9809 (4)

For example, when g = 9, we may expect that a = 18.3036 from (3) and
b = 5.5217 from (4), so that (2) turns out to be

T = 18.3036n− 5.5217 (5)

which gives T = 1825 for n = 100. When g = 2 (i.e., a reasonable relative
di�erence between E and d of 1%), (5) indicates that we should have roughly
3.5 billion iterations for 1 billion claimants (billion is a realistic number for a
real bankruptcy).

g
T = an− b

R2

a b

1 1.603 .0371 .9999
2 3.5071 .6518 .9999
3 5.5262 1.0797 .9999
4 7.5914 1.5307 .9999
5 9.7206 2.442 .9999
6 11.888 3.2273 .9999
7 14.039 3.7605 1
8 16.252 4.9372 1
9 18.46 5.9317 1

Table 5: Monte-Carlo experiments: T = ag − b depending on n

Empirical result 2. In the Generalized ibn Ezra Value, when the gap be-
tween E and d is measured in relative terms, for a given value n of the num-
ber of claimants, the number of iterations linearly grows with respect to g =
lg10

(
d−E
d

)
. This result means that the number of iterations linearly grows each

time the gap is divided by 10, which is consistent with Figure 1.
To obtain this result, we study the linear regressions

T = ag − b (6)

The coe�cients that best �t the data of Table 4 are given in Table 6. The
correlation coe�cient is very good: R2 ≥ .9972. Again, with the help of Table 6

12



we are able to forecast the results for a larger number of claimants by performing
a linear regression on the coe�cients a and b. We obtain

a = 2.1164n− .7248 with R2 = 1 (7)

and
b = .7386n− 1.0367 with R2 = .9983 (8)

For example, when n = 100, we may expect that a = 210.915 from (7) and
b = 72.823 from (8), which implies that 6 turns out to be

T = 210.915g − 72.823

and we have T = 1825 for g = 9: we retrieve the result obtained for the
projection of empirical result 1, by duality.

13



n
T = ag − b

R2

a b

2 2.9705 .1414 .9972
3 5.3558 .7503 .9886
4 7.5948 1.664 .9995
5 9.8415 2.7686 .9994
6 11.961 3.3939 .9997
7 14.129 4.0636 .9997
8 16.273 4.8344 .9997
9 18.528 6.1672 .9993
10 20.535 6.7758 .9995
11 22.701 7.4872 .9996
12 24.777 7.8172 .9996
13 26.859 8.6194 .9998
14 28.958 9.4158 .9997
15 31.128 10.101 .9996
16 33.294 11.161 .9996
17 35.321 11.763 .9996
18 37.468 12.484 .9995
19 39.478 12.932 .9997
20 41.687 13.692 .9996
21 43.685 14.042 .9997
22 46.002 14.042 .9995
23 47.903 15.734 .9997
24 50.118 16.759 .9996
25 52.296 17.765 .9995
26 54.34 18.359 .9995
27 56.379 18.582 .9997
28 58.586 19.776 .9996
29 60.587 20.465 .9995
30 62.666 20.799 .9996
31 64.908 22.197 .9995
32 67.095 22.635 .9996
33 68.976 22.974 .9997
34 71.2 24.002 .9996
35 73.138 24.143 .9996
36 75.52 26.065 .9995
37 77.64 26.547 .9996
38 79.572 27.079 .9996
39 81.766 28.144 .9995
40 83.813 28.335 .9995

Table 6: Monte-Carlo experiments: coe�cients a and b of T = ag− b depending
on n
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5 Convergence when E tends to d: Theoretical

approach

A �rst intuition about the di�culties of convergence of the algorithm of Alcalde
et al.'s (2005) is simple. Following Table 1, ibn Ezra's procedure allocates at

each iteration t only d
(t)
n to the total. As the Generalized ibn Ezra Value applies

ibn Ezra's procedure at each iteration, it allocates a relatively minor part of
the estate each time, which leads to a tardy algorithm. We will demonstrate
this rigorously now. Remember that, in mathematical wording, the algorithm
converges at iteration t if the residual estate E(t+1) is equal to zero. We begin
by a simple example where E = d.

Example 3. We return to example 2 ( d = (4, 7, 9, 10), d = 30) but we posit
E = d, that is, E = 30.
At iteration 1, x(1) =

(
4
4 = 1, 1 + 7−4

3 = 2, 2 + 9−7
2 = 3, 3 + 4−3

1 = 4
)
with x(1) =

10; thus, d(2) = (3, 5, 6, 6), d(2) = 20, and E(2) = 30−10 = 20. We observe that
d(2) = E(2).
At iteration 2, x(2) =

(
3
4 ,

3
4 + 5−3

3 = 1 5
12 , 1

5
12 + 6−5

2 = 1 11
12 , 1

11
12 + 6−6

1 = 1 11
12

)
with x(2) = 6; thus, d(3) =

(
2 1
4 , 3

7
12 , 4

1
12 , 4

1
12

)
, d(3) = 14, and E3 = 20−6 = 14.

Again d(3) = E(3).
At iteration 3, x(3) =

(
9
16 , 1

1
99 , 1

19
74 , 1

19
74

)
with x(3) = 4 1

12 ;

thus, d(4) =
(
1 11
16 , 2

49
85 , 2

81
98 , 2

81
9

)
, d(4) = 9 11

12 , and E(4) = 14 − 4 1
12 = 9 11

12 and

again d(4) = E(4).
And so on to in�nity, while the result should be immediate: the trivial allocation
is obviously x = (4, 7, 9, 10) with x = 30.

Lemma 1. In the Generalized ibn Ezra Value, any iteration t for which E(t) =
d(t) does not reach the solution (i.e., x(t) = d(t), that is, E(t+1) = 0).

Proof. Consider an iteration t for which E(t) = d(t). By ibn Ezra principle,

only x(t) = d
(t)
n < d(t) is distributed at iteration t. There remains E(t+1) =

E(t) − d
(t)
n > 0 to be distributed.

Remark. Obviously, when E < d, there is an iteration t = T for which we

have x(T ) = d(T ), that is, d
(t)
n = d(t), which implies E(T+1) = 0: the algorithm

converges (in six iterations in example 2), but it does so slowly as expounded
in section 4.

Lemma 2. In the Generalized ibn Ezra Value, when E = d, it holds that E(t) =
d(t) for every iterations.

When E = d, as E(t) = d(t) > 0 for any t, the situation of iteration 1 is
perpetuated inde�nitely.

Proof. We will prove Lemma 2 by recurrence. We have by hypothesis n claimants
and E = d, which implies E − dn = d − dn > 0. At the �rst iteration the al-

gorithm delivers x(1) = d
(1)
n ≡ dn to the whole set of claimants; the residual
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demand is d(1) = d−dn > 0 and a residual estate of E(1) = E−x(1) = d−dn =
d(1) > 0 remains to be shared. Consequently, the residual estate is still equal to

the residual demand. At iteration 2, x(2) = d
(2)
n is allocated to the whole set of

claimants, so the residual demand is d(2) = d(1) − d
(2)
n = E(1) − d

(2)
n > 0. The

remainder to be shared is

E(2) = E(1) − x(2) = d(1) − d(2)n = d(2) > 0

The residual estate is again equal to the residual demand. Let us assume that

the property is true at iteration t: the quantity x(t) = d
(t)
n is allocated to the

whole set of claimants, the residual demand is d(t) = d(t−1) − d
(t)
n > 0. This

leaves
E(t) = d(t) > 0 (9)

to be shared and we have
E(t) − d(t+1)

n > 0 (10)

Now, we prove that the property is true at iteration t + 1. By the ibn Ezra

procedure, the quantity x(t+1) = d
(t+1)
n is allocated to the whole set of claimants.

So the residual demand is d(t+1) = d(t) − d
(t+1)
n = E(t) − d

(t+1)
n > 0 by (9) and

(10). There remains to be shared

E(t+1) = E(t) − x(t+1) = d(t) − d(t+1)
n = d(t+1) > 0 (11)

The residual estate E(t+1)is still equal to the residual demand d(t+1).

Lemma 3. In the Generalized ibn Ezra Value when E = d, the residual estate
E(t) is always decreasing for any t.

Proof. From (11), E(t) < E(t−1) for any t.

Theorem 1. In the Generalized ibn Ezra Value, when E = d, Alcalde et al.'s
(2005) algorithm does not converge in a �nite number of iterations.

Proof. Lemma 2 shows that all iterations are of the type E(t) = d(t) and Lemma
1 shows that these iterations do not reach the solution. Combining them, we
deduce that no iteration is able to reach the solution. As Lemma 3 indicates
that the residual estate is always decreasing, the algorithm runs in�nitely, E(t)

asymptotically tending to zero.

Theorem 1 means that T is in�nite when E = d. It expounds a particularly
annoying problem if we consider the case E = d: the procedure should yield the
exact solution because the bankruptcy problem turns out to be trivial, and, as
the algorithm fails to reach the solution in a �nite number of iterations when
E = d following Theorem 1, there is a clear �aw in Alcalde et al.'s (2005)
Generalized ibn Ezra Value.

Remark. In mathematical terms, the function E ∈ R+ → Td (E) ∈ N is not

de�ned when E = d. d is an asymptote and the function Td (E) tends to
in�nity when E tends to its asymptote d.9

9To take a comparison, the function y = 1
1−x

is not de�ned for x = 1 and the function
tends to in�nity when x → 1.
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6 Conclusion

We have n claimants who want to share out an estate. The total of their claims
d is larger than the estate E (otherwise, we have no problem of apportionment).
When the maximum claim dn (that of the nth claimant) is equal to the es-
tate�knowing that the claims that exceed the available estate are truncated�,
O'Neill (1982) explains clearly how the solution to ibn Ezra's problem can be
easily found in n steps. However, when the greatest claim is for less than the
estate, the question of what to do with the di�erence E − dn is posed. An
attractive answer is that proposed by Alcalde et al. (2005): the Generalized ibn
Ezra Value, which solves the problem in T iterations, of n steps; this algorithm
is convergent (Alcalde et al. (2005, p. 18). However, this algorithm fails on two
points:

• First, we have shown by numerical experiments that the number of iter-
ations grows linearly with respect to the number of claimants n, which
makes the Generalized ibn Ezra Value impracticable when the number of
claimants is large, which is the case in most real applications (empirical
result 1).

• Secondly, again by numerical experiments, we shown that the number of
iterations linearly grows when the estate E tends exponentially to the total
claims d: if we de�ne by g the exponent of the relative gap between d and
E (such that d−E

d = 10−g, i.e., the percentage d−E
d varies by a magnitude

of 10 each time), the number of iterations grows linearly with respect to
g when E approaches to d (empirical result 2). Moreover, we have proved
through theory by a fundamental theorem that the Generalized ibn Ezra
Value algorithm fails to give a solution in a �nite number of iterations
in the trivial case E = d (theorem 1), whereas it should obviously �nd
a solution in one iteration. Overall, if we combine these two last results,
even if the Generalized ibn Ezra Value is convergent, the sum of claims d
appears as an asymptote that can only be reached to the price of a growing
number of iterations, that tends to in�nite when the estate E approaches
the claims total d.

We conclude that the Generalized ibn Ezra Value algorithm is ine�cient and
usable only when: (i) the number of claimants is low, and (ii) the estate E is
largely lower than the total claims d. This singularly reduces its interest.

For future researches, it could be interesting to examine if it is the case
for other methods, such that the O'Neil's (1982) Minimal Overlap Rule and
Bergantiños and Méndez-Naya's (2001) Extended Ibn Ezra Rule, by examining
their convergence properties in a similar manner.10 This is another story.

10Beyond the replication analyses conducted by Chun and Thomson (2005) on the Minimal

Overlap Rule.
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Appendix

Procedure GiEV10

Figure 2: Procedure GiEV10
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Subroutine GiEVr, procedure GiEVMC

Figure 3: Subroutine GIEVr
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Figure 4: Procedure GIEVMC
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