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richard.macwan@u-bourgogne.fr, yannick.benezeth@u-bourgogne.fr,

alamin.mansouri@u-bourgogne.fr

1. Introduction

Photoelectric plethysmography or photoplethysmography (PPG) was first introduced in 1937 by
Hertzman where variations in the light absorption of human skin were measured by a photoelectric
cell [11] placed under a finger illuminated by a light source above it. Since then PPG has been
used widely because of its ease of usage, low cost and non-invasiveness. This non-invasiveness has,
however, been superseded by that of remote photoplethysmography, henceforth referred to as rPPG,
which aims at measuring the same parameters, but sans contact.

Verkrussysse et al. [28] demonstrated the extraction of remote PPG signals using videos from a
simple consumer level camera and that the strongest photoplethysmographic signal was manifested
in the G channel of the RGB temporal traces. RGB temporal traces are generated by frame wise
quantification, e.g. spatial averaging of skin pixels from the face, and concatenating them. Current
research focuses on extracting robust rPPG signals from simple web cameras for which Blind Source
Separation (BSS) using Independent Component Analysis (ICA) has been used in many different
works [4, 20, 22, 23].

ICA is a statistical technique for decomposing a multivariate signal into constituent signals
assuming that the input signals are independent [14]. The problem of rPPG measurements is posed
as a signal separation problem where the rhythmic cardiac pulse, appearing as variations in skin
color, is assumed to be linearly mixed into the temporal traces of color data from cameras. If
the time varying color traces for n channels are represented as x = (x1, x2, ..., xn)T , which is an
instantaneous linear mixture of the original m independent signals denoted as c = (c1, c2, ..., cm)T ,
then the process of mixing can be formulated as x = Ac, where the matrix An×m represents the
linear memoryless mixing of the channels. The goal of ICA, then, is to estimate the demixing matrix
Wm×n to recover all the independent components from the observed signal with no knowledge of
A and c. The recovered signal s = (s1, s2, ..., sm)T is given by s = Wx [18].

Owing to this linear formulation, ICA suffers from two unavoidable ambiguities [2, 7]. First, the
order of the independent components is indeterminable. A different permutation of the columns
of W will give the same independent components. Second, the exact amplitude and sign of the
independent components is also indeterminable. In spite of these limitations, ICA is being frequently
used for rPPG measurements.

In this work, we propose to reformulate the objective function of ICA to make it a better posed
problem by making two augmentations. First, we require only one component, i.e., the rPPG pulse
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from the mixture of the temporal traces. As a result, the problem of component separation can be
modified into that of component extraction. This requirement is not uncommon and is manifested
in various applications. For instance, the On-Off simulation scheme of fMRI experiments [18].

Second, we know that the blood volume pulse embedded in the RGB temporal traces is by
definition periodic (or at least pseudo-periodic). Consequently, we use the periodicity of the rPPG
signal as an a priori information to help extract the most periodic component. To this end, we
use autocorrelation as the measure of periodicity for guiding the ICA separation algorithm. To
compensate for the negative values, the mean of squared autocorrelation is used as the periodic-
ity measure. The rPPG pulse extraction is accomplished by using a multi-objective optimization
approach to maximize both mean squared autocorrelation and negentropy [13], a measure of non-
gaussianity fit for remote photoplethysmography. Our new method, Multi-objective optimization
using Autocorrelation and ICA (MAICA), was validated with our inhouse database UBFC-RPPG,
comprising of two datasets of 9 and 46 videos respectively, which is made publicly available along
with the ground truth. To the best of our knowledge, this is the first dataset specifically geared
towards rPPG analysis. Apart from the inhouse database, the algorithm was also validated against
the MMSE-HR database. To gain an intuition on the advantage of incorporating periodicity in-
formation into the ICA source separation algorithm, a quick analysis of one of the difficult videos,
where traditional ICA is not entirely successful, from our UBFC-RPPG database is presented here.
The analysis was carried over sequential temporal windows of 30s and the corresponding weighting
matrices that extract the rPPG signal of ICA in figure 1a are compared with those obtained by
MAICA in figure 1c. It can be seen from figure 1d that the weighting matrices that simultaneously
maximizes negentropy and periodicity indeed result in a heart rate closer to the ground truth heart
rate. Moreover, the SNR obtained for the measured signal was improved from −10.89 for ICA to
−3.39 for MAICA (also seen by the overall increase in SNR in table 1), proving the advantage of
incorporating the periodicity information in the algorithm.

An overview of the related work is presented in section 2 followed by the formulation of the
periodicity measure and multi-objective optimization in section 3 and the experiments and results
are presented in section 4.

2. Previous Work

As mentioned earlier, rPPG signals have been successfully extracted using simple web cameras
using the G channel which contains the relatively stronger plethysmographic signal [28]. One of the
first works that used ICA for rPPG measurements comprised of using RGB temporal traces from
a simple web camera to extract the cardiac pulse, albeit with limited success under the presence
of movement artifacts [22]. Usage of more color channels using a five band camera (RGBCO) with
ICA was also investigated by investigated proposing that the Cyan, Green, Orange (CGO) channels
were better suited for rPPG measurements [20]. ICA’s known caveat of the indeterminacy of the
order of the estimated components calls for a heuristic to choose the correct component. Where Poh
et al. [22] simply selected the second obtained component after applying ICA on RGB temporal
traces, McDuff et al. [20] chose the signal with the peak of greatest power of the normalized Fast
Fourier Transform (FFT) spectrum between 40 and 180 bpm.

In a somewhat related work, Zhang et al. [31] used ICA to simultaneously measure heart rate and
eye blink frequency, and consequently to separate the eye blink and cardiac signals. In another work,
Lewandowska et al. [16] used principal component analysis (PCA) and proper channel selection to
extract the rPPG pulse signal. Bousefsaf et al. take a different approach for motion tolerant rPPG
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(a) W eightsICA

(b) HRICA

(c) W eightsMAICA

(d) HRMAICA

Figure 1: Window-wise weight analysis showing ICA weights and HR in (a) and (b) vs MAICA weights and HR in
(c) and (d). For the exact same data, different values of w = |wR, wG, wB | corresponding to the RGB channels can
extract an accurate rPPG signal. Absolute values of the weights are shown for concise display.

signal estimation, using continuous wavelet transform to obtain instantaneous heart rate and heart
rate variability. In another work, Gunther et al. [10] quasi-periodic process model to extract the
heart rate signal with the help of a Toeplitz-structured matrix formulation and a markov process
to model the slowly fluctuating reflected light, and finally extract the heart rate signal using the
CVX [8], [9] optimization toolbox for Matlab.

De Haan et al. [4] introduced chrominance-based methods where two orthogonal chrominance
signals were built from the RGB traces in addition to using skin-tone standardization to compensate
for illumination variation of different skin colors. They further improved upon the chrominance
based methods to show that the different absorption spectra of arterial blood happen along a specific
vector in a normalized RGB space, termed as the Blood Volume Pulse vector [5]. Recently, they
introduced a mathematical model that incorporates the relevant optical and physiological properties
of skin reflection using which they proposed a new algorithm based on the Plane-Orthogonal-to-
Skin (POS) which is a plane orthogonal to the skin-tone in the temporally normalized RGB space,
suitable for rPPG pulse extraction [30].

Another class of methods focuses on smart ROI selection paradigms. Bobbia et al. used temporal
superpixels to extract candidate pulse signals which were then merged into a rPPG signal. Li
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et al. [17] used face tracking and Normalized Least Mean Square adaptive filtering methods to
compensate against motion artifacts. In a related work, Wang et al. [29] attempted to extract
the rPPG signal by constructing pixel based rPPG sensors to estimate a robust pulse signal using
motion compensated pixel-to-pixel pulse extraction based on optical flow vectors.

Many new rPPG measurement algorithms have been introduced recently. An overview of a
wide range of rPPG methods has been provided by Sun and Thakur [24] demonstrating the re-
search on rPPG and showing its ubiquity and widespread acceptance. In a similar work, McDuff
et al. provide a review on state of the art PPG imaging considering measurements other than pulse
rate under realistic conditions such as presence of motion artifacts [21]. Kranjec et al. also provide
a comparative study on heart rate (HR) and heart rate variability measurement between remote
PPG using RGB cameras and other methods such as capacitively coupled ECG and HR from speech
[15], highlighting their advantages, disadvantages and feasibility.

Incorporating a priori information to guide the optimization process is an interesting approach
in signal separation. Lu and Rajapakse [18] have used an existing reference signal to guide the
separation process by using the method of Lagrange multipliers where the distance between the
reference signal and the estimated signal is taken as the constraint to be minimized. Based on
this work, Tsouri et al. proposed a constrained ICA based approach, using a rectangular pulse as
a reference signal for rPPG measurements, [26] which to the best of our knowledge is the closest
contribution to ours.

Using a sufficiently accurate reference signal calls for one of two possible requirements. One
possibility is to compare the extracted rPPG signal to reference signals of different frequencies (as
done in [26]) which is computationally taxing and 30 times slower than traditional ICA. The other
possibility is to continously update the frequency of the reference signal during the optimization
process which highly reduces the probability of convergence. In rPPG measurements, a PPG signal
is such an example the synthesis of which depends critically on the required frequency, even more
so than on the actual shape of the signal.

3. Proposed Method

Quasi-periodicity is a ubiquitous property exhibited by various physiological signals such as elec-
trocardiographic, electromyographic, electroencephalographic and photoplethysmography signals.
However, this property has been unfairly ignored by most signal extraction problems, especially in
remote photoplethysmography measurement scenarios. This inherent property of biomedical signals
can be exploited by using a periodicity metric that can guide the component extraction process to
choose the most periodic component. Of course, this periodicity metric needs to be combined with
the ICA objective function in the case of traditional rPPG measurement, thereby converting the
BSS ICA problem to semi-Blind Source Extraction (BSE) problem, since we are not entirely blind
anymore with regards to the type of signal that needs to be extracted.

One possibility is to use autocorrelation as a constraint to nudge the algorithm towards selecting
components having periodicity higher than a given threshold. However, formulation of such a
constraint is critically dependent on the threshold which is quite complex to select, especially
in stochastic scenarios such as that of rPPG measurements. A better solution would be to use
autocorrelation as one of the objective function thereby maximizing autocorrelation along with
negentropy formulated as a multi-objective optimization problem. The use of autocorrelation as a
periodicity measure and formulation of the multi-objective optimization problem is presented next.

4



3.1. Autocorrelation as a periodicity measure
Autocorrelation is the correlation of a signal with itself at different lag times provided it is

sampled at a sufficiently high frequency. For a time series signal y = [y1, y2, . . . , yN ] of N elements,
its discrete autocorrelation rk at lags k ∈ [−(N − 1), · · · , N − 1] is given by

rk =
N−1∑
j=0

yj �
k

yj (1)

where k

yj is the jth element of the signal y lagged (or led if k < 0) by k units and padded with
zeroes to the left (or right if k < 0) and � is the element-wise multiplication operator. A periodic
signal typically has a higher correlation with itself compared to a non-periodic one which can be
quantified by the mean of the squared autocorrelation of the signal and consequently can be used as
a measure of the periodicity of a signal. Figure 2 depicts the high correlation of a periodic sinusoid
compared to that of a uniform random signal with the mean of the squared autocorrelation being
much higher than that of the random signal.

(a) y1 = sin(x) (b) y2 = randn(1, N)

(c) Autocorrelation of y1 (d) Autocorrelation of y2

Figure 2: Autocorrelation of a sinusoid vs a random signal

To aid the use of autocorrelation as a periodicity measure and simplify its computation, two
modifications need to be made. First, since the autocorrelation is symmetric, we only compute the
correlation for lags k ∈ [0, · · · , N − 1]. Second, since the correlation at lag 0 is always high, we set
the autocorrelation to 0 at lag k = 0. Thus, the autocorrelation is given by r = [r1, r2, · · · , rN−1]
comprising of N values given by equation 1 and r0 = 0. Keeping in mind that rk is a scalar,
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equation 1 can be rewritten in matrix notation as

rk = y[ ky]T = kyyT (2)

where ky is again the signal y lagged by k units and k ∈ [1, · · · , N − 1] . Furthermore, to simplify
the derivation of the autocorrelation, ky can be rewritten as yTk where Tk is a toeplitz-like matrix
that incorporates the lagging at lag k and padding with zeroes of the signal and is given by

Tk =



0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 · · · 0


=
[

0N−k,k IN−k

0k,k 0k,N−k

]
(3)

Tk is an N ×N matrix composed of the first N − k rows made up of (N − k)× k zeroes and an
identity matrix of size N − k, the rest of the elements being zero. Thus, rk becomes

rk = yTkyT (4)
making its differential with respect to y easier to calculate.

The optimization is implemented using a Newton-method like approach while constraining the
output to have unit variance with the help of the Lagrange multipliers method. This calls for the
calculation of the first and second derivatives of the autocorrelation with respect to the weighting
matrix w which, since they are not trivial, are detailed in the appendix.

3.2. Multi-objective Optimization using Autocorrelation and ICA
Multi-objective optimization problems are generally formed by relaxing the constraints in a

constrained optimization problem and interpreting them as additional objective functions. In this
section we describe the formulation of the rPPG extraction module using Multi-objective optimiza-
tion with Autocorrelation as a periodicity measure and ICA (MAICA).

Objective functions. Our two objective functions correspond to negentropy and autocorrelation
respectively of the output y = wT x where the ideal orthogonal row vector w ∈ R3, obtained after
optimization, extracts the desired component from the RGB temporal traces x.

Maximize J(y), R(y)
Subject to h(w) = 0

(5)

where R(y) = R(wT x), which is eventually a function of w, is the mean squared autocorrelation
given by

R(y) = E{r2} (6)
with r = [r1, r2, · · · , rN ] being the autocorrelation and rk is given by equation 2. J(y) is the generic
contrast function for ICA defined by [14] as H(ygauss)−H(y). H(.) is the differential entropy and
ygauss is a random variable with a variance equal to that of the output signal y. In practice, an
approximation of negentropy is used for ease of computation and flexibility given by

J(y) ≈ ρ[E{G(y)} − E{G(v)}]2 (7)
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where ρ is a positive constant, v is a Gaussian variable having zero mean and unit variance. G(.)
can be any non-quadratic function as suggested by [13]. A good general purpose function is given
by

G(y) = log cos(ay)
a

(8)

with 1 ≤ a ≤ 2. Finally, as suggested by [18] the constraint, h(w) = E{y2}− 1 = 0 was introduced
to make sure that objective functions J(y) and R(y) and the weighting vector w are bounded.

Linear Scalarization. A simple way to incorporate the a priori information in the optimization
problem is to scalarize the multi-objective optimization by forming a single-objective optimization
such that the solutions to the scalarized problem are the set of feasible solutions commonly known as
Pareto optimal solutions [6]. The linearly scalarized version of the multi-objective contrast function
then becomes

Maximize J(y) +R(y)
Subject to h(w) = 0

(9)

where
J(y) = J(y)− Jmin

Jmax − Jmin
= s1(J(y)− Jmin) (10)

and
R(y) = R(y)−Rmin

Rmax −Rmin
= s2(R(y)−Rmin) (11)

are the normalized versions of the respective objective functions in order to compensate for the
disparities in scale and s1 = 1

Jmax−Jmin
and s2 = 1

Rmax−Rmin
. Ideally, the boundary values of the

objective functions correspond to their global maximum and minimum values. However, to emulate
a live scenario as much as possible, all the processing was performed over a temporal window of 30
seconds. Using the actual boundary values in this case would not conform to the emulation.

Consequently, Jmin, Rmin, Jmax andRmax were calculated by using a sinusoidal signal emulating
an ideal blood volume pulse, ys = sin(t) where t corresponds to the time coordinates of the current
temporal window. This was done by taking the maximum values of the objective functions over the
frequency range of human heart rates, F ∈ [.7, 3] Hz. The minimum values were calculated in the
same manner for a uniform random signal yr for the temporal window t.

Jmax = max
F

J(ys), Rmax = max
F

R(ys) (12)

Jmin = min
F

J(yr), Rmin = min
F

R(yr) (13)

Lagrange multipliers and Multi-objective Optimization. Finally, the entire problem was expressed
as a Lagrange multiplier [1] formulation where a Newton-method like approach was used for op-
timization. The augmented Lagrangian method was used because of its wider applicability and
robustness against the equality constraints owing to the penalty term that punishes violations to
those constraints, making it more stable than the classical method of Lagrange multipliers. The
Augmented Lagrangian for equation 9 is given as

L = [J(y) +R(y)]− λh(w) + 1
2γ ‖h(w)‖2 (14)
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where λ is the lagrange multiplier for the constraint h(w), J(y) and R(y) are given by equations 10
and 11 respectively. ‖.‖2 denotes the Euclidean norm and the term 1

2γ ‖.‖
2 is the penalty term that

makes sure that the optimization problem is held at the condition of local convexity assumption:
∇2

wwL >0. To find the maximum of L in equation 14 a Newton-like learning method was used to
iteratively adapt w

wk+1 = wk − η(L
′′

wk
)−1L

′

wk
(15)

where k is the iteration index, η is the positive learning rate to avoid uncertainty in convergence
and L′wk

is the first derivative of L at step k w.r.t w given by

L
′

wk
= s1ρ̄E{xG

′

y(y)}+ s2E{R
′

w(w)} − λE{xy} (16)

where the sign of E{G(y)} − E{G(v)} gives the value of ρ̄ = ±ρ, G′y(y) and R
′

w(w) are the first
derivatives of G(y) and R(w) w.r.t y and w respectively. The Hessian L′′wk

in equation 15, is
calculated as

L
′′

wk
= s1ρ̄RxxE{G

′′

y (y)}+ s2E{R
′′

w(w)} − λRxx (17)
the inversion of which is not problematic because Rxx being the covariance matrix of the whitened
and centered signal x is an identity matrix. G

′′

y (y) and R
′′

w(w) are second order derivatives and
L′′wk

is of size 3×3. The first and second derivatives of R(w) are not trivial and are presented in the
appendix. The optimum multiplier λ∗ is obtained iteratively based on a gradient-ascent method
[18]:

λk+1 = λk + γh(wk) (18)

Following the above equations, the optimization procedure converges to the optimum point
defined by the doublet (w∗, λ∗) representing the tuned parameter and final weighting matrix w∗
which is then used to obtain the final rPPG signal.

3.3. System Framework
The workflow of the procedure as depicted in figure 3 is presented here. Temporal RGB traces,

x = [x1, x2, x3]T where each xm, m ∈ [1...3], corresponds to a temporal trace of size N of each chan-
nel and was generated by spatial averaging of the pixels (face-cropped or skin-segmented). To this
end, face detection and tracking was first performed using the Viola-Jones and the Kanade-Lucas-
Tomasi implementations provided by the computer vision toolbox of MATLAB. Corner detection
in the detected face was performed for tracking to crop the face based on facial landmarks. Skin
detection as formulated by Conaire et al. [3] was then performed to select the candidate pixels
which were then spatially averaged to obtain a triplet of RGB values per frame and concatenated
to obtain the RGB temporal traces.

These temporal RGB traces were then detrended using a smoothness priors approach, with
the regularization parameter λ set to 500, proposed by Karjalainen and Pasi [25] to remove low
frequency trends in the signal. Next, after normalization, two additional preprocessing steps are
generally recommended for ICA to simplify calculations. First, centering was performed so that
the obtained signal y in y = Wx is zero-mean. Next, whitening was performed to ensure that the
components were uncorrelated and their variances equal to unity. The traces were then passed to
the rPPG extraction module where the MAICA algorithm was used to extract the rPPG signal.

After the rPPG signal was obtained, the per window heart rate was calculated from the highest
peak of the FFT filtered within the acceptable range of heart rate F ∈ [.7, 3] Hz over a 30 second
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Figure 3: Flowchart of the proposed method

moving window using a step size of 0.5 second for our in-house datasets. Although, ICA is known
to work much better with signals of longer duration, as mentioned earlier, all the processing was
performed over a 30 second window, using the weighting matrix wk obtained at window k as an
initial estimate for calculation of wk+1 at the next window. This 30 second window size was chosen
as a trade-off between speed and availability of enough data for convergence. On the other hand,
a 15 second window was needed for the MMSE-HR dataset owing to the shorter length of many
constituent videos. The window-wise heart rate estimations were then smoothed using a Kalman
filter.

The Kalman filter helped to remove spurious outliers resulting from abrupt variations in illu-
mination and/or motion. The constant velocity motion model was used in the HR measurement
with the motion and measurement noise variances set to

[
1 1

]
to reflect a standard deviation of 1

BPM. These values were fixed for the analysis of all the videos in the three different datasets that
we used. They were chosen to represent a margin of 1 BPM in the motion and measurement noise
models and were verified by trial and error in their ability to discard spurious outliers. The next
section presents the experiments and results.

4. Experiments and Results

Two video databases, namely UBFC-RPPG and MMSE-HR were used to test the MAICA
method. The inhouse UBFC-RPPG database comprises of two datasets. The first, labeled as
SIMPLE, comprises of 9 videos (about 21k frames), where the subjects were requested to relax
and close their eyes. The second dataset comprises of 46 videos (about 94k frames), labeled as
REALISTIC, where the subjects were required to play a time sensitive mathematical game in order
to vary the heart rate and also simultaneously emulate the scenario of the typical activity of using
a computer. Both the datasets comprise of subjects with skin colors varying from dark to light
tones. All the videos were taken under ambient light with limited illumination variations. The
UBFC-RPPG database is made publicly available along with the ground truth data from the pulse
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Figure 4: Experimental Setup (left) and sample images from the SIMPLE and REALISTIC datasets from the
UBFC-RPPG database (top-right) and the MMSE-HR (bottom-right) database

oximeter for rPPG measurement analysis1.
The video frames were obtained with a custom C++ application using a Logitech C920 web

camera placed at a distance of about 1m from the subject with a resolution of 640x480 in 8-bit
uncompressed RGB format at 30 frames per second. A CMS50E transmissive pulse oximeter was
used to obtain the ground truth PPG data. The experimental setup with sample images from
UBFC-RPPG database are shown in figure 4 depicting the lighting conditions.

The MMSE-HR database was also used to test our method, the samples of which are equally
shown in figure 4. The dataset comprises of 97 usable videos (about 105k frames) of varying length,
at 25 frames per second of varied skin colors. Although, the main objective of the MMSE-HR
database was for emotion elicitation, it does provide the video data and HR ground truth data for
our validation. Also, MMSE-HR only provides the heart rate, and not the actual PPG waveform of
the ground truth as compared to our UBFC-RPPG dataset. Thus, when using the UBFC-RPPG
database, a more meaningful validation and comparison can be achieved since the same algorithm
can be used to extract the heart rate from both the PPG and the rPPG waveforms.

Figure 5 shows a typical rPPG signal from a simple video and its heart rate estimation, HRrP P G

vs HRP P G, the heart rate estimation of the ground truth signal using the Fast Fourier Transform
(FFT). The high correlation between the rPPG and PPG signal is clearly visible in the figure, and
so is the correlation between HRrP P G and HRP P G.

Figure 6 shows the correlation comparisons between ICA [22] and MAICA for the two databases
where HRP P G and HRrP P G are plotted against each other. The metrics PRECIS 2.5 and PRECIS
5 show the percentage of windows where δ = |HRrP P G −HRP P G| < 2.5 and 5 beats per minute
(bpm) respectively. MAE corresponds to the average mean absolute error between HRrP P G and
HRP P G in bpm calculated over all the windows for all videos. As the name suggests, the analysis
of the SIMPLE dataset, which can be thought of emulating a patient at rest, was not challenging
and both ICA and MAICA performed well. However, MAICA did result in fewer outliers than ICA.

The REALISTIC and the MMSE-HR datasets were understandably more challenging. However,
MAICA demonstrated a better correlation between HRP P G and HRrP P G. It is also evident that

1http://ilt.u-bourgogne.fr/benezeth/projects/UBFCRPPG
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Figure 5: Extracted rPPG signal for video 10 of the SIMPLE dataset of the UBFC-RPPG database.
HR sensor is HR from the finger sensor. HR rPPG filtered is HR rPPG after Kalman filtering

(a) ICA for dataset SIMPLE

(b) MAICA for dataset SIMPLE

(c) ICA for dataset REALISTIC

(d) MAICA for dataset REALISTIC

(e) ICA for dataset MMSE-HR

(f) MAICA for dataset MMSE-HR

Figure 6: Correlation Analysis for rPPG

11



UBFC-RPPG
MMSE-HR

SIMPLE REALISTIC
MAE SNR r MAE SNR r MAE r

MAICA 0.55 2.98 0.99 3.34 -0.26 0.89 3.91 0.86
ICA 0.82 2.73 0.98 6.16 -1.23 0.76 5.28 0.70
PCA 2.04 -1.43 0.97 9.65 -3.45 0.67 9.15 0.49
Green 9.86 -1.61 0.29 7.73 -2.78 0.68 10.65 0.47

CHROM 0.72 3.04 0.99 3.81 -0.93 0.87 5.59 0.83

POS 0.67 2.57 0.99 4.73 -1.60 0.80 5.77 0.82
G-R 0.67 1.97 0.99 9.79 -3.10 0.65 8.56 0.58

Table 1: Performance comparisons between the various methods using Mean Absolute Error (MAE), Signal-to-Noise
Ratio (SNR) and Pearson’s correlation coefficient (r)

the lesser number of outliers were a direct cause of better convergence towards the correct rPPG
signal. The MAICA method also provided stronger peaks in the FFT periodogram along with better
HR estimates. It also provides a better performance than the Self-Adaptive-Matrix Completion
method introduced in [27] whose MAE is 7.6 bpm as compared to our 5.2 bpm. However, this
comparison is not very clear since we do not use the same ROI selection method as them. We also
provide more rPPG data using our skin masks.

Table 1 shows the accuracy comparisons between ICA and MAICA and other state of the art
methods, viz., PCA [16], Green [28], CHROM [4], POS [30], and G-R [12]. The metrics used are
apart from MAE are signal-to-noise ratio (SNR) and Pearson’s correlation coefficient (r) between
heart rate calculated using the rPPG signal, HRrP P G and the heart rate calculated using the ground
truth PPG waveform, HRP P G. The windowed method is computationally more taxing, owing to
the smaller window length, but is more realistic. The SNR (dB) was calculated as the ratio of the
power of the main pulsatile component of the PPG to that of the background noise to accommodate
the wide dynamic range of the signals. However, it is to be noted that the MMSE-HR database does
not provide the ground truth waveforms, thereby obliging the use of the main pulsatile component
of the RPPG instead of the PPG for the SNR calculation. As a result, the SNR values for the
MMSE-HR database are not really relevant and are omitted in table 1. It is worth mentioning
here that although the MAICA is not faster than the ICA since one the autocorrelation objective
function has to be additionally calculated, its novelty lies in the combination of the periodicity
information with the notion of independence used by the ICA algorithm. Of course, optimizations
can be easily performed for calculating these objective functions which can improve the computation
times drastically. This combination can be also formulated as a Constrained ICA problem as has
been done in [19].

The analysis of the SIMPLE dataset, as the name suggests, was quite easy for almost all the
methods. However, MAICA did remove the few outliers that are present in the case of ICA. This
is reflected in the low MAE and high SNR values as shown in table 1. This can be attributed to
the fact that the subjects were generally relaxing, mostly with their eyes closed, which resulted in
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RPPG/REALISTIC Window-wise HRs from ICA vs MAICA
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Figure 7: ICA vs MAICA for certain videos from the UBFC-RPPG\REALISTIC and MMSE-HR datasets. The
FFT periodogram was used to perform the HR measurements over temporal windows of 30s and 15s respectively for
the two datasets owing to the shorter lengths of videos in the latter dataset.



minimal motion artifacts. On the other hand, the REALISTIC dataset was more challenging since
the subjects were actually working on the computer and were only requested to keep their hand
still for the PPG sensor. Similarly, the MMSE-HR database was challenging owing to it being an
emotion elicitation database. There were many instances where the subjects laughed out loud and
exhibited considerable movements. This resulted in the usual problems arising from movement of
the subjects. Consequently, the presence of outliers was more pronounced for both the REALISTIC
dataset and the MMSE-HR database, which MAICA was able to reduce. This can be seen in table
1, where the pearson correlation coefficient was also closer to unity which is also evident from figure
6 where the fitting line was closer to the 45◦ line as compared to ICA. Finally, in figure 7 we present
the window-wise heart rate comparisons between ICA and MAICA, notably for videos where ICA is
not entirely successful. The combination of the autocorrelation function with the ICA negentropy
function in the premise of multi-objective optimization enables the extraction of a more accurate
rPPG signal closer to the ground truth. Videos from the UBFC-RPPG SIMPLE dataset are not
presented in this figure since there was not much difference between the performance between ICA
and MAICA owing to the simplicity of these videos. With regards to the MMSE-HR dataset, it
actually proved to be useful in highlighting the versatility of our method in presence of motion
artifacts arising from facial expressions, as is visible in the snapshots in the figure. It is to be noted
that almost all the videos of the MMSE-HR dataset manifested changing facial expressions and
moving faces.

5. Conclusions and future work

In this paper we presented a novel semi blind source extraction method, MAICA, for the applica-
tion of rPPG measurements using multi-objective optimization with mean squared autocorrelation
and negentropy as the objective functions. The method provides better results than other state
of the art methods while removing the extra step for choosing the best component. The peri-
odogram of the extracted signals was also consistently closer to that of the PPG. Our method can
also be combined with other methods like smart ROI selection [17] to further obtain better rPPG
estimations.

We also present two datasets of 9 and 46 videos respectively recorded under ambient light. This
database is aimed towards testing of rPPG algorithms and is made publicly available. The SIMPLE
dataset is not very challenging and can be used as a starting point for basic rPPG algorithms. The
REALISTIC dataset emulates an everyday working scenario and can be used as a benchmark for
applications aimed at working in live environments.

The assumption that the most periodic component is the cardiac pulse signal does not hold
in scenarios with periodic motion e.g. in fitness. Our method can thus benefit from motion com-
pensation and improve HR estimations in a more realistic scenario with motion disturbances. We
have not considered constraints related to the unique manner of light scattering on skin due to
its physical properties. Such constraints might help to improve the method further. Finally, we
average the pixel data (cropped or skin segmented) to obtain a single value and thus loose any
spatial information. Higher order analysis which preserves the spatial relationships between pixel
neighborhoods can be an important avenue to look into.
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Appendix A. Derivatives of R(w)

Here we present the first and second derivatives of R(w) needed by the Lagrange multipliers
method. We follow the convention that the derivative of a scalar w.r.t a column vector is a column
vector of the same size as that of the vector. The first derivative of R(w) in

R(y) = E{r2} (A.1)
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can be obtained as follows considering squared autocorrelation as r2 = [r2
1 r

2
2 ... r

2
N ].

R′(w) = −E{ ∂
∂w (

[
r2

1 r2
2 · · · r2

N

]
)} (A.2)

where the derivative of the squared autocorrelation r2 is then obtained using the chain rule of
derivatives. Also, we have y = wT x giving ∂y

∂w = x.
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The size of ∂(r2)
∂w is then 3×N from the product of x3×N with the jacobian of size N×N . Conse-

quently, its expectation ends up having a size of 3×1 since it is nothing but a temporal mean over N
samples. The jacobian in equation A.6 can be concisely expressed as

[
r1

∂r1
∂y r2

∂r2
∂y · · · rN

∂rN

∂y

]
where each column is the product of the derivative ∂r1

∂y and the scalar rk and is of size N × 1.
Deriving rk = yTkyT w.r.t y using the product rule of differentiation,

∂rk

∂y = y ∂

∂y (TkyT ) + yTk
∂

∂y (yT )

= y ∂

∂y (yTT
k ) + yTk

= yTT
k + yTk = y(TT

k + Tk) (A.7)

where ∂
∂y (TkyT ) = TT

k comes from the fact that the differential of TkyT , a vector, will remain
the same even when it is transposed and the derivative is computed element-wise. This result is
owing to the fact that Tk is not symmetric. If it were symmetric, then the result would have been
2yTk.

For conciseness, we will represent the sum Tk + TT
k as Tk. Finally to be consistent with our

convention, using the same argument of the differential being immutable under transpositions, the
row vector ∂rk

∂y can be transposed into a column vector and the matrix ∂r
∂y can be built as

∂r
∂y =

[
r1T1yT · · · rN TN yT

]
(A.8)
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giving R′(w) in equation A.2 as

R
′
(w) = −2xE

{[
r1T1yT · · · rN TN yT

]}
which can be further simplified to

R′(w) = −2x
[

T1yT · · · TN yT
]

rT /N (A.9)

since the expectation is a temporal mean the element-wise multiplication with rk can be replaced
by multiplication with the vector rT which also simplifies the computation.

Next, to simplify the calculation of the second derivative of R(w), we perform column-wise
matrix multiplication in equation A.9, omitting the scalar multiplication and division, to obtain

R′(w) = −x
[

T1r1yT + · · · +TNrN yT
]

(A.10)

= −x
N∑

k=1

TkrkyT (A.11)

And since differentiation and summation are interchangeable based on the sum rule, R′′(w) can
be obtained by

R′′(w) = −x
N∑
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∂(TkrkyT )
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)
xT (A.14)

The derivative of TkrkyT w.r.t y is then obtained by the product rule of differentiation.

∂(TkrkyT )
∂y = Tk

∂rk

∂y yT + Tkrk (A.15)

= Tk

(
∂rk

∂y yT + rk

)
(A.16)

which is of size N × N . Consequently, the size of R′′(w) turns out to be 3 × 3 since the sum of
∂(TkrkyT )

∂y over N samples is also of size N ×N . These formulas of R′(w) and R′′(w) are then used
in the implementation of the multi-objective optimization algorithm.
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