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Abstract
Thousands of fatalities are reported from the construction industry every year and a high percentage of them are due to the unsafe
worker movements which resulted in falling from heights, transportation accidents, exposure to harmful environments, and
striking against or being struck by the moving equipment. To reduce such fatalities, a system is proposed to monitor worker
movements on a construction site by collecting their raw spatio-temporal trajectory data and enriching it with the relevant
semantic information. To acquire the trajectories, the use of an indoor positioning system (IPS) is considered. Bluetooth beacons
are used for collecting spatio-temporal information of the building users. By means of an Android-based mobile application,
neighboring beacons’ signals are selected, and a geo-localization technique is performed to get the unique pairs of users’ location
coordinates. After pre-processing this collected data, three semantic enrichment techniques are used to construct semantically
enriched trajectories which are as follows: (1) enrichment with the semantic points which maps site location identification to the
trajectory points; (2) enrichment with the semantic lines which relies on the speed-based segmentation approach to infer user
modes of transportation; (3) enrichment with the semantic region for mapping a complete trajectory on an actual building or a
construction site zone. The proposed system will help in extracting multifaceted trajectory characteristics and generates semantic
trajectories to enable the desired semantic insights for better understanding of the underlying meaningful worker movements
using the contextual data related to the building environment. Generated semantic trajectories will help health and safety (H&S)
managers in making improved decisions for monitoring and controlling site activities by visualizing site-zones’ density to avoid
congestion, proximity analysis to prevent workers collisions, identifying unauthorized access to hazardous areas, and monitoring
movements of workers and machinery to reduce transportation accidents.
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1 Introduction

The construction industry is very hazardous in nature because
of the harsh working environment [1] and the involvement of
high safety risks [2]. According to the Bureau of Labor
Statistics, in 2016, out of 5190 fatal work injuries, 19% of
fatalities were recorded in the US construction industry [3].
The major fatalities were caused by falling from heights [4],

transportation accidents [5], exposure to harmful environ-
ments [6], and striking against or being struck by the moving
equipment [7]. The latest available statistics [3] of fatal occu-
pational injuries by an event or exposure in the construction
industry are shown in Fig. 1. A closer look at the latest re-
search reveals that one of the major reasons for construction
site accidents is because of the unsafe worker behaviors
resulting in serious collisions with site objects and machinery.
For instance, limited spatial awareness [7] of the operating
machinery within the workers’ proximity because of the blind
spots and nearby interferences can lead to hazardous situations
on sites. To increase the spatial awareness of sites for reducing
the accidents, there is a need for more effective construction
resources’ mobility monitoring and safety planning methods
to identify unsafe worker behavioral patterns.

The dynamic interactions of the workers in an uncertain
and dynamic construction environment where the building
infrastructure is continuously evolving with time often
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resulted in unsafe worker behaviors [8]. These dynamic inter-
actions raise serious safety concerns for H&S managers as the
movements of construction resources (workers and machin-
ery) are changing according to the change in the building
infrastructure [9, 10]. In the last few decades, to reduce safety
hazards, dynamic interactions of the construction resources
are tracked in real time using different sensor-based location
tracking technologies such as radio-frequency identification
(RFID), Global Positioning System (GPS), ultra-wideband
(UWB), and vision-based sensing systems [11]. Each one of
them has its own benefits and limitations. Among all, the most
prominent and widely used tracking technology for construc-
tion safety applications is based on the GPS or an IPS [10, 12].
It is used to record spatio-temporal trajectories as a series of
location points as spatio-temporal tuples (xi, yi, ti) in the form
of latitude and longitude coordinates with timestamps gener-
ated by a moving object in space [13]. It holds multifaceted
attributes, for example, time, a position of an object in the
geographical coordinate system, a direction of an object, the
speed of an object, a change in direction, acceleration, and
distance traveled [14]. These attributes can be extracted direct-
ly from spatio-temporal trajectories by applying pre-
processing techniques. However, processed spatio-temporal
trajectory data cannot provide a clear understanding of the
meanings behind workers’mobility behaviors because it lacks
semantic information related to the environment [13]. To add
semantic information to processed trajectories using external
data sources (application databases, geodatabases, etc.) in-
cluding openly available and private data related to the envi-
ronment, a semantic enrichment process is required [13, 14].
The added relevant semantic or contextual information to
complement the processed trajectory data using alphanumeric
properties is called Bannotations.^ In this paper, three types of
annotations are discussed which are as follows: annotating
with semantic points (spatio-temporal tuples selected based
on the user stay duration), semantic lines (detecting the trans-
portation mode between successive spatio-temporal tuples
based on the speed values), and semantic regions (the geo-
graphical building or site location where the trajectory takes
place). For example, a trajectory of a worker named BJohn^ is
going to dump a construction material on a site. The extracted
stay locations of BJohn^ are annotated as the semantic points
or the point of interests (POIs) where he is spending most of
his time. Segmenting each trajectory episode to find the

transportation mode used by BJohn^ while traveling between
the semantic points is annotated as a semantic line. Moreover,
the whole trajectory of BJohn^ will be annotated with a se-
mantic region or region of interest (ROI) where an entire mo-
bility has been taken place to visualize it from the geograph-
ical context of a building. In the existing literature, there exist
many approaches of semantic enrichment of trajectories.
However, these approaches are constructed to understand the
outdoor trajectories of moving objects and do not generate
semantic trajectories for dynamic indoor environments where
the building infrastructure is evolving in its shape, size, and
attributes with time. Construction sites are the best example of
dynamic environments where the new walls and infrastructure
supports are added frequently on sites. Such changes in the
building environment are required to be captured by the se-
mantic data model to generate trajectories with the most up-
dated semantic information for studying worker movements
in dynamic environments.

For addressing semantic trajectory modeling needs for a
dynamic environment using the construction site scenario,
our contributions follow (i) trajectories pre-processing subsys-
tem: as trajectories contain multifaceted characteristics includ-
ing time, position of the object in the geographical coordinate
system, direction of the object, speed of the object, change in
direction, and distance traveled [13]. A system is developed
for extracting such characteristics to better understand the tra-
jectories. Moreover, an identification of the stay points is
achieved from workers’ trajectories that will help in recogniz-
ing important regions in the building. (ii) Semantic enrich-
ment subsystem: for enriching the trajectories with annota-
tions using external data sources, we have used our data model
named BSTriDE^ (Semantic Trajectories in Dynamic
Environments) to identify semantic points (POIs), semantic
lines, and semantic regions (RoIs) in the trajectory data.
Using this model, a system is designed to generate semantic
trajectories in a dynamic environment for visualizing site-zone
density to avoid congestion, proximity analysis to prevent
workers’ collisions, identifying an unauthorized access to haz-
ardous areas, and monitoring movements of workers and ma-
chinery for reducing the transportation accidents.

The paper is organized as follows: in Section 2, the litera-
ture on semantic trajectories with existing semantic enrich-
ment approaches is discussed. In Section 3, a system is pre-
sented to use semantic trajectories for an effective
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construction site monitoring and increasing the possibilities to
carry safe construction operations by analyzing worker loca-
tion data. Section 4 discusses the experimental analysis and
the system benefits with some limitations, and Section 5 pre-
sents the conclusion with some future works.

2 Background

Existing literature reveals that the major reasons for fatalities
on construction sites are linked to unsafe movements of the
construction resources [10–12]. The technological advance-
ments in mobile computing coupled with location-based ser-
vices provide tremendous opportunities to monitor move-
ments of construction resources to ensure safe construction
operations [15–17]. The data acquired from a typical location
acquisition device consists of a stream of spatio-temporal
points [18]. This raw stream is cleaned by applying noise
removing filters and transformed into finite meaningful epi-
sodes known as trajectories [13, 18]. While the information
from raw trajectories is useful to understand movement dy-
namics of objects in motion, it does not provide the contextual
semantic information which is required to understand the
meanings behind each trajectory episodes [14]. Existing stud-
ies [7, 19] have considered using location acquisition technol-
ogies along with contextual data repositories to construct
spatio-temporal trajectories for tracking construction re-
sources. However, to completely understand meanings behind
user movements, spatio-temporal trajectories need enrichment
with semantic data sources including application domain
knowledge (building information) and geographic databases
(such as OpenStreetMap (OSM) building file and Google
Maps).

In the existing literature, there exist three major areas [13,
14] on semantic trajectories: trajectory construction, trajectory
segmentation, and trajectory annotation [20] using semantic
data sources. However, the focus of this researchwill be on the
latter two areas. In general, there are two modes to construct a
trajectory [13, 14]: (a) online mode, where trajectories are
constructed in real time, and (b) offline mode, where all tra-
jectories’ construction processes are done in an offline mode.
Although the literature on an online construction of trajecto-
ries is limited, there are many offline trajectory construction
methods present in the literature [13]. In these methods, loca-
tion data is collected in advance. Once location data is collect-
ed, it will undergo various processing stages such as data
cleaning, map matching, and compression [13]. However,
these methods are not suitable for real-life applications, where
movements of objects are continuously updating. To address
the requirement of an online trajectory construction for real-
life applications, a real-time solution known as SeTraStream
[21] is present having an ability to process raw trajectories
data within a controlled time window and generate trajectories

with start and end time in an online mode. Once trajectories
are created, a process of segmentation is applied for dividing
these trajectories into a set of episodes based on predefined
criteria. The very first data model proposed by the authors
[18], in which segmentation process is used to divide a trajec-
tory into a set of moves and stops. A stop is defined as a place
where a moving object has spent some specific time.
However, other than a time threshold, segmentation can also
be achieved by other attributes such as velocity, acceleration,
direction, density, and geographic artifacts [22]. Similarly,
there exists an extended segmentation framework to segment
trajectories based on the movement states [23, 24]. However,
their framework depends on the mapping of each movement
state with relevant spatio-temporal criteria based on the expert
knowledge, and manual user input. Moreover, Sankararaman
et al. [25] presented an approach to distinguish between sim-
ilar and dissimilar portions in trajectories. After then, trajecto-
ries are divided into segments to extract contiguous portions
of trajectories which are shared by many of the other trajecto-
ries. Furthermore, segmentation can be done based on repre-
sentativeness [26]. Such techniques perform global voting al-
gorithms based on the local density and extract most represen-
tative sub-trajectories.

Once the segmentation of trajectories is completed, anno-
tation techniques are applied to transform GPS trajectories
into semantic trajectories [14]. The annotation process in-
volves enrichment of trajectory episodes with the meaningful
information such as the mapping of the POIs that can be in the
form of points, in the form of lines, or the geographical re-
gions [27, 28]. There are many annotation approaches present
in the existing literature as provided in Table 1. Wu et al. [29]
have used historic social media data to map it with user tra-
jectories to understand the purpose of the trip. Based on the
location history, relevant words are extracted from the Twitter
data according to the mobility records, and user interests are
retrieved for visiting a specific location at a specific time. In
addition, user activities have also been used to annotate raw
trajectories [30]. However, to cover a larger pool of the POIs,
there is a need for integration with more datasets to enable
tracking in large cities for the extraction of user activities [30].

Nogueira et al. have developed a framework to annotate
trajectories based on episodes [31]. It basically defines the
environment where the user trajectory has been taken placed
based on the Linked Open Data (LOD) cloud and an OSM
data. The ability of this framework of describing the spatial
context of GPS trajectories can be used as a building block of
future expert systems for trajectory exploration. Moreover,
trajectories of slow- and fast-moving objects are also annotat-
ed at different levels of data abstraction using a multi-layer
framework [27]. The locations where objects move provide
information about their interests. At the same time, such be-
havioral analysis gives information about the popularity of
visited places. A similar research effort is presented by
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Graaff et al. [32], where an algorithm is proposed for combin-
ing existing multiple trajectory pre-processing methods to
identify the visited POIs for detecting different indoor activi-
ties in an urban setting. Furthermore, the ontological modeling
approach has also been used to abstract trajectory data in a
multilevel hierarchy using LOD collections and social media
data [33]. This integration can enable to query trajectories for
mobility analysis based on the domain and application-related
knowledge. In addition to automatic semantic annotations,
there also exist dynamic and clustering-based semantic anno-
tation methods based on the contextual and geo-localization
data in the literature [34–36]. Such methods calculate the local
density of words and map words to each trajectory record,
hence providing visualizations for trajectories exploration.

After performing an extensive study on semantic trajectories,
some research gaps have been realized in the existing literature
before constructing a semantic trajectory system for safety man-
agement of workers on construction sites. These gaps encom-
pass (1) existing semantic trajectory enrichment models are

designed specifically for outdoor environments for tagging the
relevant semantic information with the moving persons or ve-
hicles’ trajectories. The extraction of the insights related to the
behaviors of moving objects within the building settings is not
yet adequately explored. (2) To the best of our knowledge, the
data models present in the literature for performing semantic
enrichments hold static information regarding the environment
in which the objects are in motion. However, for modeling real-
life trajectories and extracting real-time insights about the mov-
ing object behaviors, an updated contextual information related
to the building environment is necessary by the trajectory data
model to generate semantically enriched trajectories. (3) The
focus of the baseline models presented in Table 1 has been kept
limited only to construct semantic trajectories. The feasibility of
visualizing the semantic trajectories by integrating the trajectory
data models’ output with the existing open-sourced smart city
solutions, for example, building information modeling
(BIM) for different industrial application scenarios is miss-
ing in the literature.

Table 1 Comparison of existing semantic annotations of trajectories

Use case Environment Findings Key technologies/
methods used

Type of data Annotation types comparison

Social
media

Point Region Line

Semantic annotation of
mobility data using
social media [29]

Outdoor Extracted purposes and interests
of a user from his location
history.

Kernel density
estimation model

Geo-tagged
tweets

Y Y N N

Inferring human activities
from GPS tracks [30]

Outdoor Automatically annotated
trajectories based on user
activities.

Gravity law GPS trajectories
of a car

N Y N N

Annotating semantic
trajectories based on
episodes [31]

Outdoor Environments are identified
where trajectories took place.

Linked Open Data
cloud and OSM

GPS trajectories
of a jogger

N N Y N

Semantic annotation of
heterogeneous
trajectories [27]

Outdoor Annotated trajectories for any
kind of moving objects.

Java 6 (PostgreSQL) GPS records of
taxis and
private cars

N Y Y Y

Automated semantic
trajectory annotation
with indoor POI visits
[32]

Outdoor Combined multiple trajectory
pre-processing techniques to
extract POIs.

– Trajectories
formation
using uploaded
pictures

N Y N N

Automated semantic
annotations based on
existing knowledge
bases [33]

Outdoor Abstraction in a multilevel
hierarchy of progressively
detailed movement segments.

geoSPARQL and
PostGIS

User’s trail from
Flickr and
tweets

Y Y Y Y

Dynamic semantic
annotation of
trajectories [34]

Outdoor Annotation using contextual
social media data.

Kernel density
estimation model

Geo-tagged
tweets

Y N N N

Mining semantic
trajectory mobility
patterns [35]

Outdoor Characterization of the semantic
mobility of vehicles is
achieved by tagging visit
purpose to each trajectory.

Google Maps and
prefix span
algorithm

Private vehicle
trajectories

N N Y N

Finding semantic level
trajectory behaviors
through semantic
trajectory clustering
[36]

Outdoor Extracted common semantic
trajectories using an extended
OPTICS algorithm.

Density-based
clustering
algorithm

Geo-tagged
photos from
Flickr

Y N Y N
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3 Semantic enrichment for worker trajectory
(SEWoT) system

To fill the above-mentioned research gaps, a semantic trajec-
tory processing, a visualization system named BSEWoT,^ is
developed to monitor worker interactions remotely and to
identify their abnormal movement behaviors. For constructing
the BSEWoT^ system, a scenario-based methodology [37, 38]
is adopted by taking two roles into account which are as fol-
lows: building supervisor and H&S manager. A scenario de-
fines our system as a sequence of events which includes the
following: (1) collecting location data from handheld devices
of workers on a construction site, (2) constructing trajectories
after performing pre-processing techniques, and (3) enriching
themwith the relevant semantic information extracted from an
OSMdata file, user-defined taxonomies, and contextual build-
ing information for building supervisors and H&S managers
to improve worker safety by visualizing the semantic trajec-
tories as shown in Fig. 2.

Based on the developed scenario, a prototype system is
designed for studying the user movements inside the building
for an experimental analysis. However, the functionality of the
prototype system will remain the same if deployed on a con-
struction site. For capturing the location data of the building

users, Bluetooth beacons are placed in different building loca-
tions. The collected location coordinates are pre-processed
after removing the outliers and stored in a document database
(MongoDB). Stay points of a user are extracted by inputting
time and distance threshold values to identify the building
locations where the user is spending significant time. These
thresholds for calculating stay points are completely adjust-
able according to the application requirements. The extracted
stay locations are critical for the analysis as their extended or
short stay behavior as compared to the required will indicate
the occurrence of undesired events in the building. Later, these
stay points are tagged with their corresponding spatial infor-
mation using our STriDE model that has a capability of track-
ing the dynamic environment for enriching the trajectories
with relevant semantic information. After mapping the stay
locations of a trajectory to semantic locations of a building,
the moving segments within a trajectory is divided into the
alternate walk and run segments tomonitor the traveling speed
of users. In the end, to visualize an entire trajectory having
stopped and move segments, and with identified stay loca-
tions, a trajectory is mapped with a spatial region where it
has occurred. In our case, the trajectory was captured from
an indoor environment and tagged as a Bwork-zone.^
However, construction sites typically divided into many areas

Visualizing trajectories
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Fig. 2 Scenario for SEWoT system for worker movement analysis
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such as hazard-zone, material-zone, and dumping-zone by the
building supervisors for site management [20]. In the end,
benefits of semantic trajectories generated by our developed
prototype system are discussed. The processes of our proto-
type systemwhich are mentioned above are described in detail
below.

3.1 Trajectory data collection

To collect trajectory data of users, 200 Bluetooth beacons [39]
are placed in different locations in the building. Each beacon is
detectable by the Wi-Fi-enabled handheld device within the
radius of 4 m. To acquire location coordinates, a mobile ap-
plication using the Android platform is developed for detect-
ing beacons and performing triangulation technique to get a
unique pair of building location coordinates having longitude,
latitude, and the floor number values. The process of tagging
is achieved by utilizing the stored spatial information residing
in a database as a deployment map of the beacons. Using this
method, 13,223 location points are recorded across different
locations with a sampling interval of 5 s. However, the mobile
application has the capability to set different sampling interval
ranges from 0.5 to 5 s. An application programming interface
is used to capture the location data through wireless access
points, aggregating and then storing it in a document-oriented
database such as MongoDB. A data link is configured be-
tween a database system and R studio to pre-process the cap-
tured location data. There exist many noise filters, such as
mean and median filters to improve the data quality.
However, a median filter is used on the acquired data (as
shown in Fig. 3) because it depicts robustness property in
filtering and recommended for data with high sampling rate
whereas, mean filter is not recommended because it is highly
sensitive to outliers [13].

3.2 Stay points detection for identifying POIs

After removing the outliers in a trajectory data, stay points of a
user are calculated to enrich a user trajectory with semantic
points in the form of stop and move segments. Stay points
carry more important semantic information than moving
points as these are the location points where a user has spent

a significant time within a specified distance. By manually
setting the distance threshold value (Dthresh) to 5 m and time
threshold (Tthresh) value to 20 min, stay points in a trajectory
are identified (as shown in Fig. 4) using Zheng et al. [13]
approach. The existing literature [40, 41] specifies a Tthresh =
10 min and Dthresh = 50 to 250 m for identifying user stay
locations in an outdoor environment. However, inputting a
Tthresh = 10 min in our system resulted in many redundant stay
locations. Therefore, we doubled the value of a Tthresh and set
Tthresh ≥ 20min for extracting the locations where the user has
spent a significant time. In addition, existing works [40, 41]
only contain the case studies for extracting the stay locations
in outdoor environments where the locations are on the greater
distances from one another. For an indoor environment and
taking the dimensions of the building rooms into consider-
ation, we set the value of Dthresh to 5 m. The justification of
using these thresholds is presented in the Section 5. Here, an
extracted single stay pointBs^ [13] can be treated as a virtual
location point characterized by a set of successive GPS points
Z = {zm, zm + 1, zm + 2,⋯, zn},∀m < i ≤ n, Distance(zm, zi) ≤
Dthresh, and |zn. T − zm. T| ≥ Tthresh. A stay point can be described
as s= (Latitude,Longitude, arrivaltime, leavingtime).Where,

s:latitude ¼ ∑n
i¼m

zi:Latitude=Zj j

s:lontitude ¼ ∑n
i¼m

zi:Longitude=Zj j

The purpose of calculating stay points in a trajectory data is
to find locations in a building where users are spending more
time than required. This information will help to track the
occurrence of an unexpected situation on a site if stay duration
is greater or less than the required. The stay duration can be
adjusted as per the application requirement as having smaller
threshold values for distance and time will lead to several stay
points whereas, larger threshold values will result in fewer
points. An assumption that is considered for verifying the stay
points is visualizing the spatial density of location points in the
trajectory data [42]. According to Palma et al. [42], the mov-
ing object speed decreases considerably when a place is visit-
ed. However, the data acquisition system will keep collecting
location points according to its configuration while an object

Fig. 3 Filtered raw trajectory data
of a user
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is stopped that will result in the greater spatial density of
location points that is visible in Fig. 4.

3.3 SEWoT system for visualizing semantic points,
semantic lines, and semantic regions

Once stay points (POIs) are identified, these points are anno-
tated with the corresponding semantic information to achieve
semantic points. For enriching user trajectories using semantic
data sources, a data model named STriDE [43] is used. The
STriDE model as shown in Fig. 5 is built to store semantic
trajectories by addressing the needs of a dynamic environment
where the building objects (user, trajectory, and location) can
move or even change their geometry (shape and size) or attri-
butes (alphanumeric semantic information) with time. For tag-
ging the different building location with the processed trajec-
tory data, the STriDE model uses the Bconcepts.^ As a worker
location changes in a building, there will be a change in the
type of Bconcept^ labeled with its trajectory point. However,
the labeling of the Bconcept^will not be done directly with the
trajectory point but with its timeslice as shown in Fig. 5. A
timeslice has four components: an identification, alphanumer-
ic attributes, a time component indicating the validity of a
timeslice, and a geographical component depicting the spatial
representation of an entity [43]. With the help of timeslices, if
there is any change detected in the geometry or semantic in-
formation related to the building entities (user, trajectory, and
location), a new timeslice will be created with updated infor-
mation and linking it with the last known timeslice. This
mechanism will help in storing information about the

evolution of the building structure during its lifecycle for gen-
erating trajectories with the most updated semantic
information.

For constructing semantic trajectories, STriDEmodel is fed
with an IFC (Industry Foundation Classes) or OSM
(OpenStreetMap) file, annotation rules, and taxonomies. In
the prototype system, the application of an OSM file is to
manage a complete building structure using the geographic
vector data in an Extensible Markup Language (XML) format
in which rooms’ boundaries are defined with their links to
each other. As shown in Fig. 6, an OSM file contains nodes,
ways, and relations. Entities in an OSM file can be labeled
with single or multiple key-value pairs to add the semantic
information. For instance, in Fig. 6, a Bway^ having an ID =
235 is specified as a corridor by adding a tag Bhighway =
corridor^ that relates to a collection of nodes’ references such
as 2755, 2756, and 2757 corresponding to different longitude
and latitude values. These labeled key-value pairs are grouped
and managed using taxonomies which are created by the do-
main experts. A taxonomy is a hierarchy of concepts written
as RDF (Resource Description Framework) triples. For in-
s tance , in Fig . 7 , a scheme of concepts named
BElementScheme^ is created containing a top concept (root)
named BElement.^ This element has a narrower concept
named BPath,^ which itself has a narrower concept named
BCorridor.^ Moreover, annotation rules are created using a
JavaScript Object Notation (JSON) file structure for linking
OSM objects with the taxonomy. For example, an annotation
rule described in Fig. 8 shows that any OSM entity carrying a
tag with a key BHighway^ and having a value BCorridor^

User 

Trajectory TS 

ProfileA 

Room  
has Feature has Loca�on

Is trajectory of

has Feature

has Profile has Feature
Concept 1 

has Access To

TS 

TS 

has Access To dct:subject

Geometry Time Seman�cs 

Fig. 5 STriDE data model
representing dynamic entities (a
user, a trajectory, and a room)
each with a timeslice (TS). Each
TS contains the geometry,
alphanumeric properties
(semantics), and a time span for
which it is valid. Whereas, the
concepts are used for mapping the
semantic locations for user
profiling and access control

Fig. 4 Stay point extraction with
time spent
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should be labeled with a concept BCorridor,^ i.e., https://www.
u-bourgogne.fr/stride#Corridor. Later, an OSM file with
annotation rules is inputted to a 2-step Java parser. The parser
will create mappings between OSM entities with Java objects
and then constructed Java objects are transformed into new
Java objects as per the semantic definition. Finally, the proc-
essed Java objects (see Fig. 9) are stored in a triplestore
(Stardog) for attaining the complete representation of the
building structure.

Using the contextual and geographical information (see
Table 2) which is stored in the STriDE model (see Fig. 9),
the mapping of trajectory episodes to the meaningful informa-
tion such as the mapping of places of interest that can be in the
form of POIs (e.g., W5768) and the ROIs (e.g., work-zone) is
achieved. The mapping of the POIs and ROIs with the trajec-
tory points is performed using a topological correlation, i.e.,
Trajectory _ epidode⋈θLocation. Here, the parameter θ is com-
puted using the topological spatial relations such as distance
and displacement [27, 28]. After computing the value of θ,

spatial joins are performed with the boundary of the trajectory.
In this way, a location with its associated semantic metadata is
annotated with the trajectory’s episodes. This process is used
for finding the ROIs in the trajectory data. In the same way, a
list of POIs exists inside the building which are the
Bworkspaces^ (W5769, W5768, W6666, W5741, and
W5777); in our case, they are also defined in the STriDE mod-
el. Using this stored semantic information, each stay location is
tagged with the site identification (ID) that corresponds to dif-
ferent site regions (ROIs) such as work-zone, material-zone,
hazard-zone, and dumping-zone. Construction sites typically
have more work zones [7], but we have restricted site zones to
four for this research. After tagging the semantic points, suc-
cessive stay locations are grouped together, and aggregated
stay duration in minutes is calculated to remove repetition
and to reduce the size of a trajectory (see Figs. 10 and 11).

We can now enrich a trajectory with semantic lines in the
form of movement types which are being carried by workers
after mapping the spatio-temporal locations in a trajectory to
corresponding site identifications. Based on our application
requirement, we have used walk-based segmentation method
of Zheng et al. that is based on semantics 5. Walk points and
run points based on points’ speed values are calculated, then a
trajectory is divided into an alternate walk and run segments as@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix stride: <https://www.u-bourgogne.fr/stride#> .

stride:ElementScheme a skos:ConceptScheme ;

skos:prefLabel "Thesaurus of the elements of a building"@en ;
skos:hasTopConcept stride:Element .

stride:Element a skos:Concept ;
skos:prefLabel "Element"@en ;

skos:inScheme stride:ElementScheme .

stride:Path rdfs:type skos:Concept ;

skos:prefLabel "Path"@en ;

skos:broaderTransitive stride:Element ;
skos:inScheme stride:ElementScheme  .

stride:Corridor rdfs:type skos:Concept ;
skos:prefLabel "Corridor"@en ;

skos:broaderTransitive stride:Path ;

skos:inScheme stride:ElementScheme  .

Fig. 7 Taxonomy (the script is a RDF Turtle https://www.w3.org/TR/
turtle/ of the concept BCorridor^ in the partially extracted STriDE
schema. A scheme of concepts named BElementScheme^ is created
having a top concept (root) named BElement.^ This element has a
narrower concept called Bpath,^ which itself has a narrower concept
called Bcorridor^)

stride:W235 a stride:Entity ;

skos:prefLabel "Corridor of floor 0" ;

rdfs:comment "" .

stride:GEO-W235-0 a geo:Geometry ;

geo:asWKT "LINESTRING (20 65, 15 65, 15 50, 20 50, 15 50, 
15 15, 20 10, 15 15, 30 15, 30, 20, 30 15, 50 15, 50, 30 15, 50 15, 

50 20, 30 15, 50 15, 50 40)"^^geo:wktLiteral .

stride:W235-0 a stride:TimeSlice ;

stride:hasStartDate "2018-01-01T00:00:00"^^xsd:dateTime ;

stride:hasFeature stride:W235 ;
geo:hasGeometry stride:GEO-W235-0 ;

dct:subject stride:Corridor ;

stride:hasEndDate "9999-12-31T23:59:59"^^xsd:dateTime .

Fig. 9 Parsed OSM file using the annotation rules and the taxonomy (the
script is the RDF Turtle definition of an object of the kind BCorridor^
identified by the value stride:W235. The object holds its name, a
geometry defined by a set of latitude and longitude pair values and a
timeslice having start and end timestamps for its validity. These values
are used to define semantic trajectories)

<node id="2755" lat="47.523" lon= "5.214"/>

<way id="235" version="3" timestamp="2017-03-

07T10:31:53Z" changeset="352">

<nd ref="2755"/>
<nd ref="2756"/>

<nd ref="2757"/>

<tag k="highway" v="corridor"/>
</way>

Fig. 6 An OSM file record in which a Bway id^ = 235 is defined using a
collection of nodes references that are 2755, 2756, and 2757 corresponds
to unique pairs of longitude and latitude values

{ 

"type": "tag",

"key": "highway",
"value": "corridor",

"compare": "equals",

"conceptIRI": 
}

Fig. 8 Annotation rule showing any OSM entity having a tag whose key
is Bhighway^ and whose value is Bcorridor^ is to be tagged with the
concept Bcorridor,^ i.e., https://www.u-bourgogne.fr/stride#Corridor
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shown in Fig. 6a. Moreover, speed is also calculated between
two segments in meters per second. Lastly, to visualize the
entire trajectory having stop andmove segments with a seman-
tic region, R studio is used with Google Maps as shown in Fig.
6b. After mapping the spatio-temporal locations in a trajectory
to the site/building identifications, we can now enrich a trajec-
tory with semantic lines in the form of movement types which
are being carried by a user. We have used walk-based segmen-
tationmethod of Zheng et al. [13] which is based on semantics.
Walk points and run points based on points’ speed values are
calculated, and a trajectory is divided into an alternate walk
and run segments as shown in Fig. 12. Moreover, speed is also
calculated between each successive segments of a trajectory in
meter per second. Lastly, to visualize the entire trajectory hav-
ing stop and move segments with a semantic region (i.e.,
Venue213), R studio is used to establish the topological corre-
lations using spatial joins between a processed trajectory and a
spatial region information extracted from the STriDE model to
identify the actual building as shown in Fig. 13.

3.4 Comparative analysis

Comparing data modeling approaches is a subjective task
[31]. In this section, we have compared our developed system
with the existing semantic enrichment systems as shown in
Table 3. Identification of the locations, clustering of trajecto-
ries based on the similar behaviors, reducing trajectories for
visualizations, trajectory segmentation for dividing trajecto-
ries into stop and move episodes, transportation mode detec-
tion, predicting the next locations of the users, recommenda-
tion based on the previous trajectory data logs, activity recog-
nition based on the visited locations, mapping with the envi-
ronmental information, and behavior categorization have been
the major characteristics of the existing semantic enrichment

systems. After this review, an idea of the basic functionalities
of a typical semantic enrichment system is conceived from
these state-of-the-art applications for the development of our
proposed system. It is observed that the potential of semantic
trajectories for improving the safety of construction resources
in dynamic environments is not well explored in the studied
literature, and very little research has been found regarding
this area. The present trajectory data models are designed spe-
cifically for outdoor environments and the extraction of the
behaviors of moving objects within the building using seman-
tic trajectories is not yet adequately explored. In addition, the
existing trajectory models do not cater the data modeling re-
quirements for dynamic environments where the building ob-
jects are moving or changing with time. Moreover, the base-
line models as mentioned in Table 3 do not show the possibil-
ity of integrating the trajectory data models’ output with the
existing open-sourced deployed smart city solutions (for ex-
ample, BIM) for the industrial users. Our developed trajectory
processing and visualization platform offers a new application
of semantic trajectories for construction safety management
which holds a potential to help H&S managers in their day-
to-day building operations using the industry’s open standard
software (i.e., BIM) in monitoring user-buildings interactions
remotely in outdoor as well as in indoor dynamic environ-
ments and to take timely actions in real time in case of abnor-
mal behaviors found in worker trajectories.

4 Experimental analysis

The developed BSEWoT^ system for worker movement anal-
ysis is validated using a real-life IPS feed of the building users.
Table 4 shows a summary of the data used in our experimental
analysis. 13,223 IPS records of 13 building users are collected

Fig. 10 Semantic enrichment of stay points with site location IDs (stay
locations which correspond to the semantic locations of a building named
as W5769, W5768, W6666, W5741, and W5777 respectively. These

locations are detected by setting the time threshold (Tthresh) ≥ 20 min
and the distance threshold (Dthresh) = 5 m. The lighter the color of a stay
point depicts the shorter stay duration of the user

Table 2 Mapping of IPS data with the construction site/building information

GPS coordinates [Lon, Lat] Geometry type Semantic Region (ROI) Semantic Point (POI) Building name

{[5.010756, 47.293998], [5.010729, 47.294025],
[5.010765, 47.294017], [5.010756, 47.293998]}

Polygon Work-zone W5768 Venue213
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during different intervals in a 2-week period with a sampling
frequency of 5 s.

For developing our prototype system, we have used the R
platform for data processing and a Stardog for storing seman-
tic information. Using the STriDE model, which holds the
information of 328 semantic locations of a building extracted
using an OSM file, is utilized for the semantic enrichment
process. Figures 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 show a
process of transforming raw IPS feed to semantically enriched
trajectories. Based on the existing literature [40, 47] which
covers the matrices to evaluate the classification systems, we
have assessed the efficiency of our developed semantic en-
richment system against different values of distance and time
thresholds for extracting the stay locations (POIs) to map them
with their corresponding semantic information (Table 5).

An interesting aspect to observe here is that as we increase
the values of time and distance thresholds, our model mapping
precision of tagging semantic locations increases. However, the
higher values of inputting time and distance thresholds will
result in the identification of fewer stay locations in the trajec-
tory data of a user because some of the stays join together.
Whereas, if the smaller values of time and distance threshold
are used, it resulted in overlapping in the tagging of the semantic
locations and the exact locations are not tagged effectively. The
stay point detection thresholds cannot be adjusted dynamically
but should be set as per the application requirements. Ultimately,
we have used Tthresh = 20min andDthresh = 5m for the prototype
development to cover most of the stay locations of the user.

After mapping the semantic information related to the
building environment with the detected stay locations, walk

Fig. 12 Segmenting a worker
trajectory in the run and walk
segments to achieve semantic
lines (the speed of a user is
calculated in meter per second
(m/s)). Value of speed is
calculated between succeeding
semantic locations. Based on the
calculated speed values, the
segments having the walk speed
≤1.4 m/s are shown as Bwalk
segments^ in Borange^ color.
Whereas, the segments having the
walk speed >1.4 m/s are shown as
Brun segments^ in Bgreen^ color

Fig. 11 Visualization of semantic
stay points with stay durations
calculated inminutes. (Successive
stay points of the user are grouped
for calculating the total stay
duration at a building location.
The stay duration ranges from 25
to 125 min at the locations named
as W5769, W5768, W6666,
W5741, and W5777)
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and run segments (semantic lines) are constructed using the
spatio-temporal attribute (speed value) and finally enrichment
with the semantic region for mapping a complete trajectory on
an actual building location is done for understanding the user
movements. The developed system will serve not only as a
semantic trajectory visualization platform for safety managers
but also acts as a data repository of all types of movements
occurring on sites for future hazard analysis. The analysis of

the generated semantic trajectories will help to achieve below-
mentioned benefits.

& Visualizing site-zones’ density to avoid congestion:
Workforce on a construction site is almost half of the pro-
ject’s cost, and it is important to improve logistics associ-
ated with their management on sites [48]. To ensure that
workers are working in good conditions, space planning

Fig. 13 Visualizing a complete
user trajectory on a building
model with semantic points in red
colored circles (site
identifications, e.g., W5768 for a
work-zone), semantic lines
(segmentation into run and walk
points) and a semantic region
(work-zone)

Table 3 Comparison of existing
trajectory models Model Purpose*

A B C D E F G H I J K L

MADS [18] Y

SeMiTri [21] Y Y Y Y Y Y

The Baquara [44] Y Y Y Y Y Y

CONSTAnT [45] Y Y Y Y Y Y

The Baquara2 [33] Y Y Y Y Y Y Y Y

SemMobi [34] Y Y Y Y Y

Unusual behaviors detection model [46] Y Y Y Y

FrameSTEP [31] Y Y Y Y Y Y

SMOPAT (Semantic MObility PATterns) [35] Y Y Y

Proposed SEWoT system (this work) Y Y Y Y Y Y

*A, identification of locations; B, clustering of trajectories; C, trajectory reduction; D, trajectory segmentation; E,
transportation mode detection; F, prediction; G, recommendation; H, activity recognition; I, mapping with the
environmental information; J, behavior categorization; K, addressing dynamic environments; L, integration with
the external systems for an industrial use
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on sites gets mandatory but often overlooked which leads
to site congestion that can obstruct worker safety monitor-
ing processes, and their productivity [48, 49]. Our system
using IPS technology has made it possible to calculate the
time spent by workers in each site area (see Fig. 11). For
identifying critical site areas, worker stay locations are
considered for the analysis as these locations are more
crucial to monitor than the locations where workers are
just passing through. With the visualization provided by
our system, it establishes an understanding of how many
workers are present in different areas of a site at a partic-
ular time and where they are spending the majority of their
time. This information will help the building supervisors
in determining most frequently visited stay locations, de-
termining the appropriate number of workers to be in any
specific site area by preventing site area congestion for
safety management, and will also help them to monitor
critical site areas’ utilization throughout a day.

& Proximity analysis to prevent workers’ collisions:
According to the OSHA statistics [3], most fatalities oc-
curring on construction sites are very closely related to the
unsafe proximity of workers with the operating machinery,
and the unsafe locations from where there is a risk of
falling. Visualizing multiple semantic trajectories simulta-
neously generated by our system (see Fig. 14) in real time
can help H&S managers to keep track of the proximity of
workers and machinery in real time. Our system uses a
Haversine distance formula [39, 48] between two semantic
trajectories to calculate distance in meters as shown below;

d ¼ 2rsin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2
xtþ1−xt

2
þ cosxtcosxtþ1sin2

ytþ1−yt
2

r

� �

where Br^ is the radius of the earth and geographical coordi-
nates (longitude and latitude) are represented as x and y. The
reason for using the Haversine distance formula is because it is
one of the preferred methods that calculate the geographic

distance between two points on a sphere [50]. In addition,
semantic points that have been categorized as unsafe locations
set by the H&S manager can be used in the identification of
the workers that are working too close or within the unsafe
locations from where there are the risks of falling.

& Identifying unauthorized access to hazardous areas:
Controlling workers access to hazardous zones of a site
is important because having an unauthorized worker pres-
ence in the dangerous space, for example, a high-voltage
room can result in fatality [6, 51]. Typically, workers are
briefed before starting the work as well as professionally
trained to handle the complexities associated with work-
ing in hazardous areas [52]. However, it is not easy to
monitor every worker in verifying whether he is autho-
rized to work in certain dangerous spaces. Keeping a se-
curity check with the help of the hired guard at the en-
trance of every hazardous area or such areas which may
contain expensive machinery is not possible and econom-
ical. Our system (see Fig. 5) offers the ability to perform
user profiling and executing an access control systemwith
the help of Bconcepts.^ These Bconcepts^ correspond to
different semantic locations defined in the STriDE model.
Visualizing the Bconcepts^ tagged to worker trajectory
points in the form of semantic locations will allow H&S
managers to identify when a hazardous site location is
detected within the trajectory of an unauthorized worker.
This information will deliver pro-active safety information
which will not only prevent unauthorized workers from
staying in the hazardous areas but also eliminates the need
for manual security procedures.

& Monitoring movements of workers and machinery to re-
duce transportation accidents: Another important informa-
tion that safety managers like to monitor is the traveling
speed of the workers and machinery on site. For example,
the walking speed of a person is usually less than 1.4 m/s
[13], whereas a person moving with a speed greater than
1.4 m/s will be annotated as a run segment. Workers or
machinery moving at a higher than specified speed thresh-
old inside a site zone would be considered unsafe. This
information from our semantic trajectories (see Fig. 12)
will work as a leading indicator of worker safety and can
help in the identification of the workers and equipment
moving at a high speed [53].

These were some possible benefits of our developed pro-
totype system. However, further work is required to be done to
fuse data from other emerging technologies such as BIM with

Table 4 Trajectory dataset
Dataset No. of users No. of IPS records Tracking time Sampling frequency

Building users 13 13,223 2 weeks 5 s

Table 5 Impact of time and distance thresholds on semantic enrichment
process

Tthresh
(minutes)

Dthresh

(meters)
Detected
stay
locations

Tagged
semantic
points

10 3 150 136

20 5 110 107

30 7 40 38
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spatio-temporal trajectory data to visualize processed trajecto-
ries with the building infrastructure context. The BIM ap-
proach is proposed for generating visualizations after
extracting insights from the semantic trajectories because lit-
erature identifies it as a Bfuture ITsolution^ and preferred over
traditional 3D CAD approaches as it is an efficient way of
information management during the building lifecycle for
safety analysis [54]. Above all, the BIM approach is becoming
a construction industry standard in many countries [54]. An
example of a BIM-based visualization for displaying semantic
points and semantic lines (walk and run movements) is shown
in Fig. 15.

In Fig. 15 above, an Autodesk Revit Architecture (a BIM
software) is used. The BIM model of the building that is used
for the study does not exist. A simple building structure with-
out architectural esthetics is created in a Revit software utiliz-
ing the information from an OSM file of a building for dem-
onstrating a proof-of-concept integration of systems. After
constructing a BIM model of a building, all building spaces
which are bounded by walls are tagged as Brooms^ in the
Revit software. Each tagged room contains the semantic in-
formation in the form of a set of parameters such as room
number, room name, and physical area that can be used for

viewing or editing that particular room. In our case, the pa-
rameter Broom name^ will act as a unique identification for
each space representing a POI for visualizing the locations in
the Revit model. The naming convention of Revit rooms is set
according to the tagging of semantic points as described in our
SEWoT system. Using a Dynamo (a Revit Plug-in) [55], se-
mantic points and semantic lines are visualized in different
colors on a BIM model. Figure 15 (left) is showing semantic
trajectory information of a worker trajectory at time t = 1.
Whereas, Fig. 15 (right) is plotted for t = 2. With the passage
of time, the structure of a building has evolved because of the
addition of new walls, while others are detached. These
changes have resulted in different behavioral patterns (seman-
tic points and semantic lines) of a worker as shown in Fig. 15.
Investigating the reasons behind the change in the worker
trajectory patterns requires previously stored semantic trajec-
tory data along with the contextual building information (IFC
or an OSM file). Our developed SEWoTsystem has the ability
of keeping track the changes in the building environment
using the STriDE model as discussed in Section 3.3.
Resulted behavioral pattern analysis can be used for different
construction and built environment applications such as con-
struction resource monitoring for improved safety, managing
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Fig. 14 Visualizing two
trajectories for observing their
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id: W5710

Fig. 15 BIM models constructed for showing semantic points of a worker in Borange,^ locations having Bwalk^ trajectories in Bgreen,^ and Brun^
trajectories in Bred^ colors
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building spaces based on their utilization, and implementing
worker access control system. At present, the generated BIM
visualization is static and does not have the capability for
displaying updated trajectory insights in real-time.
Constructing similar dynamic visualizations after addressing
the needs of real-time trajectory data integration with the BIM
software can be used by the H&S managers in improving
safety management intervention to prevent accidents by keep-
ing track the locations where the workers are staying more
than the required and identifying the locations where the
workers are moving or operating the equipment at the high
speed. In addition, further functionalities should be added in
the system to incorporate pattern mining techniques to take
complete advantage of fused information for deriving mobil-
ity behaviors of workers that will ultimately help safety man-
agers for better decision making in safety processes.

Apart from the potential benefits and future directions to
improve the system, there exist some limitations of the devel-
oped system. Bluetooth beacons are used to acquire the tra-
jectory data. However, these beacons are not recommended
for an indoor trajectory data acquisition system because of the
less precision in the exactness in determining the building
locations. As during the process of semantic enrichment, col-
lected trajectory points did not totally join spatially with the
information about the semantic points taken from an OSM
file. Hence, the nearest possible semantic locations are tagged.
To achieve high accuracy in trajectory data, an indoor geo-
localization technology should be carefully chosen which
should be robust to multipath fading and indoor noise. In
addition, the experimentation is done using batch processing
techniques [13] in which trajectories of building users in a day
are first acquired and then pre-processing algorithms are im-
plemented in an offline mode. However, for achieving the
real-time insights of worker movements on construction sites,
stream processing techniques [13] should be used to pre-
process the worker trajectories in an online mode. So that
trajectory multifaceted characteristics such as direction and
speed can be computed as soon as location data is received
for extracting trajectory insights.

5 Conclusion

Location is the crucial component of many processes and
understanding the movement behaviors of users is getting
more and more important. Monitoring the construction sites
for movement behaviors of construction resources has always
been a very challenging task because of the harsh environment
and lack of technological infrastructure. Building supervisors
and H&S managers are in the need of real-time information
about their resources such as workers and machinery to sup-
port their decision-making. This comprises accurate location
data to understand worker occupancy in stay locations, types

of their movements, and identification of unauthorized users
on different site locations. Wireless local area networks
(WLANs) are used extensively for estimating the location of
users and providing a convenient as well as the cost-efficient
method to track users in indoor as well as in outdoor settings.
Moreover, smart handheld devices are becoming important in
daily life, making it easier to be tracked by the deployed
WLANs. Using this existing platform, having the WLANs
and handheld devices as a sensor network, and by deploying
Bluetooth beacons, a study is presented to capture location
data of building users to study worker movement behaviors.
Firstly, spatio-temporal trajectories are constructed using real-
time location data of the building users. Secondly, locations of
the users are extracted where the users have stayed for a longer
time period. Thirdly, stop and move episodes of user trajecto-
ries are mapped with associated semantic information. It can
be concluded from the visualizations generated of semantical-
ly enriched user trajectories that it provides a method to get
information about (1) the occupancy of important site zones
which are identified as stay locations of users, (2) proximity of
workers and machinery to avoid collisions, (3) controlling
unauthorized access of users to hazardous site areas, and (4)
monitoring speed of construction resources for reducing trans-
portation accidents.

Though to demonstrate a proof-of-concept system applica-
tion, the experimental setup is implemented in a building en-
vironment, but the focus of the study is to understand the
movements of construction resources on a site. Deploying
the proposed system on a typical construction site will not
compromise its utility but will raise concerns in the process
of location data acquisition. Placement of beacons and making
sure that beacons remain intact to their original positions in the
dynamic environment can be challenging. New walls and in-
frastructure supports are added often on sites, while others are
detached, and construction equipment is constantly changing
its position that can greatly affect the functionality of beacons
and will introduce large measurement errors in the location
data. Future work is needed to be done to increase the reliabil-
ity of the location data by deploying such fault tolerant sensor
network that exhibits robustness and having an ability to di-
agnose the problem quickly in case of any sensor failure. This
should be achieved remotely as many locations on a construc-
tion site often have limited access and visiting site areas phys-
ically and regularly is not possible all the time during con-
struction processes.
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