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Abstract In this paper we present a new 3D descriptor for human classifica-
tion and a human detection method based on this descriptor. The proposed
3D descriptor allows for the classification of an object represented by a point
cloud, as human or non-human. It is derived from the well-known Histogram
of Oriented Gradient by employing surface normals instead of gradients. The
process consists in an appropriate subdivision of the object point cloud into
blocks. These blocks provide the spatial distribution modeling of the surface
normal orientation into the different parts of the object. This distribution
modelling is expressed in the form of a histogram. In addition we have set
up a multi-kinect acquisition system that provides us with Complete Point
Clouds (CPC) (i.e. 360◦ view). Such CPCs enable a suitable processing, par-
ticularly in case of occlusions. Moreover they allow for the determination of
the human frontal orientation. Based on the proposed 3D descriptor, we have
developed a human detection method that is applied on CPCs. First, we eval-
uated the 3D descriptor over a set of CPC candidates by using the Support
Vector Machine (SVM) classifier. The learning process was conducted with the
original CPC database that we have built. The results are very promising. The
descriptor can discriminate human from non-human candidates and provides
the frontal direction of the humans with high precision. In addition we demon-
strated that using the CPCs improves significantly the classification results in
comparison with Single Point Clouds (i.e. points clouds acquired with only
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one kinect). Second, we compared our detection method with two detection
methods, namely the HOG detector on RGB images and a 3D HOG-based
detection method that is applied on RGB-depth data. The obtained results on
different situations show that the proposed human detection method provides
excellent performances that outperform the other two detection methods.

Keywords Human classification · 3D descriptor · multi-kinect

1 Introduction

Human detection is the process of localizing the presence of one or more per-
sons in a specific location by manipulating the information acquired by differ-
ent types of sensors. This process is a pivotal element for many applications like
surveillance systems [1], health monitoring [2], autonomous sport-analysis [3,4]
and driving assistance [5,6]. Over the past decades this subject has witnessed
huge advances and it continues to evolve especially with the introduction of
new sensing technologies. Human detection is a challenging task with different
issues to tackle. Pose, color and texture significantly vary from one person to
another. Besides, the complexity of the working environment represents a sam-
ple of the challenges to overcome. Some approaches for human detection rely
on special sensors attached to the subjects to determine their location that
are called invasive sensors [7–9]. The use of such sensors is limited to specific
applications like in animation films, but in fact most of common applications
require non-invasive sensors. Color cameras have been for many years the
primary non-invasive sensors employed in human detection applications [10].
However, the recent advances in depth sensing technologies added the depth
sensors as another reliable source of information that are used even for high
level tasks like medical applications [11]. In fact, the introduction of afford-
able and reliable depth sensors like the kinect from Microsoft has dramatically
increased the interest in this technology and has lead to a huge number of
applications employing such sensors [12–14]. Indeed, human detection was one
of the first domains to leverage this new technology. However, in most of the
applications depth information is only used to reduce the computation cost,
while the descriptiveness of the 3D shape of the human envelop is not really
exploited.
Human detection is a vast domain with different approaches and techniques.
Among these approaches, the descriptor/classifier framework employs a de-
scriptor to extract special features and characteristics from the acquired data
in order to train a classifier. The classifier should be able to separate between
two classes: human and non-human object. In this paper we propose a new
3D descriptor for human classification in standing/walking position. The de-
scriptor operates on 3D point clouds and exploits exclusively the human 3D
features without using color information. The proposed 3D descriptor can be
considered as a generalization of the HOG descriptor [15]. The calculation of
the descriptor starts by dividing the 3D cloud into 3D blocks. The 3D de-
scriptor is then obtained by computing the histogram of orientations of the
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Fig. 1 An illustration of the multi-kinect platform: four kinects allowing for a 360◦ view.

normals on the points in each block. Moreover, the proposed descriptor pro-
vides additional information about the frontal orientation of the human. Such
information is important for numerous applications namely tracking initializa-
tion, human-machine interaction and behaviour analysis.
Using this descriptor, we will present a human detection method. Our method
is able to detect the locations and frontal orientations of a group of people in
upright position. We use a multi-kinect system installed in an indoor location.
The kinects are arranged to capture the entire scene as illustrated in Fig. 1,
which in turns provides a Complete Point Cloud (CPC) of the scene (i.e 360◦

view).

The paper is organized as follows. Section 2 proposes a state-of-the-art
of human detection methods. Two classes of methods are presented namely
descriptor-based methods and body part matching methods. Section 3 presents
the multi-kinect platform we used for data acquisition. It allows to obtain Com-
plete Point Clouds (CPC) that provide a 360◦ view of the analyzed scenes and
objetcts. Section 4 introduces the proposed human descriptor. It is calculated
from 3D point clouds. Section 5 describes the classification process that allows
to detect humans in a scene. The learning process required to build a new
3D CPC database of human and non-human subjects. Section 6 details the
human detection procedure. Section 7 gives the experimental results to assess
our descriptor and validate the effectiveness of the proposed human detection
method. Finally, section 8 draws the conclusions.

2 Related works

In this section we will review the main approaches for human detection with
a focus on methods that use depth data. There are two categories of methods
for human detection: descriptor/classifier and matching templates.
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In the first category, descriptors are computed over the acquired data to trans-
fer it into a more descriptive space. In addition, a classifier is built from a
database of positive and negative examples. Using this classifier, new candi-
dates are classified as human or non-human objects as illustrated in Fig. 2.
HOG (Histogram of Oriented Gradients) [15] is considered as one of the most
successful descriptor for 2D image human detection. The descriptor is com-
puted by first dividing the image into small spatial regions (blocks). For each
block a local 1-D histogram of gradient directions or edge orientations over the
pixels of the cell is computed. These histograms are combined and normalized
to finally form the descriptor. In [16], HOG is applied on the 2D image space
projection of clusters extracted from a point cloud. The HOD (Histogram
of Oriented Depths) [17] is a well-known adaptation of the HOG which is
applied on depth images, where the gradients are computed using the depth
values instead of color information. HOD locally encodes the direction of depth
changes and relies on a depth-informed scale-space search. The Combo-HOD is
also proposed by combining depth and RGB data using a probabilistic model
to detect people from RGB-D data [17]. In [13] they used the HOD with a
graph-based segmentation algorithm to effectively process images captured by
a moving camera. [18] use statistical pattern recognition techniques (geomet-
ric features) for the classification of candidates. [19] classifies with geometric
features in the context of the pedestrian tracking from a moving vehicle. The
Relational Depth Similarity Features (RDSF) [20] calculates the degrees of
similarity between all of the combinations of rectangular regions inside a de-
tection window in a single depth image only. [21] introduces Kirsch mask and
Local Binary Pattern on 2D depth image to extract a local ternary direction
pattern feature descriptor. The previous approaches use the depth array as a
2D image to apply image-based methods like the HOG process. However, 3D
data is not exploited in their first forms, which makes them difficult to apply
in scenarios where multiple sources of information are combined to produce
the 3D data like in a multi-sensor system. Depth data is also exploited as a
pre-processing to segment blob in 3D space and isolate candidates. For [12]
the segmented 3D points are projected on 2D plane to form a color image on
which HOG are processed. [22] gather 3D candidates in tracklets before person
detection by HOG.
The orientation of the normals is a relevant feature to describe 3D human
shape from point clouds. [23] uses also the normals to describe 3D objects
from hundreds of viewpoints to obtain synthetic depth maps. [24] separates
clusters of 3D points in horizontal layers and learn a classifier for each layer.
[25] uses a classifier for each horizontal layer with geometrical features boost-
ing. Each layer detects a particular body part. The final detector is composed
of a probabilistic combination of the different classifiers.
Others methods [26–28] use local surface normals to describe 3D shape. Spin
Image [29], FPFH [30] and SHOT [31] are well known 3D object descriptors
computed from surface normals. However these methods describe static ob-
jects with standart space subdivision. The person class is so varying that they
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Fig. 2 Overview of the descriptor/classifier framework. The descriptor transforms the data
into a more descriptive space. A classifier is built from the database of positives and negatives
examples.The classifier computes for each candidate a classification score.

are not effective enough.
We finaly notice a recent trend to deep learning based approaches [32].

The second category of methods rely on matching one or many templates
of certain body-parts in 2D data (images) or 3D data (point clouds). The Ω-
shape of the head and shoulders of a human body are an example of descriptive
templates [33,34]. To compare it to the data, [35] utilizes chamfer distance and
Choi [36] exploits the Hamming distance. [37] applies chamfer distance on 2D
templates as shaped-based detection on Region Of Interest (ROI). [38] mini-
mizes the sum of squared distances between 3D points projected on 2D plane
and binary templates of the head. [39] learns a 3D template from a dataset of
heads. Part-based detection is sometimes used. For [40], interest points, which
are based on identifying geodesic extrema on the surface mesh, coincide with
salient points of the body, which can be classified as part of the body using
local shape descriptors.
Numerous works exploit the temporal continuity of human displacement in
video sequence: for example by defining tracklets to classify human body [22].
Scanning the ground to find candidates is a practical solution in an indoor
or controlled environment. The ground can be estimated accurately from 3D
using RANSAC [41], or manually by selecting three non-linear points from the
ground in situations where the background is fixed.
In addition, it can be useful to obtain additional information about the de-
tected person. The frontal orientation of the human is interesting information
that can help initialize the tracking of the detected person. People orienta-
tion recognition is the topic of numerous methods. It can be inferred from the
the relative poses of the human body parts [42]. Each orientation could be
a class of a classification process Support Vector Machine (SVM) associated
with HOG [43–45] or Aggregated Channel Features ACF [46] descriptor. Re-
placing the SVM by a decision tree improves the classification results [44,45].
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Fig. 3 An example of a complete point cloud from two different points of view.

Lai [47] organizes 3D data into a semantically structured tree to estimate the
view and pose of an object. In [48], a texture model is provided by projection
onto a basis of Spherical Harmonics. The orientation is estimated by minimiz-
ing the difference between the texture model and the current texture estimate.

In this paper, we propose a new method for human detection following the
descriptor/classifier approach. This approach provides better results when em-
ploying suitable data that capture the complexity of human poses and using a
well constructed database to build an accurate classification model. The orien-
tation of the normals is used to characterize the 3D human shape. In addition,
we work with Complete Point Clouds (CPCs) acquired by a multi-kinect sys-
tem that provides a complete view of the analysed subjects as shown in Fig.
3. Moreover, our descriptor allows for an estimation of the frontal direction
without using multi-class classification.

3 Acquisition system

The goal is to reduce the percentage of occlusion by using multiple view-points
which improves the process robustness. In [49], each detection window of the
image of the first viewpoint is fused with the matching region on the image
of the second viewpoint. The detection process on the fused region refines the
detection on a single image.
In this section we will introduce our 3D acquisition system that is used to
obtain a complete coverage of an indoor location. In order to achieve this
complete coverage of the scene, a multi-kinect platform is constructed. The
platform consists of a least three kinects arranged so that two consecutive
kinects share an overlapping field of view as illustrated in Fig. 1. The multi-
kinect system is then calibrated to obtain the intrinsic and extrinsic parameters
for each kinect.
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Fig. 4 Illustration of the pin-hole camera model.

The intrinsic parameters are necessary to transfer the 2D depth image into a
3D point cloud while the extrinsic parameters allows for the transformation
of the point clouds from each kinect into a common coordinate system. Many
efficient methods can compute these parameters [50–52]. The kinect-v1 (the
version we use in the following) computes the depth image via a structure light
imaging technology. For this the kinect uses an infrared light projector which
projects a known pattern on the scene. The projected pattern is captured
using an infrared camera. Finally, the disparity d is calculated internally by
the kinect from this pattern and a pre-registered one at known distance. The
depth is then calculated as the inverse of the disparity using the following
equation [52]:

z =
1

cv × d+ cu
(1)

where cu and cv are the image central points.
The depth camera follows a pin-hole camera model as illustrated in Fig. 4.
From this, a 3D world point (x, y, z) is projected onto the 2D image point (u,
v) according to the following equation:uv

1

 = K ×

x
z
y
z
1

 with K =

fu 0 cu
0 fv cv
0 0 1

 (2)

where K is the matrix of the intrinsic parameters of the camera, fu and fv
are the focal length.
So we have [50]:

x = z
u− cu
fu

and y = z
v − cv
fv

(3)

In a multi-kinect system the single point clouds (SPCs) produced by each
kinect are combined together using the extrinsic parameters. These parameters



8 Kyis Essmaeel et al.

Fig. 5 Illustration of surface normals calculated at randomly chosen points from a CPC.

are the rotation Ri,o and translation Ti,o matrices between each kinect (i) and
a reference kinect (o). Hence, the point cloud (spci ) captured by a kinect (i)
is transformed to the reference frame by means of its rotation and translation
matrices. Finally the complete point cloud CP C is obtained as follows:

CPC =

N⋃
i=1

(Ri,o × spci + Ti,o) (4)

where N is the number of kinects in the platform.
The complete point cloud will improve the classification accuracy of the de-
scriptor as it provides a complete representation of the objects in the scene
and reduces occlusion effects.

4 Proposed 3D descriptor

In this section we introduce our 3D descriptor and explain in details how to
compute it over a 3D point cloud. The proposed 3D descriptor transposes the
HOG into 3D point clouds. In HOG a window is densely subdivided into a
uniform grid of blocks. In each block the gradient orientations over the pixels
are computed and collected in a 1D histogram. In the 3D point cloud the
gradient is meaningless. So it is replaced by the surface normal at each point
(Fig. 5). The local surface normal is estimated for each point p of the point
cloud using the least-mean square plane fitting [53]. The method works by
fitting a plane to the set of neighbouring points of p, and the normal of the
plane is assigned to the point p.
The proposed descriptor is computed in two main steps: space subdivision and
3D normal quantization.
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Fig. 6 Cylindric space subdivision steps: a radial cut (a), an azimuth cut (b) and an axial
cut (c). The resulting block (d).

4.1 Space subdivision

The 3D space containing the point cloud is divided into sub-areas (blocks).
We use a cylindrical subdivision method similar to the one proposed by Gond
[54] for his work on pose recognition from voxel reconstruction. The polar
subdivision (in 2D) allows rotation invariance. SRHOG [55] uses sector-ring
adaptation of HOG for detection of human not only appearing in upright
poses. The cylindrical subdivision allows for a division of the point cloud into
basic elements that hold enough information about the local geometry of the
object. The point cloud is included inside a cylinder and divided as follows:

– First, a radial cut divides the cylinder into sub cylinders(Fig. 6a).
– Second, an azimuth cut divides the cylinder into sectors (Fig. 6b).
– Third, an axial cut across the cylinder main axis subdivides the cylinder

into sections (Fig. 6c).

The resulting blocks are in a form of shell sectors as represented in Fig. 6d. An
illustration of this process is presented in Fig. 7. Each block contains a certain
number of 3D points and then the histogram of oriented normals is computed.
The three cuts will help the descriptor to characterize a human body with
different sizes (radial cut), different body parts (axial cut) and the orientation
of a person (azimuthal cut) whether it is front, back or side view.

4.2 3D normal quantisation

Since a normal is a 3D vector it can not be associated to a 1D histogram. To
solve this problem we used the generic 3D orientation quantization proposed
by Kläser [56]. In this method the 3D vector is quantized using one of the
regular polyhedron shown in Fig. 8. Let B be the set of points in the block
b, nb is the number of points in this block. Each point pi from this block is
associated with a normal vector −→ni , this gives N the set of the corresponding
normals vector in this block.

B = {p1, p2, .., pnb}, N = {−→n1,−→n2, ..,−→nnb} (5)

Given a regular ns-side polyhedron, each face of the polyhedron corresponds
to a bin of the histogram. −→gs is the vector from the center of the polyhedron
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Fig. 7 Illustration of space subdivision on a CPC that represents a person. The frontal
direction of the person is shown as a blue vector. a) a top view of the person shows the
azimuth cut (Na = 8), the division starts at the location of the frontal vector. b) a side view
of the person shows the axial cut (Nx = 8) and the radial cut (Nr = 5). Points in different
blocks are shown in a different color.

Fig. 8 The five regular polyhedrons.

to the center of its face s. To quantize a normal vector −→ni , it is placed in the
center of the polyhedron as seen in Fig. 9a. The vector is then projected onto
each of the vectors −→gs as illustrated in Fig. 9b. The projection of the normal
vector is computed by:

q̂i,s = max(−→ni .−→gs , 0) (6)

Let hb be the histogram of the block b, the number of bins in the histogram is
equal to the number of sides ns in the polyhedron used for quantization. The
bin s in the histogram hb will hold the sum of the projection values of all the



Title Suppressed Due to Excessive Length 11

Fig. 9 Quantization of the normal vector (−→ni) using a cube (ns=6): a) −→ni is positioned at
the center of the polyhedron to be projected on each vector −→gs that connects the center of
the polyhedron and the center of its face s. b) the projection of −→ni on the vector −→gs , the
result is the scalar value q̂i,s.

normal vectors in N on the side s of the polyhedron:

hb(s) =

nb∑
i=1

q̂i,s (7)

Finally, the normalized histogram related to the block b is computed by:

Hb(s) =
hb(s)
ns∑
i=1

hb(s)

(8)

The final descriptor is obtained as the concatenation of all the histograms
calculated from the blocks.

D = {H1 ·H2 · ... ·HNb} (9)

where N b is the number of blocks.

5 3D Database For Human Classification

In this section we introduce our database of CPCs and explain the learning
process. The proposed descriptor works on 3D point cloud. Moreover, in order
to improve the classification results and add the ability to detect the frontal
orientation, we will use CPCs. To our knowledge, no training database has ever
provided such types of point clouds. For this purpose, we have decided to build
an original database for training and testing the introduced 3D descriptor.
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Fig. 10 Examples of CPC of human (left) and non-human subjects (right).

5.1 CPC Database

Our database is composed of CPCs of objects acquired by our multi-kinect
system. The database comprises two types of examples: positives (human) and
negatives (random objects that can befound in an indoor environment) (Fig.
10). The positive part of the database dedicated to human subjects contains
1000 point clouds. This part was constructed from 34 different persons (males
and females) with various poses, shapes and clothing. The negative part of
the database contains the non-human examples. It is constituted of elements
that could appear in an indoor scene: furniture, stacks of cartons, computer
equipment, plants, lamps etc. It consists of approximatively 250 acquisitions
of such objects. Actually, rotating the object provides different descriptors.
Therefore, by rotating each acquisition around its main axis with a certain
angle a different descriptor is produced. Hence, we can generate around 1000
negative examples by rotating each cloud by 90◦ four consecutive times. When
building the database, we saved the frontal direction vector for each positive
example in the database. These vectors will be used at a later stage when
learning and testing the classifier.
Nowadays large datasets of elements from indoor scenes are available ([57])
but few of these elements have a shape close to the one of a human. We prefer
to use our more chalenging database.

5.2 Learning

A Support Vector Machine (SVM) classifier [58] was chosen to train the clas-
sification model. The SVM is commonly associated with the HOG descriptor
and is known to provide good results. The classification model is learned from
the set of positive and negative examples in the database. The classification
model will also allow the determination of the frontal orientation of the person.
This is achieved with the help of the information about the frontal direction
vector of each positive example in the database. As explained previously, the
frontal vector will be used as a starting point to do the azimuth cut when
constructing the descriptor. This will make the classification model bias to the
frontal face of the 3D models that represent a human body.
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Fig. 11 Human detection procedure pipeline.

6 Proposed Human Detection

In this section we will introduce our human detection procedure that detects
one or multiple persons and provides their positions and orientations in the
working environment. This procedure works by scanning the ground in the
CPC with a cylinder and testing the part of the CPC that falls inside the
cylinder for the presence of a human. In order to speed up the detection we
perform a segmentation on the CPC to remove parts with a low probability
of containing a human. In addition, the scanning will be limited to certain
locations on the ground that we call the Candidate Location Map (CLM).
The main element in this procedure is the 3D descriptor we have introduced
previously. Using this descriptor we will be able to classify parts of the CPC
around each candidate location as human or non-human object. The pipeline
in (Fig. 11) shows the steps of the detection procedure. In the following sections
we explain each step in more details.

6.1 Complete Point Cloud Pre-processing

The multi-kinect system provides a complete point cloud composed of the
different objects in the working scene. In the pre-processing step we will apply
Euclidean Clustering [59] to segment the CPC into clusters and then we will
use a set of heuristics to eliminate irrelevant clusters with a low probability of
containing a human.
Before applying the euclidean clustering the ground is removed from the CPC
in order to cut the connection between some of objects through the ground.
This is done using the ground plane equation that is calculated manually for
only one time after calibrating the acquisition system. The result of applying
euclidean clustering to the CPC after removing the ground is a set of clusters
that represents a rough segmentation of CPC.
The set of clusters is then tested to eliminate irrelevant ones. Since our goal is
to detect people in standing/walking position in an indoor environment we can
define simple heuristics to identify clusters with a low probability of containing
people. If a cluster validates one of the following three conditions then it is
removed:
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Fig. 12 CPC pre-processing: a) initial CPC, b) final clustering results.

– First, if the lowest point in a cluster relative to the ground is higher than
a threshold (i.e. too high above the ground).

– Second, if the highest point relative to the ground is lower than a threshold
(too short objects).

– Third, if the majority of the points belong to a planer surface.

The result from this step is a set of clusters. The processed CPC that will be
tested for the presence of people is composed of these clusters. Fig. 12 shows
an example of applying pre-processing on a CPC. In this example, the ground
and parts of the CPC with a low probability of containing people are removed,
and the result is a set of three clusters that forms the processed CPC.

6.2 Candidate Location Map (CLM) Construction

We can not apply the classification method directly on each cluster since some
clusters may contain a mix of connected objects and persons. Instead, we will
scan certain locations from the ground using a cylinder, and classify only the
part of the processed CPC that falls inside this cylinder. The locations from
the ground that correspond to the center of the cylinder define the Candidate
Locations Map (CLM). The CLM is constructed in two steps: first, the CPC
is projected on the ground as illustrated in Fig. 13b, the result is a dense point
cloud. Second, the projected point cloud is down-sampled [59] to decrease the
number of candidate locations. The result of the down-sampling is a set of
relatively sparse locations on the ground which constitute the final Candidate
Location Map (CLM) as shown in Fig. 13c.

6.3 Scanning of CLM

The CLM map provides a number of locations in the scene to be tested for
the presence of a human. In the scanning step we will check each of these loca-
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Fig. 13 CLM construction: a) CPC with the ground represented as a red rectangle, b) the
projection of the CPC on the ground produces a dense point cloud, c) down-sampling of the
projected cloud, the result is a set of point shown as red dots that represents the CLM.

tions. The scanning is done by using a cylinder positioned over one candidate
location as illustrated in Fig. 14. The radius and height of the cylinder are
determined experimentally. The parts of the point cloud inside the cylinder
are extracted and an arbitrary frontal direction vector −→v is set for this part.
Then, the vector −→v is rotated around the ground normal vector −→g by an angle
θ until it makes a 360◦ rotation from the starting point. At each rotation we
use the −→vθ as the indication of the starting point of the azimuthal cut when
computing the 3D descriptor as explained in section 4. We obtain a number of
descriptors that will be then classified. After classifying the descriptors, if we
obtain a positive detection result we consider the vector −→vθ as frontal direction,
which corresponds to the descriptor with the highest classification score. The
detection position is the projection of the centroid of the detected cloud on
the ground .
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Fig. 14 A scanning cylinder is placed over one of the scanning map points perpendicular
to the ground −→g , with an arbitrary frontal direction vector −→v .

6.4 Grouping detection positions

At the end of the scanning process, we may obtain several detection positions
for the same person. Therefore we need to identify the group of detection
positions that represent the same person and will produce a single detection
position. We use euclidean clustering to group the detection positions of each
person in a separate cluster. Each detection position is associated with a frontal
direction vector, the final position result is the centroid point of a group and
the direction vector associated with it is the most dominant direction vector
in this group.
Fig. 15 shows an example of grouping detection results. We can see that for
each person, detection positions (yellow points) are grouped inside a yellow
circle. The final detection is the center of the cluster associated with a direction
vector. The green cylinder is the detection cylinder positioned over the final
detection point.

7 Experiments

In this part we show the results of the experiments we performed to verify the
classification efficiency with the proposed descriptor and evaluate the perfor-
mance of the human detection method based on this descriptor. The experi-
mental part is organized into two sections. The first section revolves around
the descriptor classification performance. In this section we first search for the
best parameters that provide the best performance, second, we show the capa-
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Fig. 15 Final detection results: two detected persons each marked inside a cylinder with
the determined frontal vector direction (green vector).

bility of the descriptor to determine the frontal direction. Finally, we illustrate
the benefits of using CPC instead of Single Point cloud (SPC) obtained only by
one kinect. We do not compare our 3D descriptor with others in terms of effi-
ciency since these descriptors are applied on images and can not be applied on
CPC in our database. The second section focuses on the proposed human de-
tection method. In this section we show the results of the comparison between
our human detection method and the other two methods. The descriptor is
computed in about 30ms with a non-optimized C++ implementation running
on a 3GHz processor.

7.1 Classifications

Since there was no similar database in the literature, we dedicated a part
of our database to evaluate the classification and to optimize the different
required parameters of the method. The set that we used for testing contains
150 positive and 150 negative examples. The examples in the set were then
tested by the classification model. The trained classification model returns a
score that corresponds to the probability that the point cloud is a human.
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Table 1 The best value for each descriptor parameter.

Parameter Value

Cylinder Height 2 meter
Cylinder Radius 0.5 meter
Polyhedron octahedron
Cylinder Radial Cut 5 circles
Cylinder Azimuth Cut 8 sectors
Cylinder Axial Cut 8 sections

Fig. 16 ROC curves obtained with different values of cylinder radius.

7.1.1 Efficiency

Several parameters were used to compute the 3D descriptor (Table 1). We
repeated the classification test several times with different combinations of
descriptor parameters. Fig. 16 and Fig. 17 show the ROC curves obtained from
different values for the cylinder radius and polyhedron parameters respectively.
The first figure shows that a cylinder with one meter radius gives the lowest
performance while the other values provides better and almost similar results
with a preference for the 0.5 meter. The second figure shows that almost
all types of polyhedron provide good results with a slight advantage for the
octahedron polygon. Table 1 shows the chosen value for each parameter. With
this configuration of parameters, we obtain a precision of 0.97 and a recall
of 0.97, which gives a Fmeasure of 0.97. These excellent results validate the
efficiency of our method.
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Fig. 17 ROC curves obtained with different types of polyhedrons.

precision = number of deteced person
number of total persons

recall = number of deteced person
number of detections

Fmeasure = 2×precision×recall
precision+recall

(10)

Fig. 18 shows the results of the classification of a set of positive examples.
In this figure we can see that the classifier is able to classify correctly the
majority of the examples and determine the right frontal direction. On the
other hand, the classifier fails to classify examples with complex poses and in
other situations, the classifier only fails to determine the right frontal direction.

7.1.2 Orientation estimation

In order to evaluate the orientation estimation, we tested several hypothetical
frontal orientations for each positive example. We chose an arbitrary direction
and rotated it around the subjects vertical axis. In our case we performed the
rotation 4 times (i.e we increased the rotation angle by 90◦). At each rota-
tion we computed the descriptor using the corresponding orientation vector
as illustrated in Fig. 19. For each positive example from the testing dataset,
we compared the orientation given by the highest score descriptor with the
ground-truth orientation that was saved in the database. The orientation is
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Fig. 18 A set of examples used in the classification evaluation: a) correctly classified ex-
amples (inside the green cylinder) with the correct frontal direction vector (green vector);
each row contains 4 examples that belong to one person. b) examples where the classifier
has fails completely (first two examples from left) or partially where it correctly classifies
the examples but with wrong frontal direction (red vector) .

correctly estimated for a vast majority of examples in the database (70%). In
the other situations (30%), the back is estimated as the frontal orientation
resulting in a 180◦ error.

7.2 Comparison between CPC and SPC

To illustrate the benefits of using a CPC from a multi-Kinect system we re-
peated the process of classification in two different scenarios. In the first sce-
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Fig. 19 Descriptor construction relative to the frontal orientation vector −→v : (top) cylinder
division into blocks; (down) each rotation of the frontal vector yields a new descriptor.

nario we assumed that the kinects of the multi-kinect system were working
independently and we computed the descriptors from the single point cloud
(SPC) produced by each kinect separately. In the second scenario we consid-
ered that the kinects were working together but the output of this multi-kinect
system was a set of independent SPCs, and of course the number of these
SPCs was equivalent to number of the kinects in the system. In this scenario,
we took into account the SPC with the maximum classification result (Max-
SPC). Fig. 20 shows the ROC curves for the three experiments. Concerning
the first senario, we show the average curve (Average-SPC) of all the ROC
curves computed form each separate kinect. It can be seen that the CPC pro-
vides the best results which confirms that working with a CPC is better than
using separated point clouds independently. In the single point cloud, signifi-
cant parts of the subject are missing which in turns will decrease the amount
of descriptive information. As a result the descriptor ability to discriminate is
reduced.

7.3 Human detection

In this section we will illustrate the efficiency of our human detection method
by comparing it to two well known detection methods. The first method [15] is
the traditional human detection method based on the HOG descriptor applied
on RGB images. The second method [12] is also based on the HOG descriptor
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Fig. 20 ROC curves obtained from our complete point cloud (CPC) and with the point
cloud of each kinect taken individually (SPC) or combined (Max-SPC). A single view de-
creases significantly the performances and our CPC outperforms the combination of single
point cloud.

Table 2 The results of the comparison experiments.

Our proposed
HOG

HOG-RGBD
Method SPC Max-SPC

recall 0.78 0.4031 0.213 0.505
precision 1 0.4426 0.9078 0.886
Fmeasure 0.88 0.42 0.35 0.64

but it uses 3D point cloud obtained by a RGB-Depth sensors like the kinect.
We will call this method HOG-RGBD (i.e HOG for RGB-Depth data). For this
comparison, we constructed a dataset of people performing different positions
in an indoor location. In this dataset, there are one to three persons in each
example as shown in Fig. 22. In total, we have around 200 persons to be
detected in all the three scenarios. All the persons used for this experiments
are of course not part of the training data used to build the classification
model.

7.3.1 Comparison with HOG

First we compared our method with the HOG detector. As the kinect can
provide depth and RGB images, we obtained the RGB image of the scene
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Fig. 21 Data obtained for each scene: a) RGB images b) Single Point Cloud (SPC) from
each kinect, c) CPC of the scene.

from each separate kinect. Since we had multiple kinects we obtained different
RGB images of the scene from different view angles (Fig. 21a). We applied,
on the one hand, our method on the CPC of the scene (Fig. 21c) and on the
other hand the HOG detector on the corresponding RGB images. The obtained
results are shown on Table 2. The results show that our method outperforms
the HOG detector, especially regarding the precision criteria.

7.3.2 Comparison with HOG-RGBD

We compared our method also with HOG descriptor for 3D camera devel-
oped in [12]. The method works by selecting a set of candidate clusters from
the point clouds and then performs HOG classification method on the corre-
sponding 2D color image of these clusters. This method can not be applied
on a CPC, it can only be used with SPC especially organized coloured point
clouds.
For each scene we obtained the CPC (Fig. 21c) and also the separate single
point clouds (Fig. 21b) from each kinect. We applied our method on the CPC
and the HOG-RGBD method was performed separately on each of the other
single point clouds. The obtained results are shown on Table 2. SPC corre-
sponds to the classification result of HOG-RGBD from a single point cloud. In
Max-SPC (Combined Camera) a cluster provides a detection if it was detected
from at least one kinect with HOG-RGBD method. Once again, a single point



24 Kyis Essmaeel et al.

Fig. 22 Three examples from our dataset for human detection test: a)one person b) two
persons c)three persons

of view provides low performances. Our method outperforms the HOG-RGBD
method processed on the three kinects especially with the recall criterion which
shows that our method has a low miss-rate. In Fig. 23 we show examples of
the comparison experiments between our method and the other two human
detection methods. The examples are shown from five different scenes; in the
first scene, we have one person, in the second, third and fourth scenes we have
two persons and in the last scene we have three persons. The first three rows
(c1,c2,c3) in the figure show the results of applying the HOG detector on the
color images obtained by each kinect. The following rows (SPC1,SPC2,SPC3)
show the results of applying the RGBD-HOG method on the single point cloud
from each kinect. The last row CP C shows the result of our method. In these
results, green shapes represent correct detection, red shapes represent wrong
detections, and images with no shapes indicate a failure to detect. Our method
provides the best detection results as it is able to detected all the persons in
the five scenes.
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Fig. 23 Examples of the comparison experiments from five different scenes obtained by
three kinects.

8 Conclusion

In this paper, we proposed a new 3D descriptor for the human detection which
can also estimate the orientation of the human. The detection method is ap-
plied on complete point clouds provided by a multi-kinect system. To validate
the proposed descriptor, we built an original database of CPCs that repre-
sent human and non-human objects. Our experiments show that the descrip-
tor performs classification with an excellent precision. Starting from our 3D
descriptor, we introduced a new human detection method for multi-kinect sys-
tems. The method can handle scenarios where several persons are moving and
interacting in the scene. The method is based on a scanning cylinder that
scans across the scene at specific positions and tests for the presence of a hu-
man. The comparison with other human detection methods show the efficiency
and high performance that our method can provide. Such good results were
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achieved by using the surface normal orientation to compute the proposed hu-
man descriptor and by exploiting the benefits of a multi-kinect platform. The
platform provides the complete point cloud that is crucial to reach a high level
performance.
The good detection results we achieved will allow us to build a tracking system
which is the next step in our motion analysis system. Tracking is a challeng-
ing task in crowded environments with multiple persons and various types of
obstacles. Our detection method can help initialize the tracking process for
one or multiple persons. In addition, the information about the frontal orien-
tation provided by our method will also help improve the robustness of the
tracking. As the kinects asynchronously capture depth data, a temporal in-
terpolation [60] would be required. Our future works aim at optimizing the
method to reach a real-time performance in order to embedded efficiently in
human tracking applications.
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