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Abstract The first synthesis of sulfone-pyronin and sulfone-rosamine dyes bearing optically 
tunable primary amino groups (acting as fluorogenic centers) is presented. Sulfone analogs of 
xanthene-based fluorophores have recently been highlighted as a new class of near-infrared 
(NIR) fluorescent dyes (Liu et al. ACS Appl Mater Interfaces 2016;8(35):22953-62), and the 
availability of fluorogenic derivatives is essential for the rapid construction of "turn-on" 
reactive probes for chemoselective bioimaging. However, these fluorescent anilines have been 
found to be unstable in aqueous physiological conditions due to the marked electrophilicity of 
their meso-position and hence its propensity to undergo nucleophilic attack by a water molecule 
or a hydroxyde anion. Further investigations have helped us to determine the acidic pH range 
at which the sulfone-rosamine 2 is fully-stable and a complete assessment of the photophysical 
properties could be performed. Its pro-fluorescent character and utility were then proved by the 
preparation and in vitro enzymatic activation of a penicillin G acylase (PGA) sensitive 
fluorogenic probe.  
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1. Introduction 

 
Rhodamines and related xanthene dyes (i.e., pyronins, rhodols, and rosamines) are popular 

visible-wavelength fluorophoresas evidenced by their heavy use as optically active reporters 

in a myriad of applications, particularly in the fields of bioanalysis and bioimaging[1-3]. This 

broad utility stems from several unique and valuable features inherent in these fluorescent 

molecules: (1) good to high brightness in both organic solvents and aqueous media often 

associated with a marked photostability, (2) remarkable chemical stability under harsh 

conditions of pH and temperature and toward various chemical reagents, (3) cationic character 

favoring water solubility and cell membrane permeability, and (4) easy modulation of the 

fluorescence properties through the reversible spirocycle ring-opening process and/or through 

the protection-deprotection of amino groups[4-7]. Thus, a myriad of fluorescent labeling 

reagents for biomolecules[8] as well as a huge number of activatable (or "smart") fluorescent 

probes for analyte sensing/imaging based on a rhodamine (or pyronin/rhodol/rosamine) 

scaffold have been developed. Some of them have had a major impact in modern 

biochemical/biological research[4,5,9], leading sometimes to commercial successes (e.g., dyes 

belonging to the Alexa Fluor® family ranging from Alexa Fluor® 488 to Alexa Fluor® 635[10-

12], rhodamine 110-based fluorogenic enzyme substrates[13,14], ...). To achieve sensitive and 

reliable fluorescence detection in complex biological systems or in living organisms, and thus 

considering biomedical applications for xanthene-based fluorophores, current research efforts 

are primarily devoted to the design of rhodamines and related compounds having 

absorption/emission maxima in the spectral range 650-900 nm[15], often called "therapeutic 

optical window" (or NIR-1 window)[16]. The relevant strategies implemented to achieve this 

goal can be classified into two main categories: (1) the extension of the p-conjugated system 

either through the introduction of various fused aromatic rings within the xanthene core[17-

30] or the installation of a dimethine bridge connecting another chromophore unit (e.g., 

dihydroxanthene-hemicyanine fused dyes)[31,32], and (2) the replacement of the 10-position 

O atom of xanthene by a group 14 element (i.e., C, Si, or Ge)[33-36] or an oxidized- heteroatom 

such as B(OH)2[37], P(O)R[38,39], P(O)OR[40], or Te(O)[41]. This latter approach is 

particularly attractive because it produces dyes with significantly red-shifted absorption and 

fluorescence maxima, typically around or above 650 nm, and keeping compact structures and 

small molecular weights. A further extension of this strategy to Bi[42], S, and Se[43] leads to 

weakly or non-fluorescent heteroatom-substituted xanthene dyes usable as effective 

photosensitizers in photodynamic therapy of cancers. In addition, a recent work from Liu et al. 
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related to the synthesis and photophysical characterization of sulfone-rhodamines and sulfone-

rosamines grabbed your attention[44]. Indeed, these hetero-xanthene dyes show 

absorption/emission features in the range 700-750 nm, with satisfactory fluorescence quantum 

yields (5-10%) in simulated physiological conditions (i.e., phosphate-buffered saline (PBS), 

20 mM, pH 7.4, containing 0.25% CH3CN). However, since all these compounds are 

tetramethylrosamine or tetramethylrhodamine (TMR) analogs, they do not possess an optically 

tunable primary or secondary amino group for an effective modulation of their fluorescence 

properties. This aniline substitution pattern prevents their use as fluorescent platforms for 

developing reaction-based probes for chemoselective sensing/imaging of enzymes, small 

molecules and metal ions in biological systems[45,46]. To address this problem, we considered 

the synthesis of sulfone-pyronin and sulfone-rosamine derivatives, through the formal 

substitution O�SO2 in 6-amino-3H-xanthen-3-imine and 6-amino-9-aryl-3H-xanthen-3-imine 

core structures respectively (Fig. 1 and 2).  

 
Fig. 1. Structures of already known pyronins and fluorogenic sulfone-pyronin dye 1 studied in this work (X = Cl- 
for pyronin Y and TMDHS, X- = CF3CO2

- for GeP640, GSH = glutathione, ROS = reactive oxygen species). 

 

Indeed, the installation of primary amino groups imparts a powerful fluorescence "ON-OFF" 

switching mechanism based on a protection-deprotection strategy to these NIR dyes[6]. The 

straightforward access to efficient small-molecule fluorogenic probes for in vivo molecular 

imaging of disease-related enzymes (mainly, proteases)[47-51], should, therefore, be 

facilitated using these fluorescent anilines. In this Article, we report the first results of this 
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ambitious project, through the preparation and spectral characterization of two original 

fluorogenic sulfone-xanthene dyes. Emphasis will also be put on the pH-dependent stability of 

these compounds that has never been reported to date. Finally, in order to demonstrate the 

fluorogenic behavior of this novel class of "smart" NIR dyes, an enzyme-responsive "turn-on" 

fluorescent probe selectively activated by penicillin G acylase has been synthesized and 

validated through in vitro fluorescence assay. 

 
Fig. 2. Structures of already known rosamines and fluorogenic sulfone-rosamine dye 2 studied in this work (X- = 
Cl- for SO2R2). 

 

2. Experimental 
 

2.1. Chemicals and Instruments 

Unless noted otherwise, all commercially available reagents and solvents were used without 

further purification. TLC were carried out on Merck DC Kieselgel 60 F-254 aluminum sheets. 

The spots were directly visualized or through illumination with a UV lamp (l = 254/365 nm). 

Column chromatography purifications were performed manually either on silica gel (40-63 µm 

or 63-200 µm) from Sigma-Aldrich (technical grade) or Geduran® Si 60 silica gel (40-63 µm) 

from Merck Millipore. Some chromatographic purifications were performed using an 

automated flash chromatography purification system (Interchim puriFlash™ 430) with 

puriFlash™ columns (silica gel, 25 µm). THF and CH3CN (HPLC-grade) were dried over 

alumina cartridges using a solvent purification system PureSolv PS-MD-5 model from 
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Innovative Technology. Anhydrous C2H4Cl2 was purchased from Sigma-Aldrich. Peptide 

synthesis-grade DIEA and TFA were provided by Iris Biotech GmbH. The HPLC-gradient 

grade CH3CN used for HPLC-MS analyses was obtained from Carlo Erba. CH3CN used in 

semi-preparative RP-HPLC purifications was obtained from Biosolve or VWR (technical, 

+99% but distilled prior to use). All aq. buffers used in this work and aq. mobile-phases for 

HPLC were prepared using water purified with a PURELAB Ultra system from ELGA (purified 

to 18.2 MΩ.cm). Penicillin G acylase (PGA, from Escherichia coli) was provided by Iris 

Biotech GmbH. n-Butyllithium (BuLi) solution (in hexanes, Acros) was titrated before using 

(colorimetric titration with menthol + 2,2'-bipyridine or 2,2-diphenylacetic acid in dry 

THF)[52,53] and 2-bromotoluene was distilled prior to use. 

 

2.2. Instruments and methods 

Lyophilization steps were performed with a Christ Alpha 2-4 LD plus. 1H-, 13C- and 19F-

NMR spectra were recorded either on a Bruker Avance III 500 MHz or on a Bruker Avance III 

HD 600 MHz spectrometer (equipped with double resonance broad band probes). Chemical 

shifts are expressed in parts per million (ppm) from the residual non-deuterated solvent 

signal[54]. J values are expressed in Hz. IR spectra were recorded with a Bruker Alpha FT-IR 

spectrometer equipped with a universal ATR sampling accessory. The bond vibration 

frequencies are expressed in reciprocal centimeters (cm-1). Elemental analyses (C, H, N, S) were 

performed on a Thermo Scientific Flash EA 1112 instrument. HPLC-MS analyses were 

performed on a Thermo-Dionex Ultimate 3000 instrument (pump + autosampler at 20 °C + 

column oven at 25 °C) equipped with a diode array detector (Thermo-Dionex DAD 3000-RS) 

and a MSQ Plus single quadrupole mass spectrometer. HPLC-fluorescence analyses were 

performed with the same instrument coupled to a RS fluorescence detector (Thermo-Dionex, 

FLD 3400-RS). Purifications by semi-preparative HPLC were performed on a Thermo-Dionex 

Ultimate 3000 instrument equipped with a RS Variable Detector (four distinct wavelengths). 

Ion chromatography analyses were performed using an ion chromatograph Thermo Scientific 

Dionex ICS 5000 equipped with a conductivity detector CD (Thermo Scientific Dionex) and a 

conductivity suppressor ASRS-ultra II 4 mm (Thermo Scientific Dionex). Low-resolution mass 

spectra (LRMS) were recorded on a Thermo Scientific MSQ Plus single quadrupole equipped 

with an electrospray (ESI) source (direct introduction or LC-MS coupling). UV-visible spectra 

were obtained either on a Varian Cary 50 scan (single-beam) or an Agilent Cary 5000 UV-VIS-

NIR (double beam) spectrophotometer by using a rectangular quartz cell (Hellma, 100-QS, 45 
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´ 12.5 ´ 12.5 mm, pathlength: 10 mm, chamber volume: 3.5 mL), at 25 °C (using a temperature 

control system combined with water circulation). Fluorescence spectroscopic studies (scan and 

kinetics modes) were performed with an HORIBA Jobin Yvon Fluorolog spectrofluorometer 

(software FluorEssence) at 25/37 °C (using a temperature control system combined with water 

circulation), with a standard fluorometer cell (Labbox, LB Q, light path: 10 mm, width:10 mm, 

chamber volume: 3.5 mL). The absorption spectra of sulfone-xanthene dyes were recorded 

(220-800 nm) in the corresponding solvent with concentrations in the range 10-50 µM. 

Excitation/emission spectra were recorded after emission/excitation at the suitable wavelength 

(see Table 1, shutter: Auto Open, excitation slit = 5 nm and emission slit = 5 nm). All 

fluorescence spectra were corrected. Fluorescence quantum yields were measured at 25 °C by 

a relative method using the suitable standard (see Table 1, dilution by a factor of 3 between 

absorption and fluorescence measurements). The following equation was used: 

 
FF(x) = (AS/AX)(FX/FS)(nX/nS)2FF(s) 

 
where A is the absorbance (in the range of 0.01-0.1 A.U.), F is the area under the emission 

curve, n is the refractive index of the solvents (at 25 °C) used in measurements, and the 

subscripts s and x represent standard and unknown, respectively.  

 

Table 1. Experimental conditions used for the determination of fluorescence quantum yields. 
 

Fluorophorea Solvent l Ex (nm) Standard (std) FF(std) / solvent FF 

1 
CH3CN + 

10% 
TFAb 

580 Cy 5.0[55] 0.2 / PBSc 0.14 

2 H2O + 
0.1% FAd 600 Cy 5.0[55] 0.2 / PBSc 0.06 

a stock solutions (1.0 mg/mL) of fluorophores were prepared in spectroscopic grade DMSO, b refractive index = 
1.337, c refractive index = 1.337, d refractive index = 1.333. 
 

2.3. High-performance liquid chromatography separations 

Several chromatographic systems were used for the analytical experiments and purification 

steps: System A: RP-HPLC-MS (Phenomenex Kinetex C18 column, 2.6 µm, 2.1 × 50 mm) with 

CH3CN (+ 0.1% FA) and 0.1% aq. formic acid (aq. FA, pH 2.5) as eluents [2% CH3CN (0.1 
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min) followed by a linear gradient from 2% to 100% (5 min) of CH3CN, then 100% CH3CN 

(1.5 min)] at a flow rate of 0.5 mL/min. Quadruple UV-visible detection was achieved at 220, 

260, 600 and 700 nm (+ diode array detection in the range 200-800 nm). LR ESI-MS detection 

in the positive/negative mode (full scan, 100-2000 a.m.u., peaking format: centroid, needle 

voltage: 3.0 kV, probe temperature: 350 °C, cone voltage: 75 V and scan time: 1 s.) System B: 

system A with the following gradient [50% CH3CN (0.1 min) followed by a linear gradient 

from 50% to 100% (6.5 min) of CH3CN, then 100% CH3CN (0.5 min)]. Quadruple UV-visible 

detection was achieved at 220, 300, 650 and 700 nm. System C: semi-preparative RP-HPLC 

(SiliCycle SiliaChrom C18 column, 10 µm, 20 × 250 mm) with CH3CN and 0.1% aq. TFA as 

eluents [0% CH3CN (5 min), followed by a linear gradient from 0 % to 10% (4 min) and 10% 

to 100% (90 min) of CH3CN] at a flow rate of 20.0 mL/min. Quadruple UV-visible detection 

was achieved at 220, 300, 310 and 640 nm. System D: system C with the following gradient 

[10% CH3CN (5 min), followed by a linear gradient from 10% to 15% (2.5 min) and 15% to 

100% (170 min) of CH3CN]. Quadruple UV-Vis detection was achieved at 220, 240, 490 and 

640 nm. System E: semi-preparative RP-HPLC (Thermo Hypersil GOLD C18 column, 5 µm, 10 

× 250 mm) with CH3CN and 0.1% aq. TFA as eluents [0% CH3CN (5 min), followed by a linear 

gradient from 0% to 10% (5 min) and 10% to 100% (90 min) of CH3CN] at a flow rate of 4.0 

mL/min. Quadruple UV-Vis detection was achieved at 220, 260, 490 and 645 nm. System F: 

system A with the following gradient [5% CH3CN (0.1 min) followed by linear gradient from 

5% to 100% (6.5 min) of CH3CN, then 100% CH3CN (1 min)]. Quadruple UV-visible detection 

was achieved at 220, 300, 650 and 700 nm (+ diode array detection in the range 200-800 nm). 

System G: system C with the following gradient [30% CH3CN (5 min), followed by a linear 

gradient from 30% to 50% (10 min) and 50% to 100% (65 min) of CH3CN]. Dual UV detection 

was achieved at 220 and 240 nm. System H: system E with the following gradient [10% CH3CN 

(5 min), followed by a linear gradient from 10% to 30% (10 min), 30% to 50% (10 min) and 

50% to 100% (65 min) of CH3CN]. Dual UV detection was achieved at 220 and 240 nm. System 

I: system A with the following gradient [5% CH3CN (0.1 min) followed by a linear gradient 

from 5% to 100% (5 min) of CH3CN, then 100% CH3CN (3 min)] and dual UV (220 et 260 

nm) or fluorescence detection, achieved at 45 °C at the following Ex/Em channels: 634/673 nm 

and 643/687 nm (sensitivity: 1, PMT auto, filter wheel auto). 

 

2.4. Synthesis of sulfone-pyronin 

2.4.1. Sulfone analog of 3,6-diamino-9H-xanthene (3) 
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4,4'-Diaminodiphenylmethane (4 g, 20 mmol, 1 equiv) was added into fuming H2SO4-SO3 

(96%, 20 mL). The resulting mixture was stirred at 80 °C overnight. The reaction was checked 

for completion by TLC (CH2Cl2/MeOH 9 : 1, v/v) and aq. 5.0 M solution of NaOH was added 

until a pH of 9 was reached. The resulting mixture was extracted with EtOAc (4 × 100 mL). 

The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered 

and finally evaporated to dryness to give compound 3 as a white amorphous solid (4.66 g, yield 

83 %). Rf (CH2Cl2/MeOH 9 : 1, v/v) = 0.37; IR (ATR): n 3432, 3369, 3355 (NH2), 1637, 1607, 

1489 (S=O stretch), 1437, 1422, 1308, 1275, 1175, 1308, 1275, 1174, 1154, 1133 (S=O stretch), 

1040, 963, 921, 855, 831, 796, 700, 689, 632; 1H NMR (500 MHz, DMSO-d6):	δ 7.18 (d, J = 

8.2 Hz, 2H), 7.14 (d, 2H, J = 2.4 Hz), 6.73 (dd, 2H, J = 8.2 Hz, J = 2.4 Hz), 5.54 (s, 4H, NH), 

3.84 (s, 2H); 13C NMR (126 MHz, DMSO-d6): δ 147.9, 137.6, 129,5, 125.1, 117.2, 107.0, 31.1; 

HPLC (system A): tR = 3.2 min, purity = 97% (at 240 nm); LRMS (ESI, positive mode, LC-MS 

coupling): m/z = 260.9 [M + H]+ and 302.3 [M + H + CH3CN]+, calcd for C13H12N2O2S 260.1; 

Elemental anal.: Found C, 59.6; H, 4.7; N, 10.8; S, 12.6 C13H12N2O2S requires C, 60.0; H, 4.7; 

N, 10.8; S, 12.3. 

 

2.4.2. Sulfone analog of 3,6-diaminoxanthone (4) via FeCl3-mediated oxidation 

Compound 3 (745 mg, 2.9 mmol, 1 equiv) was dissolved in aq. 2.0 M HCl (20 mL). Then, 

a solution of FeCl3 (1.4 g, 8.6 mmol, 3 equiv) in 20 mL of aq. 2.0 M HCl was added. The 

resulting reaction mixture was stirred at 90 °C overnight. The reaction was monitored by RP-

HPLC (system A). Despite an incomplete conversion of the starting material (SM), the mixture 

was cooled to RT and quenched by addition of an aq. 20% NaOH solution until a pH of 8 was 

reached. The resulting aq. phase was extracted with EtOAc (4 × 50 mL). The combined organic 

layers were dried over anhydrous Na2SO4, filtered and finally evaporated to dryness. The 

resulting residue was purified by flash-column chromatography on a silica gel (Sigma-Aldrich 

40-63 µm; mixture pentane/EtOAc 1 : 1, v/v as eluent) to give two distinct batches containing 

both the starting compound and the desired ketone with the following ratio determined by RP-

HPLC (system A) (batch 1: 239 mg, ketone/SM 47 : 52 and batch 2: 307 mg, ketone/SM 76 : 

24, see ESI, Fig. S6). Despite several attempts, it was not possible to obtain a pure sample of 

ketone 4 in significant amount and these pre-purified mixtures were used in the next step 

without further purification. Conversely, Na2S2O8-mediated oxidation led to a crude product 

easier to purify due to complete conversion of SM, but isolated with a dramatically lower yield 

(4%).  
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Compound 3 (200 mg, 0.8 mmol, 1 equiv) and Na2S2O8 (380 mg, 1.6 mmol, 2 equiv) was 

dissolved in a mixture DMF/H2O (2 : 1, v/v, 12 mL). The resulting reaction mixture was stirred 

at 80 °C for 5 h. Monitoring was achieved by RP-HPLC (system A) and revealed no progress. 

A further amount of Na2S2O8 (1 equiv) was added and the reaction mixture was left under 

stirring at 80 °C for a further 4 h. The RP-HPLC monitoring revealed the total conversion of 

SM into the expected product along with numerous side-products. Solvent were removed and 

the residue was dissolved in EtOAc (30 mL) and washed with aq. 5% K2CO3. Organic layer 

was dried over anhydrous Na2SO4, filtered and finally evaporated to dryness. The resulting 

residue was purified by automated flash-column chromatography with a silica gel cartridge (25 

g, 25 µm, heptane/EtOAc with a step gradient from 60 : 40 to 30 : 70, v/v as eluent) to give the 

desired product as a yellow amorphous solid (9 mg, yield 4%). Rf (EtOAc/heptane 6 : 4, v/v) = 

0.33; IR (ATR): n 3476, 3443, 3367, 3346, 3227, 2922 (weak, trace of EtOAc), 1725 (weak, 

trace of EtOAc), 1624, 1581, 1524, 1503, 1483, 1374, 1335, 1309, 1280, 1185, 1130, 1083, 

919, 847, 768, 704, 687, 669; 1H NMR (500 MHz, DMSO-d6):	δ 7.92 (d, J = 9.0 Hz, 2H), 7.12 

(d, 2H, J = 2.5 Hz), 6.87 (dd, 2H, J = 8.5 Hz, J = 2.5 Hz), 6.79 (bs, 4H, NH); 13C NMR (151 

MHz, DMSO-d6): δ 174.2, 154.0, 142.2, 130.8, 117.5, 116.9, 105.3; LRMS (ESI, positive 

mode, LC-MS coupling): m/z = 275.2 [M + H]+, calcd for C13H10N2O3S 274.0; HPLC (system 

F): tR = 3.7 min, purity = 99% (at 260 nm); UV-vis (recorded during the HPLC analysis): lmax 

= 249 nm, 266 nm, 311 nm and 389 nm; Elemental anal.: Found C, 56.5; H, 4.2; N, 8.5; S, 11.0 

C13H10N2O3S . 0.17 EtOAc requires C, 56.8; H, 4.0; N, 9.6; S, 11.0. 

 

2.4.3. Sulfone-pyronin / sulfone-xanthydrol (1 / 5) 

Impure ketone 4 (batch 1, 239 mg, 0.87 mmol, 1 equiv, please note: mole number was 

calculated by considering ketone as a pure compound) was dissolved in dry THF (25 mL) and 

the resulting solution was cooled to 4 °C with an ice-water bath. Then, NaBH4 (8 mg, 0.21 

mmol, 0.25 equiv) was added. The reaction mixture was stirred at RT for 1 h. Monitoring was 

achieved by RP-HPLC (system A) and revealed no progress of this hydride-mediated reduction. 

A further amount of NaBH4 (0.75 equiv) was added and prolonged heathing at 40 °C for 3 days 

led to complete consumption of the ketone. The reaction mixture was cooled to 4 °C with an 

ice-water bath and quenched by adding aq. 1.0 M HCl. The crude mixture was diluted with aq. 

TFA 0.1% and CH3CN and purified by semi-preparative RP-HPLC (system C, tR = 29.8-30.6 

min). The product-containing fractions were lyophilized to give the TFA salt of sulfone-

xanthydrol 5 as a yellow amorphous solid (9 mg, yield < 5%). This pure sample contains minor 
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amount of blue-colored sulfone-pyronin 1. Despite several attempts (in various deuterated 

solvents: CD3CN-D2O, DMSO-d6 and DMSO-d6 + D2O-DCl), it was not possible to obtain 

good quality and interpretable 1H and 13C NMR spectra. LRMS (ESI, positive mode, LC-MS 

coupling): m/z = 259.1 [M - H2O + H]+ dehydration occured during the ionization process 

within ESI probe, calcd for C13H12N2O3S 276.1; HPLC (system A): tR = 2.8 min, purity = 92% 

(at 260 nm); UV-vis (recorded during the HPLC analysis): lmax = 229 nm and 304 nm (weak). 

 

2.5. Synthesis of sulfone-rosamine 

2.5.1. Sulfone analog of N,N,N',N'-tetraallyl-3,6-diamino-9H-xanthene (6) 

To a suspension of bis-aniline 3 (3.1 g, 11.5 mmol, 1 equiv) and anhydrous K2CO3 (6.3 g, 

46 mmol, 4 equiv) in dry CH3CN (100 mL), was added allyl bromide (7 g, 57.5 mmol, 5 equiv). 

The resulting reaction mixture was stirred at 80 °C overnight. Reaction monitoring was 

achieved by RP-HPLC (system B), additional equivalents of allyl bromide (2 equiv) were added 

and the mixture was left under stirring at 80°C for a further 6 h. After cooling to RT, the mixture 

was filtered over a dicalite 4158 pad which was rinsed with CH2Cl2 (70 mL). The filtrate was 

evaporated to dryness and the resulting residue was purified by automated flash-column 

chromatography with a silica gel cartridge (80 g, 25 µm, heptane/EtOAc with a step gradient 

from 100 : 0 to 0 : 100, v/v as eluent) to give the desired N,N,N',N'-tetraallyl derivative 6 (4.1 

g, yield 81%) as yellow amorphous solid. Rf (CH2Cl2/heptane 9 : 1, v/v) = 0.47; IR (ATR): n 

3084, 3055, 3005, 2978, 2849, 1642, 1604, 1497, 1438, 1420, 1391, 1362, 1332, 1292, 1281, 

1259, 1210, 1179, 1140, 1042, 990, 953, 934, 921, 908, 844, 815, 788, 705, 670, 624, 608, 554; 
1H NMR (500 MHz, DMSO-d6): δ 7.33 (d, 2H, J = 8.6 Hz), 7.09 (d, 2H, J = 2.7 Hz), 6.85 (dd, 

2H, J = 8.6 Hz, J = 2.8 Hz), 5.85 (m, 4H, H2C=CH-allyl), 5.14 (m, 8H, H2C=CH-allyl), 3.99 

(d, 8H, J = 4.6 Hz, CH2-allyl), 3.93 (s, 2H); 13C NMR (126 MHz, DMSO-d6): δ 147.4, 138.0, 

134.0, 130.0, 125.8, 116.3, 115.9, 105.7, 52.94, 31.2; LRMS (ESI, positive mode, LC-MS 

coupling): m/z = 421.0 [M + H]+, calcd for C25H28N2O2S 420.2; HPLC (system A): tR = 6.0 min, 

purity = 98% (at 260 nm); UV-vis (recorded during the HPLC analysis): lmax = 232 nm, 271 

nm and 337 nm (weak). 

 

2.5.2. Sulfone analog of N,N,N',N'-tetraallyl-3,6-diaminoxanthone (7) 

p-Chloranil (6.6 g, 26.8 mmol, 3 equiv) was added into a solution of compound 6 (3.7 g, 8.9 

mmol, 1 equiv) in C2H4Cl2 (100 mL) and the resulting reaction mixture was heated at reflux 
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overnight. The reaction was monitored by RP-HPLC (system B), found to be not complete but 

accompanied by the formation of side-products. Thus, the reaction was quenched by adding aq. 

20% Na2SO3 (80 mL) and stirring for 30 min. Thereafter, the aq. phase was extracted with 

CH2Cl2 (3 × 100 mL) and the combined organic layers were dried over anhydrous Na2SO4, 

filtered and finally evaporated to dryness. The resulting residue was subjected to a first column 

chromatography on a silica gel (Sigma-Aldrich 63-200 µm; pentane-CH2Cl2 8 : 2, v/v as eluent) 

to give a mixture containing the desired ketone as the major product. A second column 

chromatography purification over smaller particle size silica gel (Merck Geduran® Si 60 40-63 

µm; pentane-CH2Cl2 with a step gradient from 5 : 5 to 1 : 9, v/v as eluent) provided the targeted 

ketone 7 in a pure form (970 mg, yield 25%) as a green amorphous solid. Rf (CH2Cl2-pentane 

6 : 4, v/v) = 0.23; IR (ATR): n 3085, 2983, 2916, 1633, 1581(C=O stretch), 1535, 1513, 1441, 

1395, 1360, 1330, 1313, 1296, 1251, 1226, 1200, 1178, 1135, 1043, 993, 946, 921, 901, 767, 

703, 669, 622; 1H NMR (500 MHz, DMSO-d6): d 8.01 (d, 2H, J = 8.8 Hz), 7.06 (m,  4H), 5.89 

(m, 4H, H2C=CH-allyl), 5.17 (m, 8H, H2C=CH-allyl), 4.14 (d, 8H, J = 4.3 Hz, CH2-allyl); 13C 

NMR (126 MHz, DMSO-d6): d 174.9, 152.2, 142.5, 133.0, 130.9, 118.4, 117.0, 116.0, 104.4, 

53.1; LRMS (ESI, positive mode, LC-MS coupling): m/z = 435.2 [M + H]+, calcd for 

C25H26N2O3S 434.2; HPLC (system B): tR = 3.5 min, purity = 97% (at 300 nm); UV-vis 

(recorded during the HPLC analysis): lmax = 428 nm; Elemental anal.: Found C, 68.8; H, 6.5; 

N, 6.2; S, 6.3 C26H26N2O3S requires C, 69.1; H, 6.0; N, 6.5; S, 7.4. 

 

2.5.3. Sulfone analog of N,N,N',N'-tetraallyl-6-amino-9-(o-tolyl)-3H-xanthen-3-imine (8) 

To a flame-dried flask flushed with argon were added freshly distilled 2-bromotoluene (240 

µL, 2 mmol, 1 equiv) and dry THF (5 mL). The solution was cooled to -78 °C, and 2.3 M BuLi 

solution in hexanes (870 µL, 2 mmol, 1 equiv) was added dropwise over 5 min. The resulting 

reaction mixture was stirred at -78 °C for 1 h. The halogen-lithium exchange reaction was 

checked for completion by 1H NMR (quenching of ArLi formed with MeOH). A solution of 

ketone 7 (255 mg, 0.58 mmol, 0.3 equiv) in dry THF (10 mL) was added dropwise (over 10 

min) to the crude ArLi solution at -78 °C and after that, the mixture was warmed to RT. The 

reaction was checked for completion by TLC. Thereafter, the mixture was cooled to 4°C with 

an ice-water bath, aq. saturated NH4Cl (10 mL) was added slowly and stirred at RT for 10 min. 

The mixture was extracted with CH2Cl2 (3 × 50 mL) and the combined organic layers were 

dried over anhydrous Na2SO4, filtered and finally evaporated to dryness. The resulting residue 

was dissolved in CH2Cl2-TFA (9 : 1, v/v, 10 mL) and the reaction mixture was stirred at RT for 
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30 min (a bright green color typical of N,N,N',N'-tetraalkyl-sulfone-rosamines immediately 

appeared).The dehydration reaction was checked for completion by RP-HPLC (system B). 

Finally, volatiles were evaporated to dryness to give the crude sulfone-rosamine 8, which was 

used in the next step without further purification. LRMS (ESI, positive mode, LC-MS 

coupling): m/z = 509.2 [M]+°, calcd for C32H33N2O2S+ 509.2; HPLC (system B): tR = 5.6 min; 

UV-vis (recorded during the HPLC analysis): lmax = 701 nm. During the course of this acid-

mediated dehydration reaction, partial deprotection of anilines was observed. Sulfone-

rosamines bearing only two or three N-allyl substituents were identified in batch of crude 8. 

Triallyl derivative: LRMS (ESI, positive mode, LC-MS coupling): m/z = 469.2 [M]+°, calcd for 

C29H29N2O2S+ 469.2; HPLC (system B): tR = 5.3 min; UV-vis (recorded during the HPLC 

analysis): lmax = 685 nm. Diallyl derivative: LRMS (ESI, positive mode, LC-MS coupling): 

m/z = 429.2 [M]+°, calcd for C26H25N2O2S+ 429.2; HPLC (system B): tR = 4.9 min; UV-vis 

(recorded during the HPLC analysis): lmax = 672 nm. 

 

2.5.3. Sulfone analog of 6-amino-9-(o-tolyl)-3H-xanthen-3-imine (2) 

Crude N-tetrallyl derivative 8 (301 mg) and 1,3-dimethylbarbituric acid (413 mg, 2.6 mmol, 

4.4 equiv, based on 0.58 mmol of 8 theoretically obtained with a quantitative yield for the 

previous step) were dissolved in degassed C2H4Cl2 (7 mL). Catalytic amount of Pd(PPh3)4 

(76 mg, 65.7 µmol, 0.11 equiv) was added and the resulting reaction mixture was stirred at RT 

for 5 h. The reaction was checked for completion by RP-HPLC (system B). Thereafter, the 

crude mixture was evaporated to dryness without heating over 35 °C and the resulting residue 

was diluted with aq. TFA 0.1% and CH3CN and purified by semi-preparative RP-HPLC 

(system D). A first pure sample of sulfone-rosamine 2 (tR = 36.1-39.1 min) was recovered as a 

TFA salt after freeze-drying (dark blue amorphous powder, 12.2 mg). The second batch of 

lower purity was subjected to a second RP-HPLC purification (system E, tR = 35.1-43.3 min). 

The product-containing fractions were lyophilized to give further 33 mg of 2 (overall yield 

20%, based on mass percentage of TFA = 13.1% determined by ion chromatography, see ESI). 

IR (ATR): n 3316, 3064, 1671, 1581, 1527, 1377, 1335, 1312, 1225, 1198, 1145, 1048, 904, 

834, 799, 757, 720, 689, 663, 569, 445, 431; Correct quality and interpretable 1H and 13C NMR 

spectra were obtained only after addition of D2O in DMSO-d6 (without heavy water, broad and 

poorly resolved peaks for aromatic protons/carbons were observed, reflecting the cationic 

resonance hybrid structure of 2). Consequently, signals assigned to hydrated form (deuterated 
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triaryl carbinol derivative 9) were mainly observed. 1H NMR (600 MHz, DMSO-d6 + 5% D2O): 

δ 8.11 (d, 1H, J = 8.4 Hz), 7.34 (pt, 1H, J = 7.5 Hz), 7.21 (pt, 1H, J = 7.5 Hz), 7.11 (d, 2H, J = 

2.4 Hz), 6.99 (d, 1H, J = 7.2 Hz), 6.63 (dd, 2H, J = 8.7 Hz, J = 2.4 Hz), 6.55 (d, 2H, J = 9.0 

Hz), 1.37 (s, 3H, CH3-tolyl); 13C NMR (151 MHz, DMSO-d6 + 5% D2O): d 148.5 (2C), 145.2, 

136.7 (2C), 134.7, 131.6, 130.3 (2C), 128.6 (2C), 127.5, 126.4, 125.4, 118.2 (2C), 105.3 (2C), 

70.8, 20.1; 19F NMR (282 MHz, DMSO-d6): d = -73.8 (s, 3F, CF3-TFA); LRMS (ESI, positive 

mode, LC-MS coupling): m/z = 349.0 [M + H]+, calcd for C20H16N2O2S 348.1; HPLC (system 

F): tR = 3.7 min, purity = 95% (at 300 nm), purity = 100% (at 650 nm). 

 

2.6 PGA-sensitive probe (10) 

Sulfone-rosamine 2 (27 mg, 0.08 mmol, 1 equiv) and DIEA (69 µL, 0.40 mmol, 5 equiv) 

were dissolved in dry CH3CN (5 mL) and cooled to 4 °C. PhAcCl (21 µL, 0.16 mmol, 2 equiv) 

was added dropwise and the resulting mixture was stirred at RT for 1 h. Reaction monitoring 

was achieved by RP-HPLC (system F), additional equivalents of PhAcCl (2 equiv) were added 

at 4 °C and the mixture left under stirring at RT for a further 30 min.  MeOH (10 µL) was added 

to quench the excess of acyl chloride and volatiles were evaporated to dryness. The resulting 

residue was dissolved with aq. TFA 0.1% and CH3CN and purified by semi-preparative RP-

HPLC (system G). This first purification has led to recovery of a batch of impure probe 10 (tR 

= 29.7-32.1 min) which was subjected to a second RP-HPLC purification (system H, tR = 32.2-

32.7 min). The product-containing fractions were lyophilized to give less than 1 mg of 10, as a 

white amorphous powder. 1H NMR (500 MHz, CDCl3): δ 8.22 (dd, 1H, J = 1.2 Hz, J = 7.8 Hz), 

7.89 (d, 2H, J = 2.3 Hz), 7.78 (dd, 2H, J = 2.3 Hz, J = 8.7 Hz), 7.45-7.30 (m, 12H), 7.08 (d, 1H, 

J = 7.5 Hz), 6.92 (d, 2H, J = 8.7 Hz), 3.76 (s, 4H, CH2-PhAc), 1.27 (s, 3H, CH3-tolyl); 13C 

NMR (126 MHz, CDCl3): quantity isolated was too small for vizualization of all carbon peaks,	

despite of extended acquisition time on a 500 MHz spectrometer equipped with a BBI probe 

(four times more sensitive in carbon than a standard 300 MHz spectrometer); LRMS (ESI, 

positive mode, LC-MS coupling, cone voltage 75 V): m/z = 585.3 [M]+°, elimination of chlorine 

atom occurred during the ionization process within ESI probe, calcd for C36H29N2O4S+ 585.2 

(for major isotope); LRMS (ESI, positive mode, direct introduction, cone voltage 30 V): m/z = 

620.3 (100), 621.3 (25) and 622.3 (10) [M]+°, calcd for C36H29ClN2O4S 620.2 (for major 

isotope), due to the lack of easily protonable sites within this molecule, only the radical cation 

as molecular ion was observed. Too avoid chlorine elimination during the ionization process, 

cone voltage was reduced (30 V vs. 75 V); HPLC (system I): tR = 6.1 min, purity = 91% (at 260 
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nm); UV (recorded during the HPLC analysis): lmax = 228 nm (+ shoulder at 270 nm); UV 

(PBS, pH 7.4): lmax = 249 nm (e 16 410 M-1 cm-1) and 275 nm (e 15 740 M-1 cm-1), broad 

absorption band between 220-280 nm (e 15 910 M-1 cm-1 at 260 nm); UV (AcONa, pH 3.5): 

broad absorption band between 220-280 nm (e 16 500 M-1 cm-1 at 260 nm).  

 

2.7 In vitro activation of fluorogenic "turn-on" probe 10 by PGA - experimental details 

2.7.1 Stock solution of probe and enzyme 

Stock solution (1 mg/mL) of PGA-sensitive probe 10 was prepared in HPLC-grade CH3CN 

(final concentration: 1.6 mM) and subsequently diluted with phosphate buffer (PB, 100 mM, 

pH 7.4) or acetate buffer (100 mM, pH 3.5) for UV-vis absorption, fluorescence measurements 

and enzyme kinetics. Commercial PGA (841 U mL), aliquoted (samples of 100 µL) and kept 

frozen at -20 °C, directly used without dilution. 

 

2.7.2 Fluorescence assays 

All assays were performed at 37 °C (using a temperature control system combined with 

water circulation and conducted with magnetic stirring). For probe 10 (final concentration in 

3.5 mL fluorescence quartz cell: 1 µM), the fluorescence emission of the released sulfone-

rosamine 2 was monitored at l = 685 nm (slit = 5 nm) (Ex l = 640 nm, slit = 5 nm) over time 

with measurements recorded every 5 s (overall duration 3 600 s). 1 U of PGA (1.2 µL) was 

added after 5 min of incubation of the probe in buffer. For kinetic performed in PB, TFA (25-

50 µL) was added after 30 min of incubation, for far-red fluorescence unveiling. Blank 

experiments to assess the stability of the probe in aqueous buffers, were achieved in the same 

way but without adding the enzyme. 

 

2.7.3 HPLC-fluorescence analyses 

Enzymatic reaction mixtures from fluorescence assays were directly analyzed by RP-

HPLC-fluorescence (injected volume: 10 µL, system I). 
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3. Results and discussion 

 
3.1. Synthesis and stability of sulfone analog of 6-amino-3H-xanthen-3-imine 

 
Contrary to rhodamines and rosamines, little work has been devoted to the synthesis of 

heteroatom analogs of pyronins. The only fluorescent molecules already described in the 

literature, are derived from the pyronin Y scaffold (O atom is replaced by SiMe2 or GeMe2 

moiety, Scheme 1)[56-60] and thus not usable as "smart" photoactive platforms due to the lack 

of optically tunable primary/secondary amino group(s). Consequently, the analytical use of 

these fluorophores was not considered, except Ge-pyronin GeP640 used as a thiol-sensitive 

"ON-OFF" probe and suitable for reversible and dynamic fluorescence imaging of cellular 

redox self-regulation (i.e., real-time change in the balance between reactive oxygen species 

(ROS) stress and glutathione (GSH) antioxidant repair processes)[59]. In order to devise 

effective synthetic routes toward hetero-pyronins bearing two primary anilines, strategies 

previously explored for preparing hetero-analogs of N,N,N',N'-tetraalkyl-

rhodamines/rosamines could be a key source of inspiration even if the temporary protection of 

amino groups might be required both to enhance the solubility of synthesis intermediates and 

to prevent undesired side-reactions. However, for the synthesis of sulfone analog of 6-amino-

3H-xanthen-3-imine (sulfone-pyronin 1), we thought that the first steps of synthetic strategy 

recently proposed by Liu et al. for preparing sulfone-rosamines[44], could be directly applied 

to commercial 4,4'-diaminodiphenylmethane (Scheme 1). First, one-pot 

sulfonylation/cyclization leading to cyclic sulfone 3 was achieved with oleum acting as both 

electrophilic sulfonating agent and solvent, at 80 °C for 12 h. Acid neutralization with an 

excess of NaOH and liquid-liquid extraction were enough to recover 3 in a pure form with a 

good 83% yield. Next, all attempts to directly obtain sulfone-pyronin 1 through oxidative 

aromatization of this latter 3,6-diamino-hetero-xanthene derivative failed. Indeed, the use of 

DDQ in DMF led to a complex mixture of many unidentified products along with a minute 

proportion of 1. Other oxidants such as FeCl3 in aq. 4.0 M HCl (at 50 °C) or NaIO4 in CH3CN-

H2O mixture (at 60 °C) provided the 9-keto derivative 4. Consequently, we have considered 

an alternative aromatization procedure involving oxidation of the activated methylene group 

to ketone, followed by reduction to the corresponding benzhydryl alcohol and final acid-

mediated dehydration. Thus, 3 was treated with an excess of FeCl3 (3 equiv) in aq. 2.0 M HCl 

at 90 °C for 12 h, to give 3,6-diamino-9H-xanthen-9-one 4. Despite several chromatographic 

purification attempts, it was not possible to obtain this ketone in a pure form and a mixture of 
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3 and 4 was used in the next step. Other oxidants were tested (i.e., activated MnO2 in DMF and 

at Na2S2O8 in DMF-H2O mixture at 80-90 °C). Despite a complete conversion of 3, an 

increased number of side-products was observed causing a dramatic drop in the isolated yield 

of pure 4 (see paragraph 2.4.2). Reduction was achieved using a moderate excess of NaBH4 in 

dry THF, and the resulting sulfone-xanthydrol 5 was subjected to an acidic treatment to yield 

the blue-colored sulfone-pyronin 1. Due to its high polarity, this fluorophore was readily 

purified by semi-preparative RP-HPLC, but despite the use of acidic aq. mobile phase (i.e., aq. 

TFA 0.1%, pH 1.9), almost complete conversion of 1 into its colorless and non-emissive C9-

benzhydrol form 5 was observed during this liquid chromatographic isolation procedure.  

 
Scheme 1. Synthesis of sulfone-pyronin 1 (in square brackets to reflect that this fluorophore is not stable under 
standard conditions) in equilibrium with its hydrated form namely sulfone-xanthydrol 5 (TFA salt, X- = CF3CO2

-, 
RT = room temperature). ayield not determined because it was impossible to isolate ketone 3 in a pure form.  

 

This surprising result is explained on the basis of nucleophilic attack of a water molecule at 

the C9 position of 1 whose electrophilic character is strengthened by the strong electron-

withdrawing ability of the sulfone group. To the best of our knowledge, very few examples of 

hetero-xanthene dyes with meso-position highly sensitivity towards nucleophilic addition have 

been already highlighted in the literature[39]. Worth mentioning in this context is Ge-pyronin 

GeP640 reactive towards biological thiols at physiological pH (vide supra) and not under 

acidic conditions[59]. The structure of 5 was confirmed by ESI mass spectrometry (see ESI, 

Fig. S13) but we did not manage to get well-resolved and interpretable NMR spectra whatever 

the deuterated solvent used (CD3CN-D2O, DMSO-d6 and DMSO-d6 + D2O-DCl), probably, 

due to rapid equilibrium between different forms including 1 and 5. Its good purity (92%) was 

confirmed by RP-HPLC analysis and the mass percentage of TFA (23.4%) in sample was 

determined by ion chromatography. Furthermore, this benzhydryl alcohol exhibits a marked 
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electronic absorption in the UV-A range (Abs lmax = 329 nm with e 6 500 M-1 cm-1 in DMSO). 

To determine the spectral features of the blue-colored and fluorescent form 1, we explored 

different solvent conditions that may prevent or minimize Michael type addition of water and 

thus favoring the predominance of this full p-conjugated molecule. Thus, in CH3CN containing 

10% of TFA, we observe a broad and intense absorption band centered at l = 632 nm (e 19 

570 M-1 cm-1) assigned to the 0-0 band of the S0�S1 transition (Fig. 3). A less-pronounced 

shoulder peak at the higher-energy side is also noticed and is attributed to the vibronic 

relaxation (the 0-1 vibrational band). Excitation at 580 nm leads to a significantly Stokes-

shifted intramolecular charge transfer (ICT) emission band centered at 671 nm (full-width half 

maximum, Dl1/2max = 75 nm). For fluorophore solutions with concentration below 10 µM, a 

linear relationship between absorbance and fluorescence emission was obtained and thus the 

accurate determination of fluorescence quantum yield was achieved (FF = 14% determined 

using sulfoindocyanine dye Cy 5.0 as standard (FF = 20% in PBS)[55]).  

 
Fig. 3. (Top) Normalized absorption (blue), excitation (Em 710 nm, slit 5 nm, green) and emission (Ex 580 nm, 
slit 5 nm, red) spectra of sulfone-pyronin 1 in CH3CN + 10% TFA at 25 °C. (Bottom) Picture of solutions 
(concentration: 18.5 µM) of sulfone-pyronin 1 / sulfone-xanthydrol 5 in CH3CN + 10% TFA, aq. 0.1% TFA (pH 
1.9) and PBS (pH 7.4) respectively. 
	

However, for higher concentrations, the absorption and excitation spectra were not perfectly 

superimposable (Fig. 3), suggesting the presence of several absorbing species in solution, and 

the persistence of equilibrium between forms 1 and 5 even in strong acidic medium. All these 

experimental observations clearly confirm the poor stability of sulfone-pyronins in aq. media 

whatever the pH value, that precludes their use as fluorescent reporters in bioanalytical 

Left : CH3CN + 10% TFA
Middle : aq. 0.1% TFA, pH 1.9
Right : PBS, pH 7.4
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applications. However, one can speculate that this novel type of NIR fluorophores may be 

useful for devising novel reaction-based sensing schemes readily applicable to non-aqueous 

environments or matrices. Indeed, analytes that are able to react with 9-OH of sulfone-

xanthydrols to convert it into good leaving group (e.g., electrophilic pollutants or chemical 

warfare agents including phosgene and organophosphorus compounds)[61], will trigger 1,6-

elimination process leading to aromatization and fluorescence unveiling (Fig. 4)[62]. In order 

to improve the aq. stability of sulfone-xanthene dyes, we next explored the synthesis of 

sulfone-rosamines for which C-9 position is sterically hindered through its substitution with 

an aryl group. 

	

Fig. 4. Proposed reaction-based sensing mechanism for the detection of organophosphorus compounds (OP = 
organophosphate or organophosphonate) or phosgene using a sulfone-xanthydrol derivative as fluorogenic probe 
(R= Me or Et, Y- = Cl- or leaving group of OP, LG = leaving group = OC(O)Cl in the case of phosgene, X- = Cl- 
in the case of phosgene). 
	

3.2. Synthesis of sulfone analog of 6-amino-9-(o-tolyl)-3H-xanthen-3-imine 
 

Among the set of sulfone analogs of N,N,N',N'-tetramethylrosamines reported by Liu et al., 

the dye molecule SO2R2 bearing o-tolyl group as C-9 aryl substituent is easily synthesized 

through the nucleophilic addition of the corresponding organolithium reagent to the sulfone-

xanthone (yield 52%)[44]. Furthermore, this sulfone-rosamine exhibits a quite satisfying 

stability within the pH range 2-8 allowing to achieve its complete photophysical 

characterization in simulated physiological conditions (Abs/Em lmax = 703/742 nm, FF = 

7.3%). In view of these results, we planned the preparation of the fluorogenic version of SO2R2 

bearing two optically tunable primary amino groups (Scheme 2). As previously mentioned (vide 

supra) and by analogy with the synthetic route towards phospha-fluorescein, published by 

Fukazawa et al.[63], the allyl moiety was used as protecting group (both to remove NH "acidic" 

protons and to enhance solubility of intermediates in organic solvents) that is stable under a 

variety of conditions (especially in the presence of ArLi) and easily removed by Pd(0)-catalysis 

under mild and neutral conditions.  
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Scheme 2. Synthesis of sulfone-rosamine 2 (TFA salt, X- = CF3CO2
-, RT = room temperature, 1,3-DMBA = 1,3-

dimethylbarbituric acid).  

 

First, N,N'-tetraalkylation of 3,6-diamino-sulfone-xanthene 3 was performed using an excess 

of allyl bromide (7 equiv) and anhydrous K2CO3 (4 equiv), in dry CH3CN and under reflux. A 

careful monitoring of this reaction through TLC and HPLC-MS analyses was required to avoid 

over-allylation, particularly at the C-9 activated benzhydryl-type position. Purification by 

conventional flash-column chromatography on silica gel provided 6 in good 81% yield. Since 

we suspected that the allyl moieties may not be inert to harsh acidic conditions (aq. 2.0 M HCl 

at 90 °C) typically used in FeCl3-mediated oxidation reactions (vide supra), the use of o-

chloranil (3,4,5-6-tetrachloro-1,2-benzoquinone) was preferred to convert 6 into the sulfone-

xanthone intermediate 7. The use of 1,2-dichloroethane (C2H4Cl2) instead of CH2Cl2 as solvent, 

allowed us to heat the reaction mixture at a higher reflux temperature and thus to significantly 

increase the rate of this oxidation process. However, the modest 25% isolated yield may be 

partly explained by difficulties encountered during the chromatographic purifications used to 

separate the targeted ketone 7 from side-produtcs. Thereafter, a nucleophilic addition of freshly 

prepared o-tolyllithium, followed by dehydroxylation using a 10% TFA in CH2Cl2 afforded the 

green-colored N,N,N',N'-tetraalllyl-sulfone-rosamine 8. During the course of this latter acidic 
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treatment and purification attempts of 8, we noted the significant premature cleavage (photo-

assisted ?) of some allyl protecting groups leading to a mixture of several sulfone-rosamines 

that could not be separated by conventional silica gel column chromatography. Finally, this 

crude mixture was subjected to a short treatment with cat. amount of Pd(PPh3)4 and large excess 

of 1,3-dimethylbarbituric acid (4.4 equiv) in degassed C2H4Cl2 to achieve complete 

deprotection of primary anilines and to afford blue-colored sulfone-rosamine 2. Careful 

monitoring of this reaction through HPLC-MS analyses was found to be essential because a too 

long reaction time led to complete disappearance of this free aniline-based fluorophore and 

formation of many numerous unidentified side-products. Purification was achieved by RP-

HPLC to give 2 as a TFA salt (mass percentage of TFA in freeze-dried sample = 13.1%, 

determined by ion chromatography) and in a moderate yet not optimized overall yield (20%) 

from 7. All spectroscopic data (see ESI for the corresponding spectra, Fig. S24-S30), especially 

IR, NMR and mass spectrometry, were in agreement with the structure assigned. Its high level 

of purity was confirmed by RP-HPLC analysis and found to be in the range 95-100% depending 

on the wavelength used for UV-visible detection. 

 

3.3. Stability and photophysical characterization of sulfone analog of 6-amino-9-(o-tolyl)-3H-
xanthen-3-imine 
 

To know if meso-substitution is an effective way to dramatically improve the aqueous 

stability of sulfone-xanthene scaffold, it was deemed necessary to study the spectral behavior 

of 9-(o-tolyl) derivative 2 over the pH range 1.9-7.4. This was achieved by incubating this 

fluorophore in various buffers (i.e., phosphate, acetate and HPLC acidic mobile phases), and 

monitoring its absorbance at 645 nm over time, which is lost upon conversion to non-

fluorescent triaryl carbinol 9 (Fig. 5). To our surprise, sulfone-rosamine 2 exhibits a short half-

life of ca. 10 min in buffers whose pH > 5 (see Fig. 5 for pseudo first-order rate constants and 

hydrolysis half-lives and ESI for details about determination of kinetics parameters), which 

prevents its photophysical characterization under simulated physiological conditions, contrary 

to what has been achieved by Liu et al. with N,N,N',N'-tetramethyl sulfone-rosamine 

SO2R2[44]. A possible hypothesis to explain these apparently contradictory results, is that the 

greater electron-donating ability of dimethylamino groups as compared with amino groups may 

reduce the electrophilicity of C-9 position in SO2R2 and thus the reactivity of this sulfone-

xanthene dye toward water molecule or hydroxyde anion. In acetate buffers, 2 is shown to 
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hydrolyze more slowly (k1,obs = 8.6 10-4 sec-1 and 6.3 10-4 sec-1 at pH 3.8 and 3.4 respectively)  

and incomplete conversion to colorless triaryl methanol 9 is achieved (60% and 35% at pH 3.8 

and 3.4 respectively), suggesting that the NIR fluorescence of sulfone-rosamine 2 could be 

unveiled and observed in acidic aqueous buffered environments. This trend is enhanced in 

aqueous solutions with pH lower than 2.5. Indeed, in aq. TFA 0.1% and in aq. formic acid 0.1%, 

the fluorophore is fully-stable which has made possible its purification by RP-HPLC (vide 

supra). 

	

Fig. 5. Aqueous stability of sulfone-rosamine 2 at 25 °C: (Top left) UV-vis absorbance over time; (Bottom left) 
determination of pseudo first-order rate constants (k1,obs) and hydrolysis half-life (t1/2) (n. d. = not determined due 
to incomplete hydrolysis). (Right) Sulfone-rosamine 2 in equilibrium with its hydrated form 9. Please note: the 
slight increase of absorbance at 645 nm observed during the incubation of 2 in aq. acidic solutions (pH < 2.5) is 
explained by the presence of a small amount of hydrated form 9 in DMSO stock solution of 2 which is rapidly 
converted into blue-colored sulfone-rosamine. 

 

Therefore, we decided to investigate the photophysical properties of 2 in aq. formic acid 

0.1% (pH 2.5) (Fig. 6). The UV-vis absorption spectrum is quite similar to that of sulfone-

pyronin 1 recorded in CH3CN + 10% TFA (vide supra), and displays a maximum at 643 nm (e 

17 420 M-1 cm-1). The fluorescence emission curve shows a peak maximum at 687 nm (full-

width half maximum, Dl1/2max = 75 nm). By comparison with parent rosamine 2Me RG 

(Abs/Em lmax = 498/520 nm in PBS, pH 7.4)[64,65], the replacement of the xanthene 10-

position O atom by a sulfone group leads, on the one hand, to the expected dramatic red-shift 
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in the fluorescence maxima, and on the other hand, to unanticipated increase of Stokes shift (44 

nm / 995 cm-1 compared to 22 nm / 850 cm-1 for 2Me RG). This might be attributed to an 

excited-state ICT. This latter effect is greatly enhanced in sulfone-rosamine dyes because of the 

strong electron withdrawing capability of the SO2 moiety[66,30]. Interestingly, a good 

matching between the absorption and excitation spectra is observed (Fig. 6), supporting the lack 

of H-type aggregates in acidic aqueous solutions. Thus, it was possible to determine the 

fluorescence quantum yield (FF = 6%) using sulfoindocyanine dye Cy 5.0 as standard (FF = 

20% in PBS)[55], which is of the same order of magnitude as those reported by Liu et al. for 

N,N,N',N'-tetramethyl sulfone-rosamine dyes in PBS at physiological pH[44].  

 

Fig. 6. Normalized absorption (blue), excitation (Em 750 nm, slit 5 nm, green) and emission (Ex 600 nm, slit 5 
nm, red) spectra of sulfone-rosamine 2 in aq. 0.1% formic acid (pH 2.5) at 25 °C.  

 

In the light of all this, it is obvious that these hetero-xanthene-based fluorophores may find 

applications in sensing and bioimaging, through their implementation as chemodosimeters or 

probes in sample matrices or in living biological systems which the pH level is sufficiently low 

to unveil their NIR emission[67]. A valuable example might be the development of fluorescent 

probes that target acidic organelles known to play specific and indispensable roles in cellular 

processes[68-71]. In this context, the lysosome, a key constituent of cellular digestive system 

containing hydrolytic enzymes that function only under acidic conditions, could be an attractive 

target. However, the ability of NIR fluorescent scaffold 2 to be readily converted into enzyme-

sensitive "smart" probes still has to be demonstrated.   
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3.4 Fluorogenic reactivity of sulfone-rosamine 2. Synthesis and in vitro validations of PGA-
sensitive probe 10 
 

To demonstrate that the primary amino groups of sulfone-rosamine 2 can be used as effective 

fluorescence switches for enzyme sensing purposes, we planned to synthesize a "turn-on" 

amidase-responsive fluorescent probe (Scheme 3). Penicillin G acylase (PGA, also known as 

penicillin amidase) was chosen as model protease because this hydrolytic enzyme has two clear 

advantages: (1) a structurally simple substrate (phenylacetamide) than can be easily installed 

on the sulfone-rosamine 2 through amidification of its primary anilines and (2) a commercial 

availability at low cost[72]. The relevance of this choice is supported by the routine use of 

PGA as biocatalyst for the synthesis of β-lactam antibiotics, since it allows for the deprotection 

of phenylacetyl-protected amines[73], or to perform in vitro validations of self-immolative 

molecular systems used as diagnostic probes, molecular amplifiers or drug delivery 

systems[74-76]. Bis-amidation of 2 was achieved by treatment with an excess of phenylacetyl 

chloride (PhAcCl, 4 equiv) and DIEA (5 equiv) in dry CH3CN (Scheme 3).  

 

Scheme 3. Synthesis of PGA-sensitive probe 10 and its enzymatic activation. 
 

The only difficulty associated with this synthetic procedure was related to the isolation of 

the PGA-sensitive probe 10 with a satisfying yield. Indeed, during the reaction monitoring by 

TLC and HPLC-MS analyses, we observed that the chlorine atom at the C-9 position could be 

replaced by various nucleophile species (e.g., MeOH, water, formic acid, ...) leading to a 

mixture of bis-phenylacetamide derivatives of sulfone-rosamine. Two successive purifications 

by RP-HPLC provided a pure sample of fluorogenic PGA substrate 10. Spectroscopic data, in 

particular 1H NMR and mass spectrometry, were in agreement with the structure assigned. As 

expected, 10 proved to be colorless (only UV absorbance in the range 220-280 nm is observed, 

see ESI for the corresponding spectra, Fig. S35) and non-fluorescent in both phosphate and 
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acetate buffers (pH 7.4 and 3.4 respectively) and its sensing response to PGA was studied by 

time-dependent fluorescence analysis (Fig. 7).  

 

Fig. 7. Time-dependant changes in the far-red fluorescence intensity (Ex/Em 640/685 nm, slit 5 nm) of fluorogenic 
probe 10 (acting as a "AND" fluorescent molecular logic gate, concentration: 1 µM) in the presence of PGA (1 U) 
at 37 °C. Please note: PGA was added after 5 min of incubation of probe in buffer alone. For enzymatic activation 
performed in phosphate buffer (pH 7.4), TFA was added after 33 min of incubation with enzyme for fluorescence 
unveiling. 

 

First, this fluorescence-based in vitro enzyme assay was performed at physiological pH 

(phosphate buffer, pH 7.4) and at 37 °C, where both stability and activity of PGA are assumed 

to be optimal[77]. Since sulfone-rosamine 2, released upon enzymatic cleavage of 

carboxamide bonds, is not stable under these buffered conditions (vide supra), the strong far-

red fluorescence signal at 685 nm (Ex at 640 nm) assigned to this hetero-xanthene dye, was 

observed only after adding excess of TFA to dramatically lower the pH of the assay mixture. 

To avoid the use of this exogenous reagent for fluorescence unveiling, we next explored 

enzymatic activation of probe 10 in acetate buffer (pH 3.4). In such cases, a significant and 

gradual increase of far-red fluorescence of sulfone-rosamine 2 (Ex/Em 640/685 nm) was 

observed. A plateau indicating the complete hydrolysis of 10 by PGA, was reached within 

about 30 min and a 70-fold increase in fluorescence was finally obtained (460-fold increase in 

phosphate buffer after addition of TFA, see ESI for the corresponding fluorescence emission 

spectra, Fig. S35 and S36). Furthermore, no fluorescence signal changes were observed in the 

absence of amidase, confirming the full stability of the probe in aqueous buffers. Finally, the 

presence of sulfone-rosamine dye 2 in these enzymatic reaction mixtures was unambiguously 

confirmed by RP-HPLC analyses (fluorescence detection, tR = 3.8 min) and compared with an 

authentic sample of synthetic sulfone-rosamine 2 used as reference (Fig. 8). All these results 

PGA
TFA
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demonstrate the potential utility of sulfone-rosamine dyes bearing primary aniline(s), as 

fluorogenic labels in reaction-based probes. Furthermore, PGA-sensitive probe 10 acts as a 

two-input "AND" molecular logic gate[78,79] because its cloaked fluorescence reporter signal 

is "turned-on" by the combined action of two distinct biostimuli: enzyme activity and 

acidification (Fig. 7).  

 

Fig. 8. RP-HPLC elution profiles (fluorescence detection, system H) of enzymatic reaction mixtures from 
fluorescence assays (see Fig. 7). (Top left) fluorogenic probe 10 before incubation with PGA; (Middle left) 
fluorogenic probe 10 after incubation with PGA (1 U, 2 h, 37 °C) in PB (pH 7.4) and TFA; (Middle right) 
fluorogenic probe 10 after incubation with PGA (1 U, 2 h, 37 °C) in acetate buffer (pH 3.5); (Bottom) blank = 
fluorogenic probe 10 incubated in acetate buffer alone; (Top right) Authentic sample of sulfone-rosamine 10. 

 

4. Conclusion 

 

In summary, sulfone analogs of 6-amino-3H-xanthen-3-imine and rosamine 2Me RG were 

successfully synthesized for the first time. These NIR hetero-xanthene dyes are attractive 

fluorogenic scaffolds for the rapid construction of "smart" probes currently used in reaction-

based detection strategies. Spectral characterization of these fluorophores in various solvent 

sulfone-rosamine 2
(reference sample)

PGA-sensitive probe 10

Incubation of 10 in acetate buffer alone

Incubation of 10 in PB with PGA  + TFA Incubation of 10 in acetate buffer with PGA 
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media has shed light on their poor aqueous stability, especially at physiological pH. This is 

perfectly explained by the high electrophilicity of their meso-position which easily undergoes 

attack with water molecule (or hydroxide ion) to give a colorless and non-fluorescent 

benzhydrol/triaryl methanol derivative. The synthesis of unsymmetrical sulfone-

pyronin/rosamine dyes bearing both a strong electron-donating dialkylamino group and a 

remaining primary aniline may be a possible way to improve the aqueous stability of the 

sulfone-xanthene chromophore, by reducing the nucleophile sensitivity of its C-9 position. 

Indeed, Liu et al. did not observe hydration of N,N,N',N'-tetramethyl-sulfone-rosamines 

(bearing a mono- or di-o-substituted aryl group as meso-substituent) in the pH range 2-8. To 

the best of our knowledge, the present study is the first and the only one which highlights the 

stability issue of hetero-xanthene-based fluorophores in aqueous media, particularly on those 

for which the 10-O atom is replaced by a strong electron-withdrawing group. This matter will 

need to be taken into consideration for future work devoted to long-wavelength heteroxanthene-

based fluorophores and their bioanalytical applications. Gratifyingly, a good stability of 

fluorescent sulfone-rosamine 2 was observed under acidic buffered conditions. This feature, 

combined with the presence of fluorogenic centers (i.e., primary amino groups) within the 

sulfone-xanthene scaffold open the way for designing "smart" fluorescent probes for sensing 

and imaging within specific cellular acidic organelles (e.g., lysosomes). In this latter context, 

the development of "AND" molecular logic gates for the concomitant detection of two 

biological events (e.g., enzyme activation and pH changes) associated to a pathological state 

should be particularly interesting, for diagnostic purposes[78,80]. 
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