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ON COMPLETE INTERSECTIONS IN VARIETIES

WITH FINITE-DIMENSIONAL MOTIVE

ROBERT LATERVEER, JAN NAGEL, AND CHRIS PETERS

ABSTRACT. Let X be a complete intersection inside a variety M with finite dimensional motive

and for which the Lefschetz-type conjecture B(M) holds. We show how conditions on the niveau

filtration on the homology of X influence directly the niveau on the level of Chow groups. This

leads to a generalization of Voisin’s result. The latter states that if M has trivial Chow groups and

if X has non-trivial variable cohomology parametrized by c-dimensional algebraic cycles, then

the cycle class maps Ak(X) → H2k(X) are injective for k < c. We give variants involving group

actions which lead to several new examples with finite dimensional Chow motives.

1. INTRODUCTION

1.1. Background. Let X be a smooth, complex projective variety of dimension d. While the

cohomology ring1 H∗(X) is well understood, this is far from true for the Chow ring A∗(X), the

ring of algebraic cycles on X modulo rational equivalence. The two are linked through the cycle

class map

A∗(X) → H2∗(X), γ 7→ [γ].

If this map is injective we say that X has trivial Chow groups. If this is not the case, the kernel

A∗
hom(X), the ”homologically trivial” cycles, then can be investigated through the Abel-Jacobi

map

A∗
hom(X) → J∗(X)

with kernel A∗
AJ(X), the ”Abel-Jacobi trivial” cycles. If X is a curve, Abel’s theorem tells us

that A1
AJ(X) = 0.

The interplay between Hodge theoretic aspects of cohomology and cycles became apparent

through the fundamental work of Bloch and Srinivas [8] as complemented by [25, 36]. They

investigate the consequences for the Chow groups and cohomology groups of X if the class

δ ∈ Ad(X × X) of the diagonal ∆ ⊂ X × X admits a decomposition into summands having

support on lower dimensional varieties. This clarifies the role of the so-called coniveau filtration

N•H∗(X) in cohomology which takes care of cycle classes supported on varieties of varying

dimensions. Charles Vial [45] discovered a variant which works better in homology which he

called the niveau filtration Ñ•H∗(X). We introduce a refined niveau filtration on homology

N̂•H∗(X) which is compatible with polarizations. The precise definitions are given below in
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Sect. 2.4. Suffices to say that we have inclusions N̂•H∗(X) ⊆ Ñ•H∗(X) ⊆ N•H∗(X) with

equality everywhere if the Lefschetz conjecture B is true for all varieties. Conjecture B is re-

called below in Section 2.2.

Note that the Künneth formula δ =
∑2d

k=0 πk, with πk ∈ H2d−k(X) ⊗ Hk(X) = Hk(X)∗ ⊗
Hk(X), can be interpreted as an identity inside the ring of endomorphisms of H∗(X). Since δ ∈
H2d(X×X) acts as the identity onH∗(X), in EndH∗(X) one thus obtains the (cohomological)

Künneth-decomposition

id =
2d∑

k=1

πk, πk ∈ EndH∗(X) a projector with πk|Hj(X) = δjk · id .

The projectors are mutually orthogonal, that is πj◦πk = 0 if j 6= k. Moreover, the Künneth

decomposition is by construction compatible with Poincaré duality and so is called self-dual; in

other words πk is the transpose of π2d−k for all k < d.

Even if the Künneth components πk are classes of algebraic cycles, their sum need not give

a decomposition of the diagonal. If this is the case, and if, moreover, these give a self-dual

decomposition of the identity in EndA∗(X) by mutually orthogonal projectors, one speaks of

a (self-dual) Chow–Künneth decomposition, abbreviated as ”CK-decomposition”. Its existence

has been conjectured by Murre [32], and it has been established in low dimensions and a few

other cases.

One would like to have a refined CK-decomposition which takes into account the coniveau

filtration or the (refined) niveau filtration, since then the conclusions of [8] et. al. can be applied.

This is related to the validity of the standard conjecture B(X) as reviewed in Section 2.2.

1.2. Set up and results. Following Voisin [49, 50], we consider complete intersections X of

dimension d inside a given smooth complex variety projective variety M and we ask about the

relations between the Chow groups of M and X . On the level of cohomology this is a conse-

quence of the classical Lefschetz theorems: apart from the ”middle” cohomology Hd(X) the

cohomology of X is completely determined by H∗(M), while for the middle cohomology one

has a direct sum splitting

Hd(X) = Hd
fix(X)⊕Hd

var(X)

into fixed cohomology Hd
fix(X) = i∗Hd(M) and its orthogonal complement Hd

var(X) under the

cupproduct pairing. Here i : X →֒ M is the inclusion, and i∗ : Hd(M) → Hd(X) is injective.

For this to have consequences on the level of Chow groups, it seems natural to assume that M
has trivial Chow groups. This is the point of view of Voisin in [50]. Her main result uses the

notion of a subspace H ⊂ Hk(X) ”being parametrized by c-dimensional algebraic cycles” [50,

Def. 0.3] which is slightly stronger than demanding that H ⊂ N̂ cHk(X), where N̂ is our refined

version of Vial’s filtration. A comparison of our filtration with Vial’s is given in Section 3.2. See

in particular Remark 4.7. We can now state Voisin’s main result from [50]:

Theorem. Assume that M has trivial Chow groups and that X has non-trivial variable coho-

mology parametrized by c-dimensional algebraic cycles. Then the cycle class maps Ak(X) →
H2k(X) are injective for k < c.
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Our idea is to replace the condition of M having trivial Chow groups by finite dimensionality

of the motive of M – which conjecturally is true for all varieties. 2 The main idea which makes

this operational is the following nilpotency result (=Theorem 2.8): if r is the codimension of

X in M , a degree r correspondence which restricts to a cohomologically trivial degree zero

correspondence on X is nilpotent as a correspondence on X .

The second ingredient is due to Voisin [49, Proposition 1.6]: a degree d cohomogically trivial

relative correspondence can be modified in a controlled way such that the new relative corre-

spondence is fiberwise rationally equivalent to zero.

Given these inputs, the argument leading to our results now runs as follows. First we make use

of the refined niveau filtration by way of Propositions 4.5 and 4.8 to find relative correspondences

that decompose the diagonal in homology in the way we want. To the difference we apply the

Voisin result. This provides first of all information on the level of the Chow groups of the fibers

and, secondly, allows us to apply the nilpotency result. Writing this out gives strong variants

of the above theorem of Voisin. These have been phrased in homology rather than cohomology

because, as mentioned before, Vial’s filtration and ours behave better in the homological setting.

One of our main results can be paraphrased as follows.

Theorem (=Theorem 5.6). Suppose that B(M) holds, that the Chow motive of M is finite-

dimensional and that Hk(M) = N [ k+1
2

]Hk(M) for k ≤ d. Suppose Hvar
d (X) 6= 0, and that for

some positive integer c we haveHvar
d (X) ⊂ N̂ cHd(X). ThenAhom

k (X) = 0 if k < c or k > d−c.

Voisin’s result is a direct consequence: by [43, Theorem 5] varieties with trivial Chow groups

have finite dimensional motive and conjecture B holds for them as well and the condition

Hk(M) = N [ k+1
2

]Hk(M) holds since M has trivial Chow groups. Surprisingly, if we apply

Vial’s result [42], we find that if the condition in the above theorem holds for c = [d
2
], then h(X)

itself also has finite dimension and up to motives of curves and Tate twists is a direct factor of

h(M) (Corollary 5.7).

The known examples of finite dimensional motives are all directly related to curves, which

very much limits the search for examples. However, inside the realm of motives we can use

other projectors besides the identity, namely those that come from group actions. In Section 6,

we have formulated variants of the main result involving actions of a finite abelian group, say

G. Then, even if the level of the Hodge-niveau filtration on variable cohomology is too big

to apply our main theorems, there might be a G-character space which has the correct Hodge-

level. Provided the (generalized) Hodge conjecture holds, which is automatically the case in

dimensions ≤ 2, this then ensures the desired condition on the niveau filtration. In Section 7 we

construct examples where this is the case and for which one of the group variants of the main

theorem can be successfully applied. These examples all yield new finite dimensional motives

because of the above mentioned result of Vial.

We have given several types of examples:

• a threefold of general type with pg = q = 0,

• hypersurfaces in abelian threefolds, including the Burniat-Inoue surfaces,

• hypersurfaces in a product of a hyperelliptic curve and certain types of K3 surfaces,

2See [33] for background on Chow motives.
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• hypersurfaces in threefolds that are products of three curves, one of which is hyperellip-

tic,

• odd-dimensional complete intersections of 4 quadrics – generalizing the Bardelli exam-

ple [3].

For simplicity we have only considered involutions since then all invariants can easily be

calculated, but it will be clear that the method of construction allows for many more examples of

varieties admitting all kinds of finite abelian groups of automorphisms.

Acknowledgements . We want to thank Claire Voisin, who kindly suggested the example of

subsection 7.2 to one of us. Thanks also to Claudio Pedrini, for helpful comments on an earlier

version of this article.

Notation. Varieties will be defined over C (except for Appendix B, where we consider algebraic

varieties and motives over a field k). We use H∗, H∗ for the (co)homology groups with Q-

coefficients and likewise we write A∗, A∗ for the Chow groups with Q–coefficents.

The category of Chow motives (over a field k) is denoted by Motrat(k), the category of covariant

homological motives by Mothom(k) and the category of numerical motives Motnum(k). For a

smooth projective manifold X , we let h(X) ∈ Motrat(k) be its Chow motive.

We denote the integer part of a rational number a by [a].

2. PRELIMINARIES

2.1. Correspondences. IfX and Y are projective varieties withX irreducible of dimension dX ,

a correspondence of degree p is an element of

Corrp(X, Y ) := AdX+p(X × Y ).

A degree p correspondence γ induces maps

γ∗ : Ak(X) → Ak+p(Y ), γ∗ : Hk(X) → Hk+2p(Y ).

If, moreover,X and Y are smooth projective, we have correspondences of cohomological degree

p, i.e., elements

γ ∈ Corrp(Y,X) := AdY +p(Y ×X),

which induce

γ∗ : Ak(Y ) → Ak+p(X), γ∗ : Hk(Y ) → Hk+2p(X).

Definition 2.1. Let γ ∈ Corrp(X,X) = Ad+p(X × X) be a self-correspondence of degree p
where d = dX .

(1) Let Z be smooth and equi-dimensional. We say that γ factors through Z with shift i if

there exist correspondences α ∈ Corri Z,X) and β ∈ Corr−j(X,Z) (i − j = p) such

that γ = α◦β and d− (i+ j) = dimZ.

(2) We say that γ is supported on V ×W if

γ ∈ Im (Ad+p(V ×W ) (i×j)∗−−−−→ Ad+p(X ×X))

where i : V → X and j : W → X are inclusions of subvarieties of X .

The usefulness of these concepts follows from the following evident results.
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Lemma 2.2. (1) If a correspondence γ ∈ Corr0(X,X) factors through Z with shift c, then

γ and tγ act trivially on Aj(X) for j < c or j > d− c.
(2) If a correspondence γ ∈ Corr0(X,X) is supported on V ×W ⊂ X × X , then γ acts

trivially on Aj(X) for j < codimV or j > dimW and tγ acts trivially on Aj(X) for

j < codimW or j > dimV .

2.2. Standard conjecture B(X). Let X be a smooth complex projective variety of dimension

d, and h ∈ H2(X) the class of an ample line bundle. The hard Lefschetz theorem asserts that the

map

Ld−k
X : H2d−k(X) → Hk(X)

obtained by cap product with hd−k is an isomorphism for all k < d. One of the standard conjec-

tures asserts that the inverse isomorphism is algebraic:

Definition 2.3. Given a variety X , we say that Bk(X) holds if the isomorphism

Λd−k = (Ld−k)−1 : Hk(X)
∼=
→ H2d−k(X)

is induced by a correspondence. We say that the Lefschetz standard conjecture B(X) holds if

Bk(X) holds for all k < d.

Remark 2.4. The Lefschetz (1,1) theorem implies that Bk(X) holds if k ≤ 1 and hence it holds

for curves and surfaces. It is stable under products and hyperplane sections [22, 23] and so, in

particular, it is true for complete intersections in products of projective spaces. It is known that

B(X) moreover holds for the following varieties:

• abelian varieties [22, 23];

• threefolds not of general type [40];

• hyperkähler varieties of K3[n]-type [12];

• Fano varieties of lines on cubic hypersurfaces [30, Corollary 6];

• d-dimensional varieties X which have Ak(X) supported on a subvariety of dimension

k + 2 for all k ≤ d−3
2

[42, Theorem 7.1];

• d-dimensional varieties X which have Hk(X) = N [ k
2
]Hk(X) for all k > d [43, Theorem

4.2].

Below we shall use the following well known implication of B(X).

Proposition 2.5 ([22, Thm. 2.9] ). Suppose that B(X) holds. Then the Künneth projectors are

algebraic, i.e., there exist correspondences πk ∈ Corr0(X,X) such that πk∗ |Hj(X)= δkj . id and

∆X ∼hom

∑
k πk.

Refinements will be stated below in Section 2.4.

2.3. Finite dimensional motives and nilpotence. We refer to [1], [16], [21], [33] for the defi-

nition of a Chow motive and its dimension. We also need the concept of a motive of abelian type,

by definition a Chow motive M for which some twist M(n) is a direct summand of the motive

of a product of curves.

A crucial property of varieties with finite-dimensional motive is the nilpotence theorem.
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Theorem 2.6 (Kimura [21]). Let X be a smooth projective variety with finite-dimensional mo-

tive. Let Γ ∈ Corr0(X,X) be a correspondence which is numerically trivial. Then there exists a

nonnegative integer N such that Γ◦N = 0 in Corr0(X,X).

Actually, the nilpotence property (for all powers of X) could serve as an alternative definition

of finite-dimensional motive, as shown by a result of Jannsen [19, Corollary 3.9]. Conjecturally,

any variety has finite-dimensional motive [21]. We are still far from knowing this, but at least

there are quite a few non-trivial examples:

Remark 2.7. The following varieties are known to have a finite-dimensional motive:

• varieties dominated by products of curves [21] as well as varieties of dimension ≤ 3
rationally dominated by products of curves [44, Example 3.15];

• K3 surfaces with Picard number 19 or 20 [38];

• surfaces not of general type with vanishing geometric genus [14, Theorem 2.11] as well

as many examples of surfaces of general type with pg = 0 [37, 51];

• Hilbert schemes of surfaces known to have finite-dimensional motive [10];

• Fano varieties of lines in smooth cubic threefolds, and Fano varieties of lines in smooth

cubic fivefolds [29];

• generalized Kummer varieties [53, Remark 2.9(ii)];

• 3-folds with nef tangent bundle [44, Example 3.16]), as well as certain 3-folds of general

type [46, Section 8];

• varietiesX with Abel-Jacobi trivial Chow groups (i.e. Ak
AJX = 0 for all k) [43, Theorem

4];

• products of varieties with finite-dimensional motive [21].

Remark. It is worth pointing out that up till now, all examples of finite-dimensional Chow mo-

tives happen to be of abelian type. On the other hand, “many” motives are known to lie outside

this subcategory, e.g. the motive of a general hypersurface in P3 [2, Remark 2.34].

The following result is a kind of “weak nilpotence” for subvarieties of a variety M with finite-

dimensional motive; any correspondence that comes from M and is numerically trivial turns out

to be nilpotent.

Proposition 2.8. Let M be a smooth projective variety with finite-dimensional Chow motive

and let X ⊂ M be a smooth projective subvariety of codimension r. For any correspondence

Γ ∈ Corrr(M,M) with the property that the restriction

Γ|X ∈ Corr0(X,X)

is homologically trivial, there exists a nonnegative integer N such that

(Γ|X)
◦N = 0 in Corr0(X,X).

Proof. Put L = i∗◦i
∗ ∈ Corr−c(M,M) and T = Γ◦L ∈ Corr0(M,M). We have

Γ|X = (i× i)∗(Γ) = i∗◦Γ◦i∗.

By induction on k one shows that

(1) Γ|k+1
X = i∗◦T k

◦Γ◦i∗
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for all k ≥ 0. As

T 2 = Γ◦i∗◦i∗◦Γ◦i∗◦i∗

= Γ◦i∗◦ΓX◦i∗,

T 2 is homologically trivial. Hence T 2 is nilpotent by [21], say T 2ℓ = 0. Hence ΓX is nilpotent

of index N = 2ℓ+ 1 by (1). �

2.4. Coniveau and niveau filtration.

Definition 2.9 (Coniveau filtration [7]). Let X be a smooth projective variety of dimension d.

The j-th level of the coniveau filtration on cohomology (with Q-coefficients) is defined as the

subspace generated by the classes supported on subvarieties Z of dimension ≤ d− j:

N jHk(X) =
∑

Z

Im
(
i∗ : H

k
Z(X) → Hk(X)

)
.

This gives a decreasing filtration on Hk(X). We may instead use smooth varieties Y of dimen-

sion exactly d−j provided we use degree j correspondences from Y toX: such a correspondence

sends Y to a cycle Z of dimension ≤ d−j inX and all cycles can be obtained in this way. When

we rewrite this in terms of homology we get

N jHk(X) =
∑

Y,γ

Im
(
γ∗ : Hk(Y ) → Hk(X)

)
,

where Y is smooth projective of dimension k − j and γ ∈ Corr0(Y,X).

Since the j-th level of the filtration consists of the classes supported on varieties of dimension

k− j, the filtration stops beyond k/2: a variety of dimension < k/2 has no homology in degrees

≥ k:

0 = N [ k
2
]+1HkX ⊂ N [ k

2
]Hk(X) ⊂ · · · ⊂ N1Hk(X) ⊂ N0Hk(X) = Hk(X).

Remark. Under Poincaré duality one has an identification N jHk(X) = Nd−k+jH2d−k(X).

Vial [45] introduced the following variant of the coniveau filtration:

Definition 2.10 (Niveau filtration). Let X be a smooth projective variety. The niveau filtration

on homology is defined as

Ñ jHk(X) =
∑

Im
(
γ∗ : Hk−2j(Z) → Hk(X)

)
,

where the sum is taken over all smooth projective varieties Z of dimension k − 2j, and all

correspondences γ ∈ Corrj(Z ×X).

Remark 2.11. The idea behind this definition is that one should be able to lower the dimension of

the variety Y appearing in Definition 2.9 using the Lefschetz standard conjecture. By Hard Lef-

schetz we have an isomorphismΛj
Y : Hk−2j(Y )

∼=−→ Hk(Y ) and by the Lefschetz hyperplane the-

orem a surjection ι∗ : Hk−2j(Z) → Hk−2j(Y ) with Z = Y ∩H1 . . .∩Hj a complete intersection
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of Y with j general hyperplanes. Hence there is a surjective map ι∗◦Λj
Y : Hk−2j(Z) → Hk(Y )

which is algebraic if Bk−2j(Y ) holds and thus N jHk(X) = Ñ jHk(X).
This discussion also shows that

• Ñ jHk(X) ⊂ N jHk(X)

• Ñ jHk(X) = N jHk(X if k − 2j ≤ 1.

2.5. On variable and fixed cohomology. Let M be a smooth projective variety of dimension

d + r and i : X →֒ M a smooth complete intersection of dimension d. Let us assume B(M) so

that the operator Λr on H∗(M) is induced by an algebraic cycle Λr
M on M ×M . Set

πfix(X) := i∗Λr
M i∗, πvar(X) = ∆− πfix(X).

Recall that setting

Hfix
d (X) = Im(i∗ : Hd+2r(M) → Hd(X)),

Hvar
d (X) = ker(i∗ : Hd(X) → Hd(M)),

one has a direct sum decomposition

Hd(X) = Hfix
d (X)⊕Hvar

d (X),

which is orthogonal with respect to the intersection product. We claim the following result.

Lemma 2.12. The operators πfix(X) and πvar(X) are homological projectors which give the

projection of the total cohomology onto Hfix(X), respectively Hvar(X) = Hvar
d (X).

Proof. We first observe that i∗ : H∗(X) → LrH∗(M) since i∗H
fix(X) = i∗◦i

∗H(M) =
LrH(M). On the image of L the two operators L and Λ are inverses. So, since3 i∗◦i∗ = Lr,

we find
(i∗◦Λr

◦i∗)
2 = i∗◦Λr

◦i∗i
∗
◦Λr

◦i∗

= i∗◦Λr
◦LrΛr

◦i∗

= i∗◦Λr
◦i∗,

i.e. πfix is indeed a projector, and so is πvar. These projectors define a splitting on cohomology

given by

z = i∗Λri∗z + (z − i∗Λri∗z).

On the image of i∗ the two operators L and Λ commute and are each others inverse and so

i∗(z − i∗Λri∗z) = i∗z − LrΛri∗z

= i∗z − i∗z = 0

which shows that πvar indeed gives the projection onto variable homology and so πfix projects

onto the fixed cohomology. �

Remark 2.13. The degree zero correspondences πfix and πvar are not necessarily projectors on

the level of Chow groups, although one can show that finite-dimensionality of h(M) and B(M)
can be used to modify these correspondences in such a way that they become projectors. For

what follows we do not need this.

3In fact this is only true up to a multiplicative constant but changing Λr accordingly corrects this.
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3. NIVEAU FILTRATIONS AND POLARISATIONS

3.1. Polarisations. Recall that for k ≤ d = dimX we have the Lefschetz decomposition

Hk(X) = ⊕rL
rHk−2r

pr (X).

Following [52, p. 77] we define a polarisation QX on Hk(X) as follows. Given a,b ∈ Hk(X),
write a =

∑
r L

rar, b =
∑

r L
rbr and define

QX(a, b) =
∑

r

(−1)
k(k−1)

2
+r〈Ld−k+2rar, br〉

where

〈 , 〉 : H2d−k+2r(X)⊗Hk−2r(X) → H2d(X) ∼= Q

denotes the cup product. As the Lefschetz decomposition is QX -orthogonal, we can rewrite this

in the following form. Let pr : H
k(X) → LrHk−2r

pr (X) be the projection, and define

sX =
∑

r

(−1)
k(k−1)

2
+rLr

◦pr.

Then QX(a, b) = 〈Ld−k(a), sX(b)〉.
When we translate this to homology we obtain a polarisation QX on Hk(X) (k ≤ d) given by

QX(a, b) = 〈a,Λd−k(sX(b))〉

where sX is (up to sign) the alternating sum of the projections pr : Hk(X) → LrHpr
k+2r(X) to

the primitive homology (dual to primitive cohomology).

Lemma 3.1. If Bℓ(X) holds for ℓ ≤ 2 dimX − k − 2 the operator sX ∈ End(Hk(X)) is

algebraic.

Proof. See [11, Lemma 7] or [45, Lemma 1.7] �

3.2. Modified niveau filtration. We start by a discussion of adjoint correspondences. This

material is treated from a cohomological point of view in [13, section 4.2].

Definition 3.2. Let X and Y be smooth projective varieties of dimension dX , dY . Let γ ∈
Corrj(X, Y ).

(i) We say that γ admits a k-adjoint if there exists γadj ∈ Corr−j(Y,X) such that

QY (γ∗(a), b) = QX(a, γ
adj
∗ (b))

for all a ∈ Hk−2j(X), b ∈ Hk(Y ).
(ii) We say that γ admits an adjoint if it admits a k-adjoint for all k.

Proposition 3.3. If the standard conjectures B(X) and B(Y ) hold, every correspondence γ ∈
Corr(X, Y ) admits an adjoint.
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Proof. Let γ ∈ Corrj(X, Y ) and consider the map

γ∗ : Hk(X) → Hk+2j(Y ).

As B(X) and B(Y ) hold, the operators sX and sY are algebraic by Lemma 3.1. As sX and sY
commute with the Lambda operator, we obtain

QY (γ∗(a), b) = 〈γ∗(a),Λ
dY −k−2j
Y (sY (b))〉

= 〈a, tγ∗(Λ
dY −k−2j
Y (sY (b)))〉

= 〈a, sX(Λ
dX−k
X (sX(L

dX−k
X (tγ∗(Λ

dY −k−2j
Y (sY (b))))〉.

Hence

γadj = sX ◦ LdX−k
X ◦ tγ ◦ ΛdY −k−2j

Y ◦ sY

is an adjoint of γ. �

To use the existence of an adjoint, we need a linear algebra lemma (cf. [47, Lemma 5],[45,

Lemma 1.6]).

Lemma 3.4. Let H and H ′ be finite-dimensional Q-vector spaces equipped with non degenerate

bilinear forms Q : H ×H → Q and Q′ : H ′ ×H ′ → Q. Suppose that there exist linear maps

α : H ′ → H, β : H → H ′

such that

(a) α is surjective;

(b) Q′|Im(β×β) is non degenerate;

(c) Q(α(x), y) = Q′(x, β(y)) for all x ∈ H ′, y ∈ H .

Then α◦β : H → H is an isomorphism.

Proof. As H is finite-dimensional, it suffices to show that ker(α◦β) = 0. Suppose that y ∈
ker(α◦β). Then β(y) ∈ ker(α) ∩ Im(β). By (c) we have

0 = Q(α(β(y)), z) = Q′(β(y), β(z))

for all z ∈ H , hence β(y) = 0 by condition (b). This gives

0 = Q′(x, β(y)) = Q(α(x), y)

for all x ∈ H ′ and since α is surjective we obtain y = 0. �

Corollary 3.5. Suppose that γ : Corrj(Y,X) admits an adjoint. Consider the map γ∗ : Hk−2j(Y ) →
Hk(X). Then γ∗◦γ

adj
∗ : Hk(X) → Hk(X) induces an isomorphism

γ∗◦γ
adj
∗ : Im(γ∗) ∼−→ Im(γ∗).

Proof. Apply the previous Lemma with H ′ = Hk(X), α = γ∗, β = γadj∗ and H = Im(γ∗) ⊆
Hk(X). Condition (a) is satisfied by construction, (b) by Hodge theory (Hodge-Riemann bilinear

relations) and (c) by the adjoint condition. �
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Definition 3.6. The modified niveau filtration N̂• is defined by

N̂ jHk(X) =
∑

Im(γ∗ : Hk−2j(Z) → Hk(X)),

where the sum runs over all pairs (Z, γ) such that Z is smooth projective of dimension k − 2j
and such that γ ∈ Corrj(Z,X) admits a k-adjoint.

We have

N̂ jHk(X) ⊆ Ñ jHk(X) ⊆ N jHk(X).

The filtrations N• and Ñ• are compatible with the action of correspondences. The filtration N̂•

is compatible with correspondences that admit an adjoint.

Proposition 3.7. Let γ ∈ Corrj(X, Y ). If B(X) and B(Y ) hold then we have γ∗N̂
cHk(X) ⊆

N̂ c+jHk+2j(Y ).

Proof. There exist a smooth projective variety Z and a correspondence λ ∈ Corrc(Z,X) such

that λ admits an adjoint and

N̂ cHk(X) = Imλ∗ : Hk−2c(Z) → Hk(X).

We have

λ∗N̂
cHk(X) = Im (γ ◦ λ)∗ : Hk−2c(Z) → Hk+2j(Y )

The image is contained in N̂ c+jHk+2j(Y ) since γ admits an adjoint by Proposition 3.3 and (γ ◦
λ)adj = λadj ◦ γadj. �

4. ON KÜNNETH DECOMPOSITIONS

Definition 4.1. Let X be a smooth projective variety.

(1) We say that X admits a refined Künneth decomposition if there exist correspondences

πi,j ∈ Corr0(X,X) such that

• ∆X ∼hom

∑
i,j πi,j

• (πi,j)∗|Grq
N

Hp(X) =

{
id if (p, q) = (i, j)
0 (p, q) 6= (i, j).

• πi,j = 0 if and only if GrjN Hi(X) = 0.

(2) We say that X admits a refined Chow–Künneth decomposition if in addition the πi,j are

projectors and ∆X ∼rat

∑
i,j πi,j .

(3) We say thatX admits a refined Künneth (or Chow–Künneth) decomposition in the strong

sense if πi,j factors with shift j through a smooth, projective variety Zi,j of dimension

i− 2j for all i and j.

Remark 4.2. By [45, Prop. 1.4] there exists a QX -orthogonal splitting

H∗(X) = ⊕i,j GrjN Hi(X).

The varietyX admits a refined Künneth decomposition if this decomposition lifts to the category

Mothom(k) of homological motives. It admits a refined Chow–Künneth decomposition if the

decomposition lifts to the category Motrat(k) of Chow motives.
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In an analogous way one can define refined Künneth (Chow–Künneth) decompositions with

respect to the filtrations Ñ• and N̂•.

The proof of the following result is a reformulation of the proof of [45, Thm. 1] in terms of

the modified niveau filtration.

Proposition 4.3. IfB(X) holds, there exists a refined Künneth decomposition in the strong sense

with respect to the filtration N̂•.

Proof. Conjecture B(X) implies that the Künneth components are algebraic, i.e., there exist

correspondences πi ∈ Corr0(X,X) such that (πi)∗|Hj(X) = δij . id. By Proposition 3.7 the proof

of [45, Prop. 1.4] goes through for the filtration N̂•, and we obtain a QX -orthogonal splitting

H∗(X) = ⊕i,j Grj
N̂
Hi(X).

The aim is to construct correspondences πi,j ∈ Corr0(X,X) that induce this decomposition.

This is done by descending induction on j. If j > i/2 we take πi,j = 0. Suppose that the

correspondences πi,k have been constructed for k > j. As before there exist Z, smooth of

dimension i− 2j, and γ ∈ Corrj(Z,X) such that

N̂ jHi(X) = Im(γ∗ : Hi−2j(Z) → Hi(X)).

By replacing γ with πi◦γ if necessary, we may assume that γ∗ |Hℓ(Z)= 0 if ℓ 6= i − 2j. The

correspondence π = πi −
∑

k>j πi,k induces the projection N̂ jHi(X) → Grj
N̂
Hi(X). Put

γ′ = π◦γ. By construction

γ′∗ : Hi−2j(Z) → Grj
N̂
Hi(X)

is surjective. As B(X) holds, π admits an adjoint by Proposition 3.3. By definition γ admits

an adjoint, hence γ′ = π◦γ admits an adjoint and the correspondence T = γ′◦(γ′)adj induces an

isomorphism

ϕ = T∗ : Grj
N̂
Hi(X) → Grj

N̂
Hi(X)

by Corollary 3.5. By the Cayley–Hamilton theorem there exists a polynomial expression ψ =
P (ϕ) such thay ψ◦ϕ = id. Put U = ψ(T ) and define πi,j = U ◦T . As T∗ = ϕ and U∗ = ψ we

have

(πi,j)∗ |Grj
N̂

Hi(X) = id

(πi,j)∗ |Grq
N̂

Hp(X) = 0 if (p, q) 6= (i, j).

By construction πi,j factors with shift j through a smooth projective variety of dimension i− 2j

and πi,j = 0 if and only if Grj
N̂
Hi(X) = 0. �

Corollary 4.4. If B(X) holds and Hk(X) ⊆ N̂ cHk(X), then there exists π′
k ∈ Corr0(X,X)

such that πk ∼hom π′
k and such that π′

k factors with shift c through a smooth projective variety Z
as in Definition 2.1.
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Proof. By Proposition 4.3 we obtain a decomposition

πk =
∑

j

πk,j.

with respect to the filtration N̂•. As Hk(X) ⊆ N̂ cHk(X) we have πk,j = 0 for all j < c, and the

result follows. �

The Corollary can be generalised to the following setting. Suppose that there exists πk ∈
Corr0(X,X) such that (πk)∗|Hℓ(X) = δkℓ · id. If π ∈ Corr0(X,X) satisfies

π◦π ∼hom π

π◦πk ∼hom πk◦π ∼hom π

the motive (X, π) is a direct factor of (X, πk) in Mothom(k).

Corollary 4.5. Suppose that B(X) holds and that π ∈ Corr0(X,X) is a correspondence as

above. Let Hπ = Im(π) ⊆ Hk(X) be the sub–Hodge structure defined by π. If Hπ ⊆ N̂ cHk(X)
there exists a correspondence π′ ∼hom π such that π′ factors with shift c through a smooth

projective variety Z as in f Definition 2.1.

Proof. The proof of Proposition 4.3 shows that we have a decomposition πk =
∑

j πk,j in

Mothom(k). Hence

π = πk◦π =
∑

j

πk,j◦π.

Suppose that there exists j0 < c such that πk,j0◦π 6= 0. Then there exists x ∈ Hk(X) such that

πk,j(π(x)) 6= 0. Hence Hπ ∩ Im(πk,j0) 6= 0. This contradicts the hypothesis Hπ ⊆ N̂ cHk(X)
since πk,j0 |N̂cHk(X)= 0. �

This result implies a modification of [26, Cor. 3.4, Lemma 3.5] that we need later on.

Corollary 4.6. Same assumptions about M and X . Suppose that Hvar
d (X) ⊂ N̂ cHd(X). Then

πvar ∼hom π̃var where π̃var ∈ Corr0(X,X) factors through a smooth projective variety Z with

shift c in the sense of Definition 2.1.

Remark 4.7. The condition Hd(X) ⊂ N̂ cHd(X) may be replaced by Voisin’s condition of

”being parametrized by algebraic cycles of codimension c” [50, Def. 0.3]. Voisin’s condition

implies that

γ∗◦
tγ∗ : Hd(X) → Hd(X)

is a multiple of the identity. Our condition implies that there exists an adjoint γadj such that

γ∗◦γ
adj

∗ is an isomorphism with an algebraic inverse (see Corollary 3.5 and the proof of Propo-

sition 4.5). This weaker result suffices for our purposes.

Proposition 4.8. Suppose that B(X) holds and that for every smooth projective variety Z of

dimension k − 2j the condition Bℓ(Z) holds if ℓ ≤ k − 2j − 2. Then Ñ jHk(X) = N̂ jHk(X).

Proof. It suffices to show that for every pair (Z, γ) as in Definition 3.6, γ admits a k-adjoint.

This follows directly from Lemma 3.1. �
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Corollary 4.9. We have Ñ jHk(X) = N̂ jHk(X) if k − 2j ≤ 3. In particular, if Hk(X) =

N [ k
2
]Hk(X) the filtrations Ñ and N̂ on Hk(X) coincide with the coniveau filtration. This is true

unconditionally on Hk(X), k ≤ 3. If the conjecture B(M) holds, all three filtrations are equal

on Hk(X) for k ≤ 4.

Remark. The conditionBℓ(Z) in Proposition 4.8 is needed to obtain an algebraic correspondence

that induces sZ . If H ⊂ Hd(X) is a sub-Hodge structure such that there exists a smooth projec-

tive variety Z of dimension d − 2c such that Hpr
d−2c(Z) → H is surjective then this condition is

not needed and we have H ⊂ N̂ cHd(X). We present an example below.

Example 4.10. Let X ⊂ Pd+1 be a smooth hypersurface of degree d+1. Let Z = F1(X) be the

Fano variety of lines contained in X . If X is general then Z is smooth of dimension d − 2 and

the incidence correspondence induces a surjective map (cylinder homomorphism)

γ∗ : H
pr
d−2(Z) → Hpr

d (X);

see [31, Thm. (5.34)]. Hence Hpr
d (X) ⊂ N̂1Hd(X) by the previous remark.

Concerning the existence of a refined Chow–Künneth decomposition (in the strong sense) for

the filtrations N•, Ñ• and N̂• we have the following.

Proposition 4.11. Let X be a smooth projective variety over C such that B(X) holds and h(X)
is finite dimensional. Then

(i) There exists a refined Chow–Künneth decomposition in the strong sense for the filtration

N̂•.

(ii) There exists a refined Chow–Künneth decomposition in the strong sense for

• Ñ• if dimX ≤ 5;

• N• if dimX ≤ 3.

Proof. By Proposition 4.3 there exists a refined Künneth decomposition in the strong sense for

the filtration N̂•. If h(X) is finite–dimensional the ideal

kerAd(X ×X) → H2d(X ×X)

is nilpotent, and the refined Künneth decomposition lifts to Motrat(k) by a lemma of Jannsen

[18]. This proves part (i). Part (ii) follows from the comparison between the filtrations: Ñ jHi(X) =

N̂ jHi(X) if j − 2i ≤ 3 (Corollary 4.9) and N jHi(X) = Ñ jHi(X) if j − 2i ≤ 1. �

Remark 4.12. Part (ii) is due to Vial [45]. The assumption dimX ≤ 5 can be replaced by the

conditions of Proposition 4.8.

Remark 4.13. Using Proposition 4.11, the main result of [27] can be extended to arbitrary di-

mension, provided one replaces Vial’s filtration Ñ• in the statement of [27, Theorem 3] by the

filtration N̂•.
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5. THE MAIN RESULTS

The setup that we consider in this section is the following. Let M be a smooth projective

variety of dimension d+ r. Let L1, . . . , Lr be very ample line bundles on M , and let f : X→ B
denote the family of all smooth complete intersections of dimension d defined by sections of

E = L1 ⊕ . . . ⊕ Lr. We write Xb = f−1(b). The next result plays a major role in deriving the

main results. It uses the assumption that the Lj are very ample in a crucial way.

Proposition 5.1 (Voisin [50]). Suppose that for general b ∈ B one has that Xb has nontrivial

variable homology in degree d. Let D be a codimension-d cycle on X×B Xwith the property

that

D|Xb×Xb
= 0 in H2d(Xb ×Xb).

Then there exists a codimension-d cycle γ on M ×M such that

D|Xb×Xb
− γ|Xb×Xb

= 0 in Ad(Xb ×Xb)

for all b ∈ B.

Proof. We want to sketch a proof of Voisin’s original result [50, Proposition 1.6] since we want

to point out where the assumptions are used. Consider the blow up M̃ ×M of the diagonal

and the natural quotient map µ : M̃ ×M → M [2] to the Hilbert scheme of zero-dimensional

subschemes of M of length two. Set P = PH0(X,E) and as in [50, Lemma 1.3] introduce

I2(E) := {(s, y) ∈ P× M̃ ×M | s|µ(y) = 0}.

Next, consider the blow up of X×B X along the relative diagonal:

p : X̃×B X→ X×B X.

Observe that X̃×B X is Zariski-open in I2(E) and so it makes sense to restrict cycles on I2(E) to

the fibers X̃b ×Xb of X̃×B X→ B. Very ampleness of the Lj implies that I2(E) → M̃ ×M is

a projective bundle and hence its cohomology can be expressed in terms of cohomology coming

from M̃ ×M and a tautological class. Assume now that

∃R ∈ Ad(I2(E)) with R|
X̃b×Xb

∼hom 0.

Voisin shows that this implies the existence of a codimension-d cycle γ onM×M and an integer

k such that

(pb)∗(R|X̃b×Xb
) = k∆Xb×Xb

+ γ|Xb×Xb
in Ad(Xb ×Xb)

The first summand acts on all of homology, while the second summand, by construction, acts

only on the fixed homology. So the assumption that there is some variable homology implies

that k = 0 and so the cycle γ is homologous to zero. To prove the above variation, suppose we

are given D of codimension d on X×B X as above. As X̃×B X⊂ I2(E) is Zariski open, there

exists a codimension-d cycle R on I2(E) such that R|
X̃×BX

= p∗D. Then we have

R|
X̃b×Xb

= p∗D|
X̃b×Xb

= (pb)
∗
(
D|Xb×Xb

)
= 0 in H2d(X̃b ×Xb)



16 ROBERT LATERVEER, JAN NAGEL, AND CHRIS PETERS

for all b ∈ B, where pb : X̃b ×Xb → Xb ×Xb denotes the blow-up of the diagonal. Hence, if we

apply Voisin’s original proposition to this cycle R, we get the desired conclusion. �

Theorem 5.2. Notation as above. Suppose that B(M) holds and the Chow motive of M is finite-

dimensional. Assume that for a general b ∈ B the fiber Xb has non-trivial variable homology:

Hd(Xb)
var 6= 0,

and that for some nonnegative integers c, e, with e < d we have

Hk(Xb) = N̂ cHk(Xb) for all k ∈ {e+ 1, . . . , d}.

Then for any b ∈ B

Niveau
(
Ak(Xb)

)
≤ e− k for all k < min{d− e, c},

i.e., there exists a subvariety Yb ⊂ Xb of dimension e such that Ak(Yb) → Ak(Xb) is surjective.

Proof. Step 1. We first construct a homological decomposition of the diagonal of Xb

∆Xb
∼hom ∆left +∆mid +∆right in H2d(Xb ×Xb),

where the right hand side are self-correspondences of X of degree 0, ∆right =
t∆left and ∆mid

factors with shift c through a smooth variety Z.

This is done as follows. As conjectureB is stable by hyperplane sections (see Remark 2.4), the

complete intersectionsXb satisfyB(Xb) and hence by Proposition 2.5 there are correspondences

πj ∈ Corr0(Xb, Xb), j = 0, . . . , 2d inducing the corresponding homological Künneth projectors.

By Proposition 4.5, for k ∈ {e + 1, . . . , d} we have that πk(Xb) ∼hom π′
k(Xb), a projector that

factors through a variety with shift c as in Definition 2.1. Now set

∆left =
∑

k≤e

πk(Xb)

∆right =
t∆left

∆mid =
2d−e−1∑

k=e+1

π′
k(Xb).

Step 2. We spread out the fiberwise correspondences ∆left,∆right,∆mid to the family of hyper-

surfaces

X → B ,

using Voisin’s argument in the form of propositions A.1 and A.2. This gives a homological

decomposition of the relative diagonal, in the sense that there exist Y⊂ Xof relative dimension

d and a family Z→ B of relative dimension d− 2c, and codimension-d cycles

Πleft, Πright, Πmid

on X×B X such that Πleft,Πright have support on Y×B X, resp. on X×B Y, and Πmid factors

through Z→ B such that for any b ∈ B, restriction gives back the diagonal:
(
Πleft +Πmid +Πright

)∣∣∣
Xb×Xb

= ∆Xb
in H2d(Xb ×Xb) .
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Step 3. We upgrade this to rational equivalence using properties of M . So we consider the

difference

D := ∆X− Πleft − Πmid −Πright,

a relative correspondence with the property that

D|Xb×Xb
= 0 in H2d(Xb ×Xb) ,

for all b ∈ B. To upgrade this to rational equivalence we applying the key Proposition 5.1 to D.

We find a codimension-d cycle γ on M ×M such that

D|Xb×Xb
− γ|Xb×Xb

= 0 in Corr0(Xb ×Xb) ,

for all b ∈ B. The crucial point is that the restriction γ|Xb×Xb
∈ Corr0(Xb×Xb) is homologically

trivial, and so, by Proposition 2.8 is nilpotent.

Step 4. We can now finish the proof. Observe that a specialization argument reduces the proof

to showing it for a general b ∈ B. (cf. [49, Thm. 1.7] and [50, Thm. 0.6]). For general b the

fibre Xb will be in general position with respect to Yand Z so that

Γleft := Πleft|Xb×Xb

will be supported on Yb ×Xb with Yb of dimension c, and likewise

(2) Γmid := Πmid|Xb×Xb

will factor with a shift c. Let Γright be the transpose of Γleft. For some N ≫ 0 we have

(3)
(
∆Xb

− Γleft − Γmid − Γright

)
◦N

= 0 in Corr0(Xb ×Xb),

where Γleft,Γright is supported on Yb × Xb, resp. on Xb × Yb, and Γmid factors through Zb with

shift c as in Eqn. (2).

Since Γleft is supported on Yb ×Xb, Lemma 2.2 implies that its action on Ak(Xb) is trivial for

k < codimY = d − e. The correspondence Γmid by construction factors through Zb with shift

c and so – by the same Lemma – its action on Ak(Xb) is trivial, since k < c. Now expand the

expression (3) to conclude that

(∆Xb
)∗ = (polynomial in Γright)∗ : Ak(Xb) → Ak(Xb).

Since ∆Xb
acts as the identity on Ak(Xb) this implies indeed that Ak(Xb) is supported on Yb, a

variety of dimension e. �

Remark 5.3. It is possible to be more precise: in the situation of Theorem 5.2, we even have that

·Ld−e : Ae−k(Xb) → Ad−k(Xb)

is surjective in the range k < min{d− e, c}, so the k-cycles of Xb are supported on a dimension

e complete intersection. To obtain this, we remark that the Γright in the above proof can be

expressed in terms of Ld−e, just as in the proof of [28].

Recall that for curves AAJ
0 = 0 and so, if A0(Xb) is supported on a curve, we have AAJ

0 (Xb) =
0. We thus deduce that for c = 1, e = 1 we get the following special case:
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Corollary 5.4. Let M be a smooth (d+1)-dimensional projective variety for which B(M) holds

and whose (Chow) motive is finite-dimensional. Let Xb, b ∈ B be the family of all smooth

hypersurfaces in a very ample linear system and suppose that

Hd(Xb)
var 6= 0

and

Hk(Xb) = N̂1Hk(Xb), k = 2, . . . , d

for the general b ∈ B. Then

AAJ
0 (Xb) = 0

for all b ∈ B.

Remark 5.5. (1) In view of Cor. 4.9(1), for n = 2 the condition on the coniveau becomes

N1H2(Xb) = H2(Xb), i.e. all cohomology is algebraic. For n = 3 we should have in addi-

tion that N1H3(Xb) = H3(Xb) that is h3,0(Xb) = 0 as well as the generalized Hodge conjecture

for H3(Xb).
(2) Note that in corollary 5.4, there is no condition on Hd+1(M), so pg(M) could be non-zero.

In this case, nothing is known about the Chow groups of M , so it is remarkable that one can at

least control the image

Im
(
A1(M) → A0(Xb)

)
.

We next come to our second main theorem. It asserts that a ”short” niveau filtration on the

variable cohomology already has strong implications for the Abel-Jacobi kernels.

Theorem 5.6. Let i : X →֒ M be a complete intersection of dimension d. Suppose that

(1) B(M) holds;

(2) The Chow motive of M is finite dimensional;

(3) Hvar
d (X) 6= 0 and for some positive integer c we have Hvar

d (X) ⊂ N̂ cHd(X).

Then for k < c or for k > d− c we have

i∗ : AAJ
k+r(M) ։ AAJ

k (X), i∗ : A
AJ
k (X) →֒ AAJ

k (M).

Moreover, in this range

Avar
k (X) = ker(Ak(X) i∗−→ Ak(M)) = 0,

If in addition

(a) Hk(M) = N [ k
2
]Hk(M) for k ≤ d, then AAJ

k (X) = 0 if k < c or k > d− c;

(b) Hk(M) = N [ k+1
2

]Hk(M) for k ≤ d, then Ahom
k (X) = 0 if k < c or k > d− c.

Proof. Let X be a smooth complete intersection. In Section 2.5 we showed that there is a de-

composition

∆X = πfix(X) + πvar(X)
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which in cohomology induce projection onto fixed and variable cohomology respectively. By

Proposition A.2 there exists relative codimension-d cycles Π′ and Πvar on X×B X such that Π′

comes from M ×M × B and and Πvar induces πvar(X). Moreover, the restriction of

R = ∆X/B −Π′ −Πvar
d

to the general fiber is homologically trivial. By Proposition 5.1 there exists a codimension-d
cycle γ on M ×M such that

R|X×X − γ|X×X

is rationally equivalent to zero for b ∈ B general. In particular γ|X×X is homologically trivial.

Hence γ|X×X is nilpotent by Proposition 2.8. Let N be the index of nilpotency of γ|X×X . We

obtain

0 = γ
◦N |X×X= (∆X − πfix(X)− πvar(X))

◦N .

By assumption (3) and Corollary 4.6 the correspondence πvar(X) factors through a correspon-

dence of degree −c over a variety of dimension d − 2c and so acts trivially on AAJ
k (X) if

k < c or k > d − c. Setting ψ = πfix(X), we find that for some polynomial P we have

P (ψ)∗◦ψ∗ = ψ∗◦P (ψ)∗ = id on the Chow groups Ak(X) with k in this range and the first

assertion follows. For the second, observe that ψ acts as zero on Avar
k (X).

The assumption (a) in the last clause implies that πfix(X) factors through a curve and so this

summand acts trivially on AAJ
k (X) for all k. So then the above argument indeed gives that

AAJ
k (X) = 0 if k < c or k > d − c. In case (b), πfix(X) factors through a point and we obtain

Ahom
k (X) = 0 if k < c or k > d− c. �

Corollary 5.7. In the above situation, suppose that c = [d
2
]. Then the motive h(X) is finite-

dimensional. Moreover, if for M we have AAJ
k (M) = 0 for all k, then also AAJ

k (X) = 0 for all

k.

Proof. The assumptions imply surjectivity of i∗ : AAJ
k (M, id, r) → AAJ

k (h(X), id, 0) in the range

k = 0, . . . , [d−2
2
]. We then apply Vial’s result [44], stated in the Appendix as Theorem B.7. �

6. VARIANTS WITH GROUP ACTIONS

Let M be a projective manifold of dimension d + r and let L1, . . . , Lr be ample line bundles

on M and, as before, set

E := L1 ⊕ · · · ⊕ Lr.

We assume that a finite group G acts on M and on the Lj and that the linear systems |Lj|
G, j =

1, . . . , r are base point free. The complete intersection in M corresponding to s = (s1, . . . , sr) ∈
P(H0(M,E)) is denoted Xs. We consider smooth complete intersections coming from G-

invariant hypersurfaces and set accordingly

B := {b ∈ P(H0(M,E)G) | Xb is smooth}.

This is Zariski open in P(H0(M,E)G).
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The graph of the action of g ∈ G on M will be written Γg ⊂ M × M . As before, we let

M̃ ×M be the blow up of M × M in the diagonal and M [2] the Hilbert scheme of length 2
subschemes of M with the natural quotient morphism

µ : M̃ ×M →M [2].

Consider the ”bad” locus

BE,µ ={y ∈ M̃ ×M | no s ∈ H0(M,E)G separates the points

of the length-two scheme µ(y)}.

Note that the G-invariant sections of E do not separate points in G-orbits. We demand instead

that they separate entire G-orbits; in fact we want something less stringent, as expressed by the

following notion, involving the proper transforms Γ̃g of Γg in M̃ ×M .

Definition 6.1. Assume (M,E) andG as above. We say thatH0(M,E)G almost separates orbits

if the ”bad” locus BE,µ is contained in
⋃

g 6=id Γ̃g ∪ RG, where RG is a (possibly empty) union of

components of codimension > dimM = d+ r.

This demand ensures that I2(E) → M̃ ×M is a repeated blow up of a projective bundle

so that its cohomology can be controlled. In order to have an analogue of Proposition 5.1, we

demand that for g ∈ G the endomorphisms

γvarg = [Γg,b]
var
∗ ∈ EndHd(Xb)

var

should be independent. This can be tested using the following result.

Lemma 6.2. Let ρ : G → GL(V ) be a representation of a finite group on a finite dimensional

Q-vector space V . Then the endomorphisms {ρg, g ∈ G} are independent in End V if G is

abelian and every irreducible representation occurs in V .

Proof. This is a consequence of elementary representation theory. We may work over C. In the

abelian case the group ring C[G] is isomorphic to the regular representation of G and since the

former has for its base the irreducible non-isomorphic characters, the elements g, g ∈ G give a

basis for C[G]. The representation ρ induces an algebra homomorphism ρ̃ : C[G] → EndV
which is injective if every irreducible representation occurs in V . So the images ρ̃g, g ∈ G form

an independent set. �

Let us next introduce some notation. Suppose that χ : G → Q is a Q-character defining an

irreducible Q-representation Vχ, i.e. χ(g) = Tr(g)|Vχ
for all g ∈ G. The corresponding projector

in the group ring of G is

πχ =
1

|G|

∑

g∈G

χ(g)g ∈ Q[G]

leading to

(4) Γχ :=
1

|G|

∑

g∈G

χ(g)Γg,b ∈ Corr0(Xb, Xb)
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acting on the Chow group of M and on the homology groups of M as well as the homology of

the complete intersections Xb. The latter action preserves the decomposition into variable and

fixed homology. The j-th Chow group of the motive (X,Γχ) is by definition

Aj(X,Γχ) = Im (Γχ : Aj(X) → Aj(X)) = Aj(X)χ,

where for any G-module V we set

V χ := {v ∈ V | g(v) = χ(g)v for all g ∈ G} = {v ∈ V | (Γχ)∗v = v}.

Thus Γχ act as the identity on V χ.

We are now ready to formulate a variant of Proposition 5.1. Its validity is shown in the course

of the proof of [50, Theorem 3.3].

Proposition 6.3. Let (M,E), G and B ⊂ P(H0(M,E)G) be as above. Suppose that

(1) H0(M,E)G almost separates orbits;

(2) the endomorphisms γvarg ∈ EndHd(Xb)
var, g ∈ G are linearly independent;

(3) for general b ∈ B one has Hd(Xb)
var 6= 0.

Then for any D∈ Ad(X×B X)χ with the property that

D|Xb×Xb
= 0 in H2d(Xb ×Xb)

χ,

there exists a codimension-d cycle γ on M ×M such that

D|Xb×Xb
− γ|Xb×Xb

= 0 in Ad(Xb ×Xb)
χ

for all b ∈ B.

Using this variant, the arguments we employed in Section 5 for ∆X can thus be applied to Γχ

provided we restrict to H∗(Xb)
χ. Since Γχ acts as the identity on Aj(X)χ, the same conclusions

as before can be drawn for these Chow groups and we obtain the following results.

Theorem 6.4. Let (M,E), G and B ⊂ P(H0(M,E)G) be as above. Moreover, let χ be a

Q-character for G and Γχ the associated projector (4). Suppose that

(1) B(M) holds;

(2) H0(M,E)G almost separates orbits;

(3) the endomorphisms γvarg ∈ EndHd(Xb)
var, g ∈ G are linearly independent;

(4) the Chow motive (M,Γχ) is finite-dimensional.

Assume, moreover, that for a general b ∈ B one has Hd(Xb)
var 6= 0 and that

Hk(Xb)
χ ⊂ N̂ cHk(Xb) for all k ∈ {e+ 1, . . . , d}.

Then for any b ∈ B

Niveau
(
(Aj(Xb))

χ
)
≤ e− j for all j < min{d− e, c},

i.e., there exists a subvariety Zb ⊂ Xb of dimension d such that Aj(Zb) → Aj(Xb,Γχ) is surjec-

tive if j < min{d− e, c}.

Theorem 6.5. Notation as in the previous theorem. Let X ⊂ M be a G-invariant complete

intersection of dimension d. Suppose that
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(1) B(M) holds;

(2) H0(M,E)G almost separates orbits;

(3) the endomorphisms γvarg , g ∈ G are linearly independent in End(Hd(X)var);
(4) the Chow motive (M,Γχ) is finite-dimensional;

(5) 0 6= Hn(X)var and for some positive integer c we have Hd(X)var,χ ⊂ N̂ cHd(X).

Then for k < c or for k > d− c we have

i∗ : AAJ
k+r(M)χ ։ AAJ

k (X)χ, i∗ : A
AJ
k (X)χ →֒ AAJ

k (M)χ.

Moreover, in this range

Avar
k (X)χ = ker(Ak(X)χ i∗−→ Ak(M)χ) = 0,

If in addition Hk(M)χ = N [ k
2
]Hk(M)χ for k ≤ d, then AAJ

k (X)χ = 0 if k < c or k > d− c.

We also have the analogue of Corollary 5.7:

Corollary 6.6. In the above situation, suppose that c = [d
2
]. Then the motive h(X,Γχ) is finite-

dimensional.

7. EXAMPLES

7.1. A threefold of general type with finite dimensional motive. In [39] one of the authors

investigated a quasi-smooth threefold X which is a complete intersection of three degree 6 hy-

persurfaces in the weighted projective space P = P(24, 33) and showed that A0(X) = Q. Let

us check that this example can also be treated within the present framework. The only technical

obstacle is that P and X have (mild) singularities, but – as in loc. cit., close inspection of the

proofs shows that this does not matter.

The threefold X is of general type and has Hodge numbers h1,0(X) = h2,0(X) = 0, h1,1 = 1,

h3,0 = 0, h2,0 = 6. Moreover, the intermediate jacobian J2(X) is an abelian variety and there is

a curve C and a correspondence γ ∈ Corr1(C,X) inducing a surjection J(C) ։ J2(X). Hence

H3(X) = N1H3(X). Since H2(X) = N1H2(X) and H1(X) = 0 we can apply Cor 5.7 to

conclude that h(X̂) is finite dimensional where X̂ is a toroidal resolution of X . Moreover, the

cycle class map is injective in all degrees.

7.2. Hypersurfaces of abelian threefolds. We let A be an abelian variety of dimension three.

Let ι = −1A be the standard involution. Choose an irreducible principal polarization L that is

preserved by ι. The following facts are well known (see e.g. [24]).

Facts.

• L is ample and sections of L⊗2 correspond to even theta functions (and hence are invariant

under the involution).

• L3 = 3! = 6 and dimH0(L⊗2) = 8.

• The linear system |L⊗2| defines a 2-to-1 morphism κ : A → Km(A) ⊂ P7 = PH0(L⊗2)∗,
where Km(A) is the Kummer threefold associated to A, an algebraic threefold, smooth outside

the images of the 26 two-torsion points of A.
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We let X = {θ0 = 0} ⊂ A be a general divisor in |L⊗2|. This is a smooth surface invariant

under ι and κ induces an étale double cover of surfaces X → Y = X/(ι|X) ⊂ Km(A). The

crucial properties of A are as follows. We use the standard notation for the character spaces for

the action of Z/2Z = {id, ι} on a vector space V :

V ± = {v ∈ V | ι(v) = ±v}.

Proposition 7.1. (1) We have H1(X)+ = 0;

(2) the splitting

Hvar
2 (X) = Hvar,+

2 (X)⊕Hvar,−
2 (X)

is non-trivial and Hvar,+
2 (X) = N1Hvar,+

2 (X), i.e., H2,0(X)var,+ = 0.

Before giving the proof, we observe that Theorem 6.5 and Corollary 6.6 imply:

Corollary 7.2. We have Avar
0 (X)+ = 0 and the motive h(X)+ = h(Y ) is finite-dimensional (of

abelian type).

We now give the

Proof of Proposition 7.1. (1) Since ι acts as − id on one-forms, b1(Y ) = b1(X)+ = 0.

(2) We consider cohomology instead of homology. Consider the Poincaré residue sequence

0 → Ω3
A → Ω3

A(X) res−−→ Ω2
X → 0.

In cohomology this gives

0 → H0(Ω3
A) → H0(Ω3

A(X)) res−−→ H0(Ω2
X) → H1(Ω3

A) → 0.

Since H0(Ω3
A(X)) = H0(L⊗2) we deduce that

h0,2var(X) = 7, h0,2fix (X) = 3.

By the residue sequence, variable holomorphic 2-forms are the Poincaré-residues along X of

meromorphic 3-forms on A with at most a simple pole along X = {θ0 = 0} are given by

expressions of the form

θ

θ0
dz1 ∧ dz2 ∧ dz3

with θ a theta-function on A corresponding to a section of L⊗2, and where z1, z2, z3 are holomor-

phic coordinates on C3. It follows that such forms are anti-invariant under ι and so h2,0var(X) =
h2,0var,−(X) = 7

To complete the proof, we need to show that H1,1
var,+(X) = H1,1

var(Y ) is non-trivial. This is a

consequence of the following calculation. �

Lemma 7.3. The invariants of X and Y are as follows.

variety b1 bvar2 = (h2,0var, h
1,1
var, h

0,2
var) bfix2 = (h2,0fix , h

1,1
fix , h

0,2
fix )

X 6 43 = (7, 29, 7) 15 = (3, 9, 3)
Y 0 7 = (0, 7, 0) 15 = (3, 9, 3)
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Proof. By Lefschetz’ theorem b1(X) = b1(A) = 6. To calculate b2 we observe that c1(X) =
−2L|X and c2(X) = 4L2|X so that

c21(X) = c2(X) = 4L2|X = 8L3 = 48.

Since c2(X) = e(X) = 2− 2b1(X)+ b2(X) = 48, it follows that b2(X) = 58. Now bfix,+2 (X) =
b2(A) = 15 and so bvar2 (X) = 43. The 2-forms on X that are the restrictions of holomorphic

2-forms on A are clearly invariant and h2,0fix (X) = h2,0fix,+(X) = 3. Since h2,0var = 7, the invariants

for X follow.

For b2(Y ) we use that ι|X acts freely on the generic X and so e(Y ) = 1
2
e(X) = 1

2
c2(X) =

24 = 2 + b2(Y ) implying that b2(Y ) = 22. Using Künneth, we find bfix,+2 (X) = b+2 (A) =

b2(A) = 15 and so bfix,+2 (X) = 15, and bvar,+2 (X) = 7. Since h2,0var,+(X) = 0, this yields the

invariants for Y . �

7.3. Burniat-Inoue surfaces. The preceding example can be used to investigate the motive of

the classical Burniat-Inoue surfaces. By definition a Burniat surface is a minimal surface Y of

general type with invariants

pg(Y ) = q(Y ) = 0, e(Y ) = 6 =⇒ b1(Y ) = 0, b2(Y ) = h1,1(Y ) = 4.

Such surfaces have been constructed by Burniat in [9], while Inoue in [15] gave a different con-

struction as a quotient of a hypersurface in a product of three elliptic curves. It is this construction

that we follow.

It has recently been shown by Pedrini-Weibel [37, Theorem 9.1] and, independently, by Bauer-

Frapporti [6] that for such Y one has A0(Y ) = Q. 4 We give a different proof fitting our set-up.

The reader will notice that our proof is much simpler. To explain the construction of the surface

from [15], consider the abelian threefold

A := E1 ×E2 × E3, Eα = C/Λα, with Λα = Z⊕ Zτα, α = 1, 2, 3.

and the group G generated by three commuting involutions

ι1 : (z1, z2, z3) 7→ (z1,−z2 +
1

2
, z3 +

1

2
)

ι2 : (z1, z2, z3) 7→ (z1 +
1

2
, z2,−z3 +

1

2
)

ι3 : (z1, z2, z3) 7→ (−z1 +
1

2
, z2 +

1

2
, z3).

We recall some classical facts about theta functions on an elliptic curve E with period lattice

generated by 1 and τ ∈ h. The 2-dimensional space H0(E, 2 · [0]) is generated by two theta-

functions. This space is a representation for the group GE defined as the group generated by ι
and the translation t 1

2
over the half period [1

2
]. All of H0(E, 2 · [0]) is invariant under ι. One

can find two theta functions that are interchanged under t 1
2

and we let Θ+
E,Θ

−
E be their sum,

respectively their difference. Then H0(E, 2 · [0]) = (++)⊕ (+−) as a GE-module. Now set

Θj1j2j3 := Θj1
E1
Θj2

E2
Θj3

E3
.

4In loc. cit. this is in fact shown for the so-called generalized Burniat-type surfaces with pg = q = 0.
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These give a basis for the space of sections of the line bundle OE1(2·[0])⊠OE2(2·[0])⊠OE3(2·[0])
consisting of common eigenvectors for the action of G. Indeed, CΘj1j2j3 = (j2j3 j1j3 j1j2).

For generic c ∈ C the equation Θ+++ + cΘ−− = 0 defines a G-invariant surface X in A on

which G acts freely. The quotient X = Y/G is a classical Burniat-Inoue surface. The crucial

observation is that the involution j = ι1ι2ι3 is just the standard involution x 7→ −x on A. Then

Corollary 7.2 shows that the Chow motive of the surface Y/j is finite dimensional. This then is

also true for X = Y/G, but since pg(X) = 0 it follows that automatically A0(X) = Q.

It is worthwhile to note that our argument cannot be applied directly to the group G since the

condition that the endomorphisms γg, g ∈ G be independent, is not fulfilled in this case. See the

table below which gives the character spaces.

space 1 −1 −++ +−+ ++− +−− −+− −−+
H0,1(A) = H0,1(X) 1 1 1

H0,2(A) = H0,2
fix (X) 1 1 1

H1,1(A) = H1,1
fix (X) 3 2 2 2

H0,2
var(X) 1 2 2 2

H1,1
var(X) 1

Remark 7.4. A variant of this argument applies to all generalized Inoue-Burniat surfaces, i.e.

those surfaces forming the families S1, . . . ,S16 from [5]. This will be treated in a forthcoming

publication.

7.4. Hypersurfaces in products of a hyperelliptic curve and a K3-surface. Let C be a hy-

perelliptic curve with hyperelliptic involution ιC , and let S be a K3-surface with h(S) finite

dimensional and which admits a fixed point free involution ι2. Such surfaces exist, see e.g. the

examples of Enriques surfaces in [4, §4] coming from a K3-surface with Picard number ≥ 19.

By remark 2.7 the motive of S – and hence of M := C × S – is finite dimensional. The invo-

lution ι = (ι1, ι2) acts without fixed points on M . We let L1 be the hyperelliptic divisor on C
and we pick a very ample divisor L2 on S invariant under the Enriques involution ι2 and we set

L = L1 ⊠ L2. Let

i : X →֒ M = C × S

be a smooth hypersurface in |L| invariant under ι. Since ι has no fixed points, Y = X/ι is a

smooth surface. The analogues of Proposition 7.1 and its corollary are valid here.

Proposition 7.5. We have

(1) H1(X)+ = 0;

(2) H2,0(X)fix,+ = 0;

(3) the splitting

Hvar
2 (X) = Hvar,+

2 (X)⊕Hvar,−
2 (X)

is non-trivial and H2,0(X)var,+ = 0;

(4) A0(X)var,+ = 0 and the motive h(X)+ = h(Y ) is finite-dimensional of abelian type.

Proof. To simplify notation, we write

2u = L2
2, u ∈ Z
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which is possible since L2
2 is even.

Step 1. Calculation of the Betti numbers of X and Y .

We claim:

• b1(X) = 2g and b2(X) = 4g + 4(g + 2)u+ 46,

• b1(Y ) = 0 and b2(Y ) = g + (2g + 2)u+ 22.

To show this, observe that the Künneth formula and the Lefschetz hyperplane theorem imply

b1(X) = b1(M) = b1(C) = 2g and b1(Y ) = b+1 (X) = b+1 (C) = 0. To calculate b2(X) we

calculate the Euler number e(X) = c2(X) from the Whitney product formula

(1+c1(j
∗L))(1+c1(X)+c2(X)) = 1+(2−2g)P1+24P2+ · · · , P1 = i∗p∗1[C], P2 = i∗p∗2[S]

which gives c1(X) = (2− 2g)P1 − c1(i
∗L) and hence

c2(X) = 24P2 − c1(j
∗L)c1(X)

= 24P2 + (2g − 2)P1 · c1(i
∗L) + c21(i

∗L)

= 24P2 + (2g − 2)P1 · (2P1 + ℓ2) + (2P1 + ℓ2)
2, ℓ2 = c1(i

∗p∗2L2).

Identifying H4(X,Z) with the integers, we have

P 2
1 = 0, P2 = 2, (P1 · ℓ2) = L2

2 = 2u, ℓ22 = 4u.

and so

c2(X) = 48 + 4(g + 2)u = 2− 4g + b2(X) =⇒ b2(X) = 46 + 4g + 4(g + 2)u.

We calculate b2(Y ) from the Euler number of Y as follows.

2 + b2(Y ) = e(Y ) =
1

2
e(X) =

1

2
(2− 2g + b2(X))

=⇒ b2(Y ) =
1

2
b2(X)− (g + 1) = 22 + g + 2(g + 2)u.

Step 2. Variable and fixed homology.

Remarking that the fixed cohomology equals Im(i∗ : H2(M) →֒ H2(X)), we find bfix2 (X) =
b2(M) = b2(C) + b2(S) = 23. Since M/ι = P1 × {Enriques surface}, we find bfix2 (X) =
b2(M/ι) = 11. We put the result in a table.

variety bvar2 bfix2
X 4g + 4(g + 2)u+ 23 23
Y g + (2g + 2)u+ 22 11

Step 3. Hodge numbers of X .

As one readily verifies, the fixed cohomology has Hodge numbers

h2,0fix (X) = 1, h1,1fix (X) = 21.

For the variable cohomology we have

h2,0var(X) = (g + 1) · u+ g + 2, h1,1var(X) = 2(g + 3)u+ 2g − 2.
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To see this consider the Poincaré residue sequence in this situation.

0 → Ω3
M → Ω3

M (X) res−−→ Ω2
X → 0.

From the long exact sequence in cohomology we deduce that

(5) Ω3
M(X) = p∗1ωC(L1) ∧ p

∗
2ωS(L2) =⇒ h2,0var(X) = h0(C, ωC ⊗ L1) · (h

0(S, L2)− g).

By Riemann-Roch h0(C, ωC ⊗ L1) = h1(L∗
1) = g + 1 and h0(S, L2) = u + 2. The result for

h2,0var(X) follows.

Step 4. Hodge numbers of Y .

From the fact that M/ι is the product of P1 and an Enriques surface, we that find h2,0fix+ = 0 and

h1,1fix+ = 11. To find the Hodge numbers for the variable cohomology, we use a basic observation.

Lemma 7.6. We have h0(C, ωC ⊗ L1)
+ = 0.

Proof. Invariant meromorphic 1-forms on C having a pole at most in the hyperelliptic divisor

correspond to meromorphic 1-forms on P1 with at most 1 pole. But there are no such forms. �

As a corollary, from (5) it then follows that h0,2var(X)+ = 0 and so H2(X)+var is pure of type

(1, 1). We claim that H2(X)+var 6= 0. Indeed, our calculations lead to the following table.

variety (h2,0var, h
1,1
var, h

0,2
var) (h2,0fix , h

1,1
fix , h

0,2
fix )

X ((g + 1)u+ g + 2, 2(g + 3)u+ 2g + 21, g + 1)u+ g + 2) (1, 21, 1)
Y (0, 2(g + 3)u+ 2g + 10, 0) (0, 11, 0)

�

7.5. Hypersurfaces in products of three curves. Let M = C1×C2×C3 where Cα are curves

equipped with an involution ια. Assume that Lα is a very ample line bundle on Cα which is

preserved by ια and such that the system |Lα|
ια gives a morphism. Put ι = (ι1, ι2, ι3) and let

X ⊂ M be a general member of the system |L1 ⊗ L2 ⊗ L3|
ι where we identify Lα with its pull

back to M . The group G generated by the three involutions ια acts on M . As in the previous

subsections, one can calculate the various character spaces for the action of G on H2(X)var.
Suppose one factor, say C1, is hyperelliptic. Using Lemma 7.6, one sees that this makes the

niveau of H2(X)ι1,var equal to 1. Choosing the other factors suitably so that all character spaces

appear in H2(X)var one finds (many) projectors π with AAJ,var
0 (X,Γπ) = 0. Let us give one

concrete example.

We let C1 be a genus g hyperelliptic curve, and C2, C3 genus 3 unramified double covers

of some genus 2 curve. We take for L1 the degree 2 hyperelliptic bundle and we take for Lα,

α = 2, 3 the degree 2 bundles for which the system |Lα| induces the unramified double cover of

Cα onto the genus 2 curve. Note that ι acts without fixed points in this case. As before, we let

Y = X/ι. We find the following invariants.

variety b1 (h2,0var, h
1,1
var, h

0,2
var) (h2,0fix , h

1,1
fix , h

0,2
fix )

X 2(g + 6) (7g + 16, 14g + 477g + 16) (6g + 9, 12g + 21, 6g + 9)
Y 8 (0, 12g + 28, 0) (4, 8, 4)
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Concluding, H2
var,+(X) is pure of type (1, 1) and H2

var(X) contains an invariant and anti-

invariant part so that we can apply our considerations to the motive (X, 1
2
(1 + ι)) and hence

AAJ,var
0 (X)+ = 0.

It follows, as before, that h(Y ) = h(X)+ is finite-dimensional.

Remark 7.7. Using [27] we have that the map

Ahom
1 (Y )⊗ Ahom

1 (Y ) → AAJ
0 (Y )

induced by intersection product is surjective, like in the case of an Abelian variety of dimension

2. To see this, consider the commutative diagram

H1,0(Y )⊗H1,0(Y )

≃
��

∧
// H2,0(Y )

≃

��⊗2 (H1,0(C2/ι2)⊕H1,0(C3/ι3)) // // H1,0(C2/ι2)⊗H1,0(C3/ι3),

which shows that the top-line is a surjection.

7.6. Odd-dimensional complete intersections of four quadrics. The following example is due

to Bardelli [3]. Let ι : P7 → P7 be the involution defined by

ι(x0 : . . . : x3 : y0 : . . . : y3) = (x0 : . . . : x3 : −y0 : . . . : −y3).

Let X = V (Q0, . . . , Q3) be the intersection of four ι–invariant quadrics. Then H3,0(X)− = 0,

henceH3(X)− is a Hodge structure of level one. Bardelli showed that there exist a smooth curve

C and a correspondence γ ∈ Corr1(C,X) such that γ∗ : H1(C) → H3(X)− is surjective. Hence

H3(X)− ⊆ Ñ1H3(X) = N̂1H3(X). By Theorem 6.5 we get AAJ
0 (X)− = 0.

Consider the projector p = 1
2
(idX −ι∗). As ι∗ = ι∗, we have tp = p. Hence the mo-

tive N = (X, p) satisfies N ∼= N∨(3) and we can apply Theorem B.7 to the map i∗ : M =
(P7, 1

2
(idP−ι∗)) → N . This shows that the motiveN = h(X)− is finite dimensional; more pre-

cisely, it is a direct factor ofM ′ =M⊕M∨(3)⊕ih(Ci)(i) for some curves Ci. As AAJ
i (M ′) = 0

for all i, we obtain that

AAJ
i (X)− = 0

for all i. In other words the quotient morphism f : X → Y := X/ι induces an isomorphism

f ∗ : A∗
AJ(Y )

∼=
−→ A∗

AJ(X) .

This example can be generalised to higher dimension.

Theorem 7.8. Let ι be the involution on P2m+3 (m ≥ 2) defined by

ι(x0 : · · · : xm+1 : y0 : · · · : ym+1) = (x0 : · · · : xm+1 : −y0 : · · · : −ym+1)

and let X = V (Q0, . . . , Q3) be a complete intersection of four ι–invariant quadrics. Let G =
{id, ι} and let χ : G → {±1} be the character defined by χ(ι) = (−1)m−1. Then H2m−1(X)χ

is a Hodge structure of level one, and there exist a smooth curve C and a correspondence γ ∈
Corrm−1(C,X) such that γ∗ : H1(C) → H2m−1(X)χ is surjective.
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Proof. See [34, Chapter 3] or [35, Chapter 4]. �

Corollary 7.9. The motive h(X)χ is finite dimensional and AAJ
i (X)χ = 0 for all i.

Remark 7.10. The same reasoning can be applied to the examples in [48].

APPENDIX A. A VARIANT OF VOISIN’S ARGUMENTS

Proposition A.1. Let Γ be a codimension-k cycle on X×B X and suppose that for b ∈ B very

general,

Γ|Xb×Xb
in H2k(Xb ×Xb)

is supported on Vb × Wb, with Vb,Wb ⊂ Xb closed of codimension c1 resp. c2. Then there

exist closed V, W⊂ X of codimension c1 resp. c2, and a codimension-k cycle Γ′ on X×B X
supported on V×B Wand such that

Γ′|Xb×Xb
= Γ|Xb×Xb

in H2k(Xb ×Xb)

for all b ∈ B.

Proof. Use the same Hilbert schemes argument as in [49, Proposition 3.7], which is the case

Vb =Wb. �

Proposition A.2. Suppose that Hk(Xb) = N̂ cHk(Xb) for all k ∈ {e + 1, . . . , d} and all b ∈
B. Then there exist families Zk → B of relative dimension k − 2c and relative degree zero

correspondences Π′
k ∈ CorrB(X,X) such that

(a) Π′
k factors through Zk;

(b) Π′
k|Xb×Xb

is homologous to the k-th Künneth projector πk(Xb) for k = e+ 1, . . . , d.

Proof. Using the assumptions and a Hilbert scheme argument as in [50] there exist a Zariski open

subset U ⊂ B, a finite étale covering π : V → U , a family Zk → V of relative dimension i− 2c
and relative correspondences Γ ∈ CorrV (Zk,X), Γ′ ∈ CorrV (X,Zk) such that

(∗) Q(Γv(x), y) = Q′(x,Γ′
v(y))

for all x ∈ Hk(Xπ(v)), y ∈ Hk−2c(Zπ(v)) and v ∈ V . We now consider Γ and Γ′ as relative

cycles over U . Let u ∈ U . If π−1(u) = {v1, . . . , vN} we have Γu =
∑

j Γvj , Γ
′
u =

∑
j Γ

′
vj

. As

condition (∗) holds for all vj , we obtain

(∗) Q(Γu(x), y) = Q′(x,Γ′
u(y)).

We can extend Z to B by relative projective completion and desingularisation, and extend Γ and

Γ′ to relative correspondences over B by taking their Zariski closure.

As before, let Hfix
k (Xb) be the image of the restriction map Hk+2r(M) → Hk(Xb). As

B(M) holds there exists an algebraic cycle βd+r−k that induces the operator Λd+r−k. Set Rk =
βd+r−k◦Ld−k

◦πk+2r(M). If we pull back these cycles to M ×M × B and then to X×B X, we

obtain relative correspondences Πk ∈ CorrB(X,X) such that Πk|Hfix
k

(Xb)
is the identity for all k

(see e.g. [26, Lemmas 3.2 and 3.3]). Note that by construction Rk factors through a subvariety

of dimension r + k of M and Πk|Xb×Xb
factors through a subvariety Yb ⊂ Xb of dimension k,

i.e., Πk|Xb×Xb
∈ ImAd(Yb ×Xb) → Ad(Xb ×Xb).
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Write T = Γ◦Γ′ ∈ CorrB(X,X). Replacing T by Πk◦T if necessary, we may assume that

T|Xb×Xb
acts as zero on Hj(Xb) for all j 6= k. By construction (Tb)∗ : Hk(Xb) → Hk(Xb) is an

isomorphism, hence it has an algebraic inverse by the Cayley-Hamilton theorem as we saw in the

proof of Proposition 4.3. We want to perform a relative version of this construction. To this end,

note that since f : X→ B is a smooth morphism, the sheaf Rkf∗Q is locally constant. Hence

there exists an open covering {Uα} of B and isomorphisms fα from Rkf∗Q|Uα
to the constant

sheaf with fiber Hk(X0) (0 ∈ Uα a base point). As T is a relative correspondence defined over

B, the maps (T|Uα)∗ : Rkf∗Q|Uα
→ Rkf∗Q|Uα

induce automorphisms

Tα : Hk(X0) → Hk(X0)

that commute with the transition functions fαβ = fα◦f−1
β :

Tα = fαβ◦Tβ◦f−1
αβ .

Hence the characteristic polynomial of Tα does not depend on α. This implies that there exists a

polynomial P (λ) such that

P (Tb)∗ = (Tb)
−1
∗

for all b ∈ B. Define U= P (T) ∈ CorrB(X,X) and set Π′
k = U◦T. �

Corollary A.3. There exists relative correspondences Πleft, Πmid and Πright and families Y→ B
of relative dimension d, Z→ B of relative dimension d− 2c such that

(1) Πleft is supported on Y×B Xand Πright is supported on X× Y;

(2) Πmid factors through Z;

(3) The restriction of

∆X/B − Πleft − Πmid − Πright

to Xb ×Xb is homologous to zero for all b ∈ B.

Proof. Define Πleft =
∑e

k=0Πk, Πmid = Π′
d +

∑d−1
k=e+1(Π

′
k +

tΠ′
k) and Πright = tΠℓ. For the

support condition on Πℓ and Πr use Proposition A.1. �

APPENDIX B. ON A RESULT OF VIAL

In this appendix we give a quick proof of a result of Vial [44] using the work of Kahn–Sujatha

[20] on birational motives. We work with the category of covariant motives Motrat(k). The

Lefschetz object in this category is L = (Spec(k), id, 1). The category Mot0rat(k) of birational

motives is the pseudo–abelian completion of the quotient Motrat(k)/L, where L is the ideal of

morphisms that factor through an object of the form M ⊗ L with M ∈ Motrat(k)
eff . We denote

the image of a motive M under the functor

Motrat(k) → Mot0rat(k)

by M0. Kahn–Sujatha prove that

HomMot0(h(X)0, h(Y )0) ∼= A0(Yk(X))⊗Q.

More generally we have [41]

HomMot0(h(X)0,M0) ∼= A0(Mk(X))⊗Q.
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We shall also use the category Motnum(k) of numerical motives, which is abelian and semisimple

[17]. The image of M ∈ Motrat(k) under the functor Motrat(k) → Motnum(k) is denoted M .

Lemma B.1. Let f : M → N be a morphism in Motrat(k) such that M is finite dimensional. If

f :M → N admits a left inverse then f admits a left inverse.

Proof. If g◦f = idM then g◦f − idM is nilpotent. Writing out the expression (g◦f − idM)N = 0
we obtain a left inverse for f . �

Lemma B.2. Let f : M → N be a morphism in Motrat(k). If M is finite dimensional, there

exists a decomposition N ∼= N1 ⊕N2 such that

(1) N1 is isomorphic to a direct factor M1 of M (hence finite dimensional);

(2) N 1
∼= Im f .

(3) The composition M → N → N2 is numerically trivial.

Proof. In Motnum(k) we have decompositions M ∼= M 1 ⊕M2 and N ∼= N 1 ⊕ N 2 such that

M 1 → N1 is an isomorphism and the remaining maps M i → N j are zero. Since M is finite

dimensional, the direct summand M 1 lifts to a direct summandM1 of M . Put α = f |M1 :M1 →
N . As α is a monomorphism it admits a left inverse. By Lemma B.1 there exists β : N → M1

such that β◦α = idM1 . Define π = α◦β ∈ End(N1). Then π is a projector and we have

N = N1 ⊕ N2 with N1 = (N, π) and N2 = (N, id−π). Then M1
∼= N1 and by construction

N 1
∼= Im f and M → N 2 is the zero map. �

Lemma B.3. Let M = (X, p,m) and N = (Y, q), and let f : M → N be a morphism in

Motrat(k) such that

(1) M is finite dimensional;

(2) A0(MΩ) → A0(NΩ) is surjective, with Ω ⊃ k a universal domain;

(3) f is numerically trivial.

Then N0 = 0 in Mot0rat(k).

Proof. The second assumption implies that

A0(Mk(Y )) → A0(Nk(Y ))

‖ ‖

Hom(h(Y )0,M) → Hom(h(Y )0, N)

is surjective, hence there exists ϕ ∈ Hom(h(Y )0,M0) such that f 0
◦ϕ = q0 = idN0 . In particular,

f 0 : M0 → N0 is an epimorphism. Write ϕ = p0◦ψ with ψ : h(Y )0 → h(X)0. There exists

γ ∈ Corr−n(Y,X) such that γ0 = ψ. Put g = p◦γ◦q : N → M and π = g◦f ∈ End(M). As

f = 0, π = 0. Hence π is nilpotent sinceM is finite dimensional. By construction f 0
◦g0 = idN0 ,

so π0 is a projector and by nilpotence we get π0 = 0. This implies that f 0 = f 0
◦π0 = 0, hence

N0 = 0 since f 0 :M0 → N0 is an epimorphism. �

Remark B.4. Suppose k = C. It suffices to assume that AAJ
0 (M) → AAJ

0 (N) is surjective.

Indeed, there exists a curve C such that J(C) → Alb(N) is surjective. We then replace M by

M ′ =M ⊕ h(C) and apply the Lemma to M ′.



32 ROBERT LATERVEER, JAN NAGEL, AND CHRIS PETERS

Corollary B.5. Let f :M = (X, p,m) → N = (Y, q) be a morphism in Motrat(k) such that

(1) M is finite dimensional;

(2) Ai(MΩ) → Ai(NΩ) is surjective for all i ≤ ℓ− 1.

Then N ∼= N1 ⊕N2 with N1 finite dimensional and N2
∼= (Z, ρ, ℓ) with dimZ = d− ℓ.

Proof. By Lemma B.2 N ∼= N1 ⊕ N2 with M → N2 numerically trivial, hence N0
2 = 0 by

Lemma B.3. This implies that N2
∼= R(1) with R = (Z, ρ) and dimZ = d − 1. This finishes

the proof if ℓ = 1. The general case follows by induction on ℓ using the formula Ai(R(k)) =
Ai−k(R). �

Remark B.6. Assume k = C.

(1) As noted before, it suffices to assume that

AAJ
i (MΩ) → AAJ

i (NΩ)

is surjective for all i ≤ ℓ− 1 (here Ω = C considered as universal domain).

(2) If the motiveM is self–dual up to twist, i.e., M ∼=M∨(d), the statement of the Corollary

can be improved. WriteN = N1⊕R(ℓ) as before, and consider the mapM ∼=M∨(d) →
R(ℓ)∨(d) = R∨(d− ℓ) = (Z, tρ) = R′. By assumption Ai(MΩ) → Ai(R

′
Ω) is surjective

for all i ≤ ℓ − 1, hence R′ ∼= R′
1 ⊕ R′

2 such that R′
1 is finite dimensional and R′

2 =
(Z ′, ρ′, 2ℓ− d) with dim(Z ′) = dimZ − ℓ = d− 2ℓ.

Summarizing, we get the following result.

Theorem B.7 (Vial). Let f : M = (X, p,m) → N = (Y, q) be a morphism in Motrat(C) such

that M is finite dimensional.

(1) If AAJ
i (M) → AAJ

i (N) is surjective for all i ≤ d − 1 then N is isomorphic to a direct

factor of M ⊕⊕d
i=1h(Ci)(i) where Ci is a smooth curve for all i.

(2) If M ∼= M∨(d) and AAJ
i (M) → AAJ

i (N) is surjective for all i ≤ d−2
2

then N is isomor-

phic to a direct factor of M ⊕M∨(d)⊕⊕ih(Ci)(i) with Ci smooth curves.

Hence N is finite dimensional in both cases.

Proof. Use Corollary B.5 and the previous Remark. �

Remark B.8. The proof of Theorem B.7 gives a bit more: if the motive M is “of abelian type”

(i.e., belongs to the subcategory of Motrat(C) generated by the motives of abelian varieties over

k) then N is of abelian type.
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