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Abstract

In this paper we present an online camera pose estimation method that combines
Content-Based Image Retrieval (CBIR) and pose refinement based on a learned repre-
sentation of the scene geometry extracted from monocular images. Our pose estimation
method is two-step, we first retrieve an initial 6 Degrees of Freedom (DoF) location of an
unknown-pose query by retrieving the most similar candidate in a pool of geo-referenced
images. In a second time, we refine the query pose with a Perspective-n-Point (PnP)
algorithm where the 3D points are obtained thanks to a generated depth map from the
retrieved image candidate. We make our method fast and lightweight by using a common
neural network architecture to generate the image descriptor for image indexing and the
depth map used to create the 3D points required in the PnP pose refinement step. We
demonstrate the effectiveness of our proposal through extensive experimentation on both
indoor and outdoor scenes, as well as generalisation capability of our method to unknown
environment. Finally, we show how to deploy our system even if geometric information
is missing to train our monocular-image-to-depth neural networks.

1 Introduction

Image-based localisation (IBL) consists in retrieving the exact 6 Degrees of Freedom (DoF)
of an image query according to a known reference [26]. IBL is involved in various computer
vision and robotics tasks, such as camera relocalisation for augmented reality or SLAM
mapping[23], autonomous driving [6], robot or pedestrian localisation [36], cultural her-
itage [2], etc.

IBL can be considered as a visual place recognition problem [21] and solved using Con-
tent Based Image Retrieval (CBIR) [1]. Indeed, as the reference scene is described by a pool
of geo-localised images, a coarse pose can be obtained by retrieving the closest reference
image to the query. So far, the most successful approaches for IBL are methods matching
2D image features to a 3D reference point cloud, before using a Perspective-n-Point (PnP)
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algorithm to estimate the 6-DoF pose of the image query [37, 40]. Following these meth-
ods, new IBL systems have increased the localisation performances by relying on more and
more complete and heavy geometric representation of the environment [42, 44]. However,
when the underlying geometry of the scene is not available, or the computational resources
allocated to the localisation framework are limited, such methods cannot be deployed.

With the recent advance in machine learning, Kendall et al. [15] introduce Posenet, a new
compact system that directly regresses the pose of a given query image. Although Posenet
has the advantages of being lightweight and relies on only-images data, Sattler et al. [41]
show that performances of such methods are less precise than CBIR-based pose estima-
tion [47]. They demonstrate that learned pose regression method are more likely to average
the pose of the training examples [46] rather that computing a real pose based on geometric
constraints. Another disadvantage of Posenet-like methods rely on the fact that a different
model has to be trained for each new scene.

Based on these observations, we propose a new pose estimation method built on CBIR
augmented by a subsequent pose refinement step, like in [3]. We use dense correspondences
from the retrieved image and the query to refine its 6-DoF pose with a PnP algorithm. In
order to obtain a position at true scale (which is not the case with traditional multi-view
methods [11]), we exploit learning to reconstruct the depth map associated to the reference
images [45]. We take advantages of the recent progress in depth estimation from monocular
images to train our model with or without the supervision of ground truth depth maps [8, 9,
54]. In order to perform online IBL, we use the same neural model to compute the global
image descriptor used in CBIR, the dense matching between the query and the retrieved
image and to estimate the depth map associated to a single image. Thanks to this multi-task
design, our system is compact and lightweight as Posenet while not necessitating the costly
scene-specific training as mentioned earlier. Unlike traditional IBL method, our proposal do
not requires heavy representation of the scene geometry as we exploit the capability of recent
neural networks to learn the underlying structure of a scene from the radiometric appearance.

The rest of our paper is presented as follows: the next section is dedicated to a brief
review of the related work, then the details of our method are presented in section 3. The
obtained results with our proposal are discussed in section 4, and we finally conclude the
paper in section 5.

2 Related work

2.1 Image-based localisation

Sattler et al. [37] have designed a state-of-the-art camera localisation system where 2D hand-
crafted features from the query image are matched to a large 3D point clouds created by
Structure from Motion (SfM). Another successful approach has been presented in [34, 35,
38, 39] with a coarse to fine localisation pipeline by initial image indexing followed by
feature registration on a local 3D model. In [44], the hand-crafted features usually used
for image matching are replaced by dense matching using features block for pre-trained
CNN with successive geometric verification steps using a complete 3D model of an indoor
building. In [42], authors use, in combination with 3D geometry, semantic labelling of the
scene to perform outdoor localisation at large scale. In our proposal, we adopt the coarse to
fine localisation strategy while limiting the data required during the pose request to images
only.


Citation
Citation
{Sattler, Leibe, and Kobbelt} 2016

Citation
Citation
{Sattler, Maddern, Torii, Sivic, Pajdla, Pollefeys, and Okutomi} 2018{}

Citation
Citation
{Sch{ö}nberger, Pollefeys, Geiger, and Sattler} 2018

Citation
Citation
{Taira, Okutomi, Sattler, Cimpoi, Pollefeys, Sivic, Pajdla, and Torii} 2018

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Sattler, Zhou, Pollefeys, and Leal-Taixe} 2019

Citation
Citation
{Torii, Arandjelovi{¢}, Sivic, Okutomi, and Pajdla} 2015

Citation
Citation
{Torii, Sivic, and Pajdla} 2011

Citation
Citation
{Balntas, Li, and Prisacariu} 2018

Citation
Citation
{Hartley and Zisserman} 2003

Citation
Citation
{Tateno, Tombari, Laina, and Navab} 2017

Citation
Citation
{Eigen, Puhrsch, and Fergus} 2014

Citation
Citation
{Godard, {Mac Aodha}, and Brostow} 2017

Citation
Citation
{Zhou, Brown, Snavely, and Lowe} 2017

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2016

Citation
Citation
{Sarlin, Debraine, Dymczyk, Siegwart, and Cadena} 2018

Citation
Citation
{Sarlin, Cadena, Siegwart, and Dymczyk} 2019

Citation
Citation
{Sattler, Torii, Sivic, Pollefeys, Taira, Okutomi, and Pajdla} 2017

Citation
Citation
{Sattler, Maddern, Toft, Torii, Hammarstrand, Stenborg, Safari, Okutomi, Pollefeys, Sivic, Kahl, and Pajdla} 2018{}

Citation
Citation
{Taira, Okutomi, Sattler, Cimpoi, Pollefeys, Sivic, Pajdla, and Torii} 2018

Citation
Citation
{Sch{ö}nberger, Pollefeys, Geiger, and Sattler} 2018


N. PIASCO, D. SIDIBE, C. DEMONCEAUX, V. GOUET-BRUNET: PNLP 3

Unknown pose query

d SR N

P ~
yiiio2D-2D . 2D-3D
{11! matches “ AN matches
i . N

N e
s <l T Nearest
§ 2 EEvE— Neighbor
- ‘ e fast >
s

indexing

Most similar
image, with
pose

— ‘e Point proj.
Depth from monocular decoder according to K

a) Content-Base Image Retrieval (CBIR) b) Perspective-n-learned-Point (PnlP)

Figure 1: Pipeline of the proposed method. a) We retrieve initial pose of an image query
using CBIR. b) We refine initial pose with a PnP algorithm where 2D to 3D matches are
obtained through the reconstructed depth map of the reference image. Purple boxes are deep
features blocs used for dense images matching.

Learning approaches for camera localisation have also been considered since early work
from [43] that uses regression forest at pixel level for fast pose estimation. Cavallari et al.
[7] extended this work by reusing the forest structure for fast adaptation to unknown scene.
Pose regression CNN-based methods [13, 15, 16, 33, 50] and more recently coordinates
regression method [4, 5, 18] are also well studied topics and provide compact localisation
system relying on images only. We do not design our system as a direct image to pose
regression method, as this approach cannot be generalised and needs specific training and
model for each new environment. Closest work to our is a method called Relocnet [29],
where authors use a two-step localisation approach consisting of a first pose estimation by
CBIR followed by a relative pose estimation between two images with a CNN. By learning
relative information, Relocnet can be used in various environment without specific training
for each scenes.

2.2 Depth from monocular image for localisation

Modern neural networks architectures can provide reliable estimation of the depth associated
to monocular image in a simple and fast manner [8, 9, 22]. This ability of neural networks
has been used in [45] to recover the absolute scale in a SLAM mapping system. Loo et al.
[20] use the depth estimation produced by a CNN to improve a visual odometry algorithm
by reducing the incertitude related to the projected 3D points. In [28], authors use the depth
map generated from monocular images as stable features across season changes within a
CBIR localisation framework. As in [27], we use the depth information obtained by a neural
network to project 2D points in 3D for 6-DoF pose estimation and for modeling the geometry
of multiples environment within a common model.

3 Method

Workflow. Our method for fast image pose estimation is described in figure 1. The camera
pose is estimated following this two-step algorithm:
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a) We obtain the initial pose of the query image by CBIR (section 3.1).

b) Initial pose is refined by finding dense correspondences between the query image and
the best retrieved image (section 3.2). Meanwhile, we use a neural network to create
the depth map related to the retrieved image candidate (section 3.3). We use correspon-
dences between the 2D points of the query image and the 3D points projected from
the depth map to compute the real pose of the query using Perspective-n-Point (PnP)
algorithm (section 3.4). We further denote our pose refinement method as Perspective-
n-learned-Point (PnlP).

Notations. The aim of our method is to recover the camera pose hq € R**#, represented
by a pose matrix in homogeneous coordinates, corresponding to an input RGB image I €
R3*H>W We know the matrix K € R3*3 of intrinsic parameters of the camera. We assume
that we know the pose {hri}i=1. N of a pool of N references images {Iri}i=1, N of the
scene where we want to localise the query. These poses can be obtained by SfM or by using
external sensors. We denote as E, respectively D, a neural network encoder, respectively
decoder.

3.1 Image retrieval

We cast the initial pose estimation task as a content-based image retrieval problem like in [3],
since the reference data are augmented with 6 DoF pose information. In order to evalu-
ate the similarity between the unknown pose query image Iy and the N reference images
{Iri}izl -+ We need to use a discriminative image representation. Recent works have
shown that deep features extracted from convolutional neural network offer better global im-
age representations compared to hand-crafted features [1, 10, 30, 31]. We use a state-of-the
art global image descriptor for place recognition, NetVLAD [1], to describe the data by low-
dimensional L, normalised vectors. The NetVLAD descriptor f is obtained by concatenating
the dense feature from neural network encoder E: f = NetVLAD(E(I)).

We first compute reference descriptors {fri }i:l’ . from the reference images. Then we
compare the query descriptor f; to the pre-computed descriptors by fast nearest neighbour
indexing and retrieval:

{frj}jzl, K NN (fq’ {fri}i:L N) ’ ey

where NN is the nearest neighbour matching function and £/ ,J € [1,K], the K closest refer-
ence descriptors to the query descriptor. We use cosine similarity to evaluate the similarity
between two descriptors and K-D tree as indexing structure. We consider poses h{, j € [1,K],
as candidate poses of the image I .

3.2 Dense correspondences

In order to refine the initial pose obtained by image retrieval, we compute correspondences
between the query image and the closest retrieved image candidates. In [24, 44, 51], authors
use the dense features extracted by a convolutional neural network in order to compute cor-
respondences between images. We follow the same idea and use the latent representation
already computed by the neural network encoder E to compute correspondences between the
query image and the K retrieved candidates.
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Local image descriptors are obtained from the latent image representation by concate-
nating the features at each position (!, m)W 1, (We and Hg are the spatial dimensions of the
features map) along the depth of the features map [44, 51]. We subsequently L-normalise
the extracted descriptors before matching. We consider only consistence matches by reject-
ing correspondences that do not respect the bidirectional test (nearest descriptors of image 1
in image 2 have to be the same as nearest descriptors of image 2 to image 1).

3.3 Depth from monocular image

2D to 2D correspondences obtained by dense features matching (section 3.2) do not provide
enough information to compute relative pose between images at absolute scale. Therefore,
we propose to reconstruct the relative scene geometry from the camera to circumvent this
limitation. Various recent deep learning generative models are able to properly reconstruct
geometry associated to radiometric data, with full supervision training [8], weakly annotated
data [9] or even in a self-supervised way [22].

We train an encoder/decoder jointly to predict the corresponding depth map M associated
to an image: M = D(E(I)). With the generated depth map obtained by our neural network
and the intrinsic parameters of the camera K, we can project the 2D point (! ,m)T to the
corresponding 3D coordinate p:

p=M" K '[l,m1]T. ()

3.4 Pose refinement

Thanks to the generated depth map (section 3.3) and the equation 2, we can project 2D points
from retrieved images into 3D coordinates. 2D-2D correspondences obtained in section 3.2
can be interpreted as 2D-3D correspondences and we can use PnP algorithm to compute the
relative transformation h;_,q between the query image and the reference image. We obtain
final pose of query image I, using the relation hy = h;h; 4.

We embed the PnP algorithm within a RANSAC consensus where a sub-part of 2D-3D
correspondences are evaluated at a time. As we have multiple reference candidates from
image retrieval step (section 3.1), we select the pose with the largest proportion of inlier
correspondences after the PnP optimisation. If the ratio of inlier is below a given threshold,
we simply affect the pose of the retrieved image to the query.

3.5 System design and motivation

Multi-task model. In order to make our system fast and lightweight, we use a single en-
coder/decoder neural network for the three tasks needed in our pose estimation pipeline.
That means with a single image forward, we obtain a compact global image description,
dense local descriptors and a depth map corresponding to the observed scene.

Single task training policy. There are dedicated training pipeline for each of the computer
vision tasks involved in our image pose estimation framework: methods for learning a global
image descriptor [1, 10, 30], CNN designed to extract and describe local features [25, 32, 52]
and system that produces a depth map from a monocular image [8, 9, 22]. We decide to
train our encoder/decoder network for the task of depth from monocular estimation because
estimation of erroneous depth measurement will result in wrong estimation of the final pose.
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In the next section, we experimentally show that even if our network has not been trained
especially for the task of image description or local feature matching, the latent features
computed within the network embed enough high-level semantic to perform well on these
tasks [44, 53].

Generalisation. Because we rely on a non-absolute representation of the scene geometry
(depth is estimated relatively to the camera frame), our model is not limited to localisation
on one specific scene like end-to-end pose estimation networks [4, 14]. In other words, the
same trained network can be used to localise images in multiple indoor and outdoor scenes,
and even on totally unknown environments.

4 Experiments

In this section, we present extensive experiments to evaluate our proposal. We consider
two localisation scenarios: indoor static scenes (section 4.2) and outdoor dynamic scenes
(section 4.3). We also divide our evaluation according to the data available to train our en-
coder/decoder architecture: fully supervised depth from monocular training (when ground-
truth associated depth map are available during training), and unsupervised depth from
monocular (when the only data available during training are video sequences with true rela-
tive poses between images).

4.1 Implementation details

Datasets. We test our method on the following indoor localisation datasets: 7 scenes [43]
and 12 scenes [48]. These datasets are composed of various indoor environments scanned
with RGB-D sensors. We use the Cambridge Landmarks [ 15] dataset for outdoor evaluation.
This dataset is composed of 6 scenes featuring dynamic changes (pedestrian and cars in
movement during the acquisition) acquired by a cell-phone camera. 6-DoF image poses and
camera calibration parameters are provided for these 3 datasets. For all the experiments,
reference images used for the initial pose estimation with CBIR are taken from the training
split and query images are taken from the testing split of the respective datasets.

As not ground truth depth maps are available for the Cambridge Landmarks scenes, we
only perform outdoor experiments related to the unsupervised depth from monocular train-
ing.

Networks architecture and training. For both fully supervised and unsupervised depth
from monocular experiments, we use a U-Net like convolutional encoder/decoder architec-
ture [12] with multi-scale outputs [9]. For the unsupervised scenario, we also try to add some
recurrent layers (LSTM) in the decoder to capture long term dependencies [19, 49]. We de-
note the fully convolutional architecture as FC and convolutional layers + recurrent layers
architecture as C+LSTM. FC and C+LSTM encoders are identical, with 6.3M parameters,
FC decoder has 16.7M parameters and C+LSTM decoder has 10.1M parameters.

During training and testing, images are resized to 224 x 224 pixels for indoor scenes, and
224 x 112 for outdoor images. The generated depth map is 4 times smaller than the RGB
input. We use L; loss function for the fully supervised depth from monocular training. To
learn depth from RGB in a unsupervised manner, we follow the training procedure of [54],
using the ground truth relative pose between images and by adding SSIM loss function for
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radiometric comparison as in [22]. We train all the architecture with adam optimizer, learning
rate of 10~ divided by two every 50, respectively 5, epochs for the supervised, respectively
unsupervised, training. Training takes approximately one day on our Nvidia Titan X GPU
with a batch size is set to 24, respectively 12, for supervised, respectively unsupervised,
training.

We train networks for indoor localisation on the 7 scenes dataset (using only sequences
from the training split). The 12 scenes dataset is used to evaluate the generalisation capability
of our method. For outdoor localisation, we train our two different architectures (FC and
C+LSTM) on the Cambridge Landmarks dataset.

Unsupervised depth from monocular at scale. It is not self-explanatory to claim that
the depth maps produced from our unsupervised trained network [54] are at a real scale.
Nevertheless, in our experiment they are because we use the absolute 6-DoF camera pose
(obtained by SfM) to compute the relative position and orientation of the training images.
In [54], authors use an auxiliary relative pose estimation network to make their method
trainable with video sequences without any pre-processing. The counterpart is that the final
CNN produces depth maps up to an unknown scale factor.

For the case of the Cambridge Landmarks dataset [15], authors rescale the 3D model
obtained by SfM at true scale using control points to obtain meaningful pose error at test time.
Some learned depth maps can be found in figure 2, showing that unsupervised method leads
to true scale depth values as long as it has been trained with true camera pose information.

Method parameters. We use NetVLAD layer with 64 clusters as global image descriptor
for initial pose estimation. We concatenate features from the last convolutional layers of the
encoder network, composed of 256 convolutional filters, resulting in a global descriptor of
size 16384. Descriptor dimension can be further reduced with PCA projection [1]. We con-
sider the 5-top retrieved candidates from the nearest neighbour search in the pose refinement
process, resulting in a good trade-off between time consumption and pose estimation perfor-
mances. For the final pose estimation, we use the fast C++ PnP implementation from [17]
and we set the inlier ratio threshold mentioned in section 3.4 to 10%.

4.2 Indoor localisation

Indoor localisation error on 7 scenes [43] dataset are presented in table 1. We compare
our proposal with Relocnet [29] and Posenet [14] trained with a geometric-aware loss. At
first glance, we find that the initial pose estimation with image retrieval produces decent
results (first two columns), while the network used to produce the global image descriptor
has not been trained to this particular task. After applying our PnlP pose refinement, the
model trained in a fully supervised manner produces the most precise localisation among the
presented methods.

For the unsupervised setting, we found that FC and C+LSTM architectures perform
equivalently on the indoor dataset, thus we present only results of the FC architecture. We
observe an average relative improvement of x2.8/x3.5, respectively x1.8/x2.1, for the su-
pervised, respectively unsupervised, model in position/rotation from initial to PnlP refined
pose. Compared to Posenet [14] our unsupervised model perform equivalently, while us-
ing the same trained network for all the 7 scenes, compared to one network by scene for
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Image retrieval PnlP refinement Relocnet Posenet
Scene FC-sup. FC-unsup. | FC-sup.  FC-unsup. [3] [14]
Chess 0.29/13.0  0.34/154 | 0.07/2.7 0.13/4.7 0.12/4.1 0.13/4.5
5 Fire 0.40/15.5  0.48/19.3 | 0.07/3.2 0.22/8.2 0.26/10.4  0.27/11.3
. Heads 0.28/20.5  0.25/17.9 | 0.05/3.9  0.15/10.5 | 0.14/10.5 0.17/13.0
% Office 0.38/13.0  0.50/16.1 0.09/2.9 0.23/6.3 0.18/5.3 0.19/5.6
& Pumpkin 0.43/13.1  0.54/15.0 | 0.13/3.6 0.29/7.1 0.26/4.2 0.26/4.8
=  Kitchen 0.23/9.5 0.26/10.5 | 0.05/2.0 0.12/3.3 0.23/5.1 0.23/5.4
Stairs 0.46/14.9  0.49/15.5 | 0.40/9.2  0.48/12.2 0.28/7.5  0.35/12.4
Aptl-kitchen | 0.12/7.7 0.14/9.2 0.09/4.1 0.14/5.0 - -
Aptl-living 0.12/6.8 0.13/6.7 0.08/2.9 0.10/3.3 - -
Apt2-kitchen 0.10/6.5 0.10/6.6 0.10/3.7 0.10/3.9 - -
=  Apt2-living 0.11/5.6 0.13/7.3 0.10/4.7 0.11/3.7 - -
L Apt2-bed 0.13/7.0 0.12/7.1 0.12/5.7 0.15/5.0 - -
§ Apt2-luke 0.15/7.2 0.16/7.8 0.14/5.5 0.14/5.3 - -
(5)‘3 Office Sa 0.12/5.3 0.13/6.3 0.09/3.6 0.14/4.6 - -
&  Office 5b 0.15/7.2 0.18/6.7 0.10/4.7 0.14/5.0 - -
~—  Lounge 0.16/7.1 0.19/8.3 0.10/3.5 0.13/4.7 - -
Manolis 0.13/6.3 0.15/7.8 0.09/3.7 0.12/4.5 - -
Gates362 0.13/5.9 0.14/6.5 0.10/4.7 0.11/3.9 - -
Gates381 0.15/7.7 0.16/9.0 0.11/4.4 0.13/5.1 - -

Table 1: Results on the 7 scenes [43] and 12 scenes [48] indoor datasets, we report me-
dian position/orientation error in meters/degree. We compare the first pose estimation (im.
retrieval, in italics) and, the final image localisation (PnlP) of our method and two state-
of-the-art approaches. Best localisation results are shown in bold and underligned numbers
show failure cases when the pose refinement increases the initial pose error. Sup. (in purple)
and unsup. (in blue) stand for supervised, respectively unsupervised, depth from monocular
training. Table best viewed in color.

Posenet. Our proposal clearly outperforms Relocnet [3] in a supervised setting, while pro-
ducing comparable localisation for the model trained in an unsupervised manner. It is im-
portant to remind that Relocnet relies on two different networks: one trained especially to
produce discriminative global image descriptors for CBIR and the second to estimate the
relative pose between two images. Our method is lighter as it uses a single network and do
not uses specific training for the task of global image description. We observe a failure case
of our method for the scene stairs due to a poor initial pose estimation. This scene contains
repetitive visual patterns that may confuse the CBIR localisation.

Generalisation. We also report on table 1 localisation error on 8 scenes of the 12 Scenes
dataset [48]. For these experiments, we use the same network as mentioned earlier, trained
on 7 Scenes dataset [43]. We observe an average relative improvement of x 1.2/x 1.5, respec-
tively x1.1/x1.6, for the supervised, respectively unsupervised, model in position/rotation
from initial to refined pose. Even though the pose refinement is not as effective as previ-
ously, it shows that our system can be used on completely new indoor environments. We
also demonstrate, in figure 2, the generalisation capability of our method through the depth
maps produced by our networks, from images taken on both known and unknown scenes.
We notice that the poor localisation performance on the Apt2-bed scenes is closely related
to the poor generated depth map on this scene (see figure 2, two last columns).
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Figure 2: Visualisation of the depth map generated from RGB input with two networks
trained with full supervision or without ground truth depth map in an unsupervised manner.
In both configurations, networks are trained on the 7 scenes dataset [43]. Examples from 12
scenes [48] show networks generalisation capability.

Great Court Kings C. Old Hosp. Shop St Mary’s Street
Im. retrieval FC-unsup. 27.6/26.79  4.4/6.10  6.2/10.09 4.3/14.93 6.9/15.17 95.5/58.38
C+LSTM-unsup | 24.3/20.94  5.0/5.86  6.5/8.60  3.2/9.47  5.9/12.71 92.5/67.10
PnlP FC-unsup. 25.5/22.64  2.9/298  4.9/6.37 1.8/5.78  3.5/6.99  76.2/51.91
C+LSTM-unsup | 13.2/10.07  2.7/3.10  3.5/5.55 1.1/3.38  2.6/5.85 69.5/52.07
Posenet [14] - 0.9/1.04  3.2/3.29 0.9/3.78 1.6/3.32  20.3/25.5

Table 2: Results on the Cambridge Landmarks [15] outdoor dataset, we report median
position/orientation error in meters/degree. We compare our two network architectures, FC
(in blue) and C+LSTM (in purple), trained in an unsupervised manner. Table best viewed in
color.

4.3 Outdoor localisation

As mentioned previously, we only test our unsupervised set-up for outdoor image pose esti-
mation as the Cambridge Landmarks dataset [15] does not contain ground truth depth maps.
Results are presented in table 2. PnlP performs well on outdoor scene, with a mean improve-
ment of x1.3/x1.4 for FC architecture, and x1.5/x1.6 for C+LSTM, in position/rotation
precision over initial pose given by CBIR. Superior performances of C+LSTM model can be
explained by a better capability of the recurrent cells in the C+LSTM decoder for modelling
the 3D structure of the scene, as shown in figure 3. Our method is not able to recover a
proper pose for the scene Street. As same as for the indoor failure case, this is the result
of a poor initial pose estimation at the CBIR preliminary step. Compared to Posenet [14],
our method is marginally less precise but requires only one trained model compared to the
6 models needed by Posenet and can potentially be used on unknown scenes according to
the previous indoor experiments. We do not compare our method to Relocnet [29] baseline
because authors do not evaluate Relocnet on outdoor scenes.

4.4 Limitations

The final camera pose precision is highly dependent on the images returned by the CBIR
inital step. Thus, our method performances are limited by the quality of the global image
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Figure 3: Visualisation of the depth map generated from RGB input by our two archi-
tectures, FC and C+LSTM, trained in an unsupervised manner on Cambridge Landmarks
dataset [15]. Purple boxes show regions where C+LSTM network produces slightly better
depth map reconstruction compared to FC.

descriptor. Wrong initial pose estimation for stairs indoor scene and street outdoor environ-
ment cannot be recovered by PnlP pose refinement. It will be interesting to consider more
discriminative image descriptors, and especially image descriptors that can benefit from the
depth map related to the image [28].

The pose refinement is also very sensitive to the quality of the generated depth map.
Artefacts present on depth map related to images of unknown scenes, see last 4 columns
of figure 2, or wrong reconstruction, last column of figure 3, generate outliers for the PnlP
optimisation.

5 Conclusion

We have introduced a new method for online IBL consisting of an initial pose estimation
by CBIR followed by our new PnlP pose refinement. Our pose refinement relies on densely
matched 2D to 3D points between the query and the reference images, where the 3D points
are project thank to the reconstructed depth map from a monocular image. The presented
method is compact and fast as all the components needed by the localisation pipeline are
computed thanks to the same neural network in a single forward pass. Because our network
learns the depth relative to the camera frame, not the absolute geometric structure of the
scene, it can be used in unknown environment without fine tuning or specific training.

In a future work, we will investigate multi-task learning in order to address all the com-
puter vision problems involved in IBL jointly, namely global image description, dense cor-
respondences between images and depth from monocular.
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