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Exploiting regularity in sparse Generalized Linear Models

Generalized Linear Models (GLM) are a wide class of regression and classification models, where the predicted variable is obtained from a linear combination of the input variables. For statistical inference in high dimensions, sparsity inducing regularization have proven useful while offering statistical guarantees. However, solving the resulting optimization problems can be challenging: even for popular iterative algorithms such as coordinate descent, one needs to loop over a large number of variables. To mitigate this, techniques known as screening rules and working sets diminish the size of the optimization problem at hand, either by progressively removing variables, or by solving a growing sequence of smaller problems. For both of these techniques, significant variables are identified by convex duality. In this paper, we show that the dual iterates of a GLM exhibit a Vector AutoRegressive (VAR) behavior after sign identification, when the primal problem is solved with proximal gradient descent or cyclic coordinate descent. Exploiting this regularity one can construct dual points that offer tighter control of optimality, enhancing the performance of screening rules and helping to design a competitive working set algorithm.

I. Introduction

Since the introduction of the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], sparsity inducing penalties have had a tremendous impact on Machine Learning [START_REF] Bach | Convex optimization with sparsity-inducing norms[END_REF]. They have been applied to a variety of regression and classification tasks: sparse logistic regression [START_REF] Koh | An interior-point method for large-scale 1-regularized logistic regression[END_REF], Group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], multitask Lasso [START_REF] Obozinski | Joint covariate selection and subspace selection for multiple classification problems[END_REF]. These estimators fall under the framework of Generalized Linear Models, where the prediction is drawn from an exponential family distribution whose mean is a linear combination of the input variables. The key property of 1 regularization is that it allows to perform jointly feature selection and prediction, which is particularly useful in high dimensional settings. Amongst the algorithms proposed to solve these, coordinate descent 1 [START_REF] Tseng | Convergence of a block coordinate descent method for nondifferentiable minimization[END_REF][START_REF] Friedman | Pathwise coordinate optimization[END_REF] is the most popular in Machine Learning scenarios [START_REF] Fan | Liblinear: A library for large linear classification[END_REF][START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF].

Since only a fraction of the coefficients are non-zero in the optimal parameter vector, a recurring idea to speed up solvers is to limit the size of the optimization problem by ignoring features which are not included in the solution. To do so, two approaches can be distinguished:

• screening rules, introduced by [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF] and later developed [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF][START_REF] Xiang | Screening tests for lasso problems[END_REF][START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF], progressively remove features from the problems in a backward approach, • working sets techniques [START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF][START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Tibshirani | Strong rules for discarding predictors in lasso-type problems[END_REF][START_REF] Johnson | Blitz: A principled metaalgorithm for scaling sparse optimization[END_REF] solve a sequence of smaller problems restricted to a growing number of features. Both the current state-of-art methods for screening (Gap Safe rules, [START_REF] Fercoq | Mind the duality gap: safer rules for the lasso[END_REF][START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF]) and working sets (Blitz, [START_REF] Johnson | Blitz: A principled metaalgorithm for scaling sparse optimization[END_REF][START_REF] Johnson | A fast, principled working set algorithm for exploiting piecewise linear structure in convex problems[END_REF]) rely heavily on a dual point to identify useful features. However, although a lot 1 throughout the paper, this means cyclic and proximal coordinate descent unless specified otherwise of attention has been devoted to creating a sequence of iterates in the primal converging fast to the primal optimum [START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF], the construction of dual iterates has not been scrutinized, and the standard approach [START_REF]Sparse coding for machine learning, image processing and computer vision[END_REF], although robust and converging, is crude.

In this paper, we propose a principled way to construct a sequence of dual points converging faster to the dual optimum. Based on an extrapolation procedure [START_REF] Scieur | Acceleration in Optimization[END_REF], its cost is exactly the same as the classical approach, which allows to retain the stability and convergence guarantees of the latter. We define, quantify and prove the asymptotic VAR behavior of dual iterates for sparse GLMs solved with proximal gradient descent or cyclic coordinate descent. The resulting new construction:

• provides a tighter optimality control through duality gap,

• improves uniformly the performance of Gap safe rules,

• improves the performance of the working set policy proposed in [START_REF] Massias | From safe screening rules to working sets for faster lasso-type solvers[END_REF], thanks to better feature identification, We introduce the framework of 1-regularized Generalized Linear Models, Gap safe rules in Section II. We justify and generalize dual extrapolation, orginally introduced for the Lasso [START_REF] Massias | Celer: a fast solver for the Lasso with dual extrapolation[END_REF] to any 1-regularized GLM in Section III. We show how to use dual extrapolation to create efficient working sets in Section IV. Results of Section V illustrate the benefits of dual extrapolation.

II. Notation and framework a) Notation:

For any integer d ∈ N, we denote by [d] the set {1, . . . , d}. The design matrix X ∈ R n×p is composed of observations xi ∈ R p stored row-wise, and whose j-th column is xj ∈ R n ; the vector y ∈ R n (resp. {-1, 1} n ) is the response vector for regression (resp. binary classification). The support of β ∈ R p is S(β) = {j ∈ [p] : βj = 0}. For W ⊂ [p], βW and XW are β and X restricted to features in W. As much as possible, exponents between parenthesis (e.g., β (t) ) denote iterates and subscripts (e.g., βj) denote vector entries or matrix columns. The sign function is sign : x → x/|x| with the convention 0/0 = 0. The sigmoid function is σ :

x → 1/(1 + e -x ). The soft- thresholding of x at level u is ST(x, u) = sign(x)•max(0, |x|-u).
Applied to vectors, sign, σ and ST(•, u) (for u ∈ R+) act element-wise. Element-wise product between vectors of same length is denoted by . The vector of size n whose entries are all equal to 0 (resp. 1) is denoted by 0n (resp. 1n). On square matrices, • 2 is the spectral norm. For a symmetric postive definite matrix H, x, y H = x Hy is the H-weighted inner product, whose associated norm is denoted • H . We extend the small-o notation to vector valued functions in the following way: for f : R n → R n and g : R n → R n , f = o(g) if and only if f = o( g ), i.e., f / g tends to 0 when g tends to 0. For a convex and proper function f :

R n → R ∪ {∞}, its Fenchel-Legendre conjugate f * : R n → R ∪ {∞} is defined by f * (u) = sup x∈R n u x -f (x).
Definition 1 (Sparse Generalized Linear Model). We consider the following problem:

β ∈ arg min β∈R p n i=1 fi(β xi) + λ β 1 P(β) , ( 1 
)
where all fi are convex functions with 1/γ-Lipschitz gradients. Instances of Pb. (1) are the Lasso (fi(t) = 1 2 (yi -t) 2 , γ = 1) and Sparse Logistic regression (fi(t) = log(1 + exp(-yit)), γ = 4). Proposition 2. A dual formulation of Problem (1) reads:

θ = arg max θ∈∆ X - n i=1 f * i (-λθi) D(θ) (2) 
where ∆X = {θ ∈ R n : X θ ∞ ≤ 1}. θ is unique, because the fi's are γ-strongly convex. The KKT conditions read:

∀i ∈ [n], θi = -f i ( β xi) (link equation) (3) ∀j ∈ [p], x j θ ∈ ∂|•|( βj) (subdifferential inclusion) (4)
If for u ∈ R n we write F (u)

def.

= n i=1 fi(ui), the link equation reads θ = -∇F (X β)/λ. Remark 3. For any (β, θ) ∈ R p × ∆X , one has D(θ) ≤ P(β). Denoting P(β)-D(θ) the duality gap, it can be used as an upper bound for the sub-optimality of the current β: for any > 0, any β ∈ R p , and any (feasible) θ ∈ ∆X :

P(β) -D(θ) ≤ ⇒ P(β) -P( β) ≤ . ( 5 
)
This shows, that even though β is unknown in practice and the sub-optimality gap cannot be evaluated, creating a dual (feasible) point θ ∈ ∆X allows to guarantee an -solution is reached, and it can therefore be used to get a tractable stopping criterion.

By design of the 1 penalty, β is sparse, and the larger λ is, the sparser β gets. Thus, a key principle to speed up these PG or CD is to identify the support of β so that features outside of it can be ignored, which leads to a smaller and easier problem to solve. Removing features when it is guaranteed that they are not in the support of the solution is at the heart of the so-called Gap Safe Screening rules [START_REF] Fercoq | Mind the duality gap: safer rules for the lasso[END_REF][START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF]: Proposition 4 (Gap Safe Screening rule). The Gap Safe screening rule for Problem [START_REF] Aitken | On Bernoulli's numerical solution of algebraic equations[END_REF] 

reads: ∀j ∈ [p], ∀θ ∈ ∆X , |x j θ| < 1 -xj 2 γλ 2 (P(β) -D(θ)) =⇒ βj = 0 . ( 6 
)
Therefore, while running an iterative solver and computing the duality gap at iteration t, the criterion (6) can be tested for all features j, and the features guaranteed to be inactive at optimum can be ignored.

Equations ( 5) and ( 6) do not require a specific choice of θ. Because of the link equation θ = -∇F (X β)/λ, a natural way to construct a dual feasible point θ (t) ∈ ∆X at iteration t, when only a primal vector β (t) is available, is:

θ (t) res = -∇F (Xβ (t) )/ max(λ, X ∇F (Xβ (t) ) ∞) . (7)
This was coined residuals rescaling following the terminology used of the Lasso case where -∇F (Xβ) = y -Xβ [START_REF]Sparse coding for machine learning, image processing and computer vision[END_REF].

To improve the control of sub-optimality, and to better identify useful features, the aim of dual extrapolation is to obtain a better dual point (i.e., closer to the optimum θ). The idea is to do it at a low computational cost by exploiting the structure of the sequence of dual iterates (Xβ (t) ) t∈N ; we explain what is meant by "structure", and how to exploit it, in the following definition and proposition: Definition 5. We say that (r (t) ) t∈N ∈ (R d ) N is a Vector AutoRegressive (VAR) sequence (of order 1) if there exists A ∈ R d×d and b ∈ R d such that for t ∈ N:

r (t+1) = Ar (t) + b . ( 8 
)
We also say that the sequence (r (t) ) t∈N , converging to r, is an asymptotic VAR sequence if

r (t+1) -Ar (t) -b = o(r (t) -r) . ( 9 
)
Definition 6 (Vector AutoRegressive sequence). We say that (r

(t) ) t∈N ∈ (R n ) N is a Vector AutoRegressive (VAR) sequence (of order 1) if there exists A ∈ R n×n and b ∈ R n such that for t ∈ N: r (t+1) = Ar (t) + b . ( 10 
)
We also say that the sequence (r (t) ) t∈N , converging to r, is an asymptotic VAR sequence if there exist A ∈ R n×n and b ∈ R n such that for t ∈ N:

r (t+1) -Ar (t) -b = o(r (t) -r) . ( 11 
)
We can now introduce formally the extrapolation procedure, as formalized for optimization tasks in [START_REF] Scieur | Acceleration in Optimization[END_REF] although the idea dates back to [START_REF] Aitken | On Bernoulli's numerical solution of algebraic equations[END_REF] and [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF][START_REF] Eddy | Extrapolating to the limit of a vector sequence[END_REF] in the vector case.

Proposition 7 (Extrapolation for VAR sequences [29, Thm 3.2.2]). Let (r (t) ) t∈N be a VAR sequence in R n , satisfying r (t+1) = Ar (t) + b with A ∈ R n×n a symmetric positive definite matrix with A 2 < 1, and b ∈ R n . Let K < n, and for t ≥ K let:

U (t) = [r (t-K) -r (t-K+1) , . . . , r (t-1) -r (t) ] ∈ R n×K , (12) (c1, . . . , cK ) = (U (t) U (t) ) -1 1K 1 K (U (t) U (t) ) -1 1K ∈ R K , ( 13 
)
rextr = K k=1 c k r (t-K-1+k) ∈ R n . ( 14 
)
Then,

Arextr -b -rextr ≤ O(ρ K ) , ( 15 
)
where ρ = 1- √ 1-A 1+ √ 1-A < 1.
The justification for this approach is the following: for t ∈ N, we have r (t+1) -r = A(r (t) -r). Let (a0, . . . , an) ∈ R n+1 be the coefficients of A's characteristic polynomial. By Cayley-Hamilton's theorem, n k=0 a k A k = 0. Since A 2 < 1, 1 is not an eigenvalue of A and n k=0 a k = 0, so we can normalize these coefficients to have

n k=0 a k = 1. If t ≥ n, we have: n k=0 a k (r (t-n+k) -r) = n k=0 a k A k (r (t-n) -r) = 0 , (16) n k=0 a k r (t-n+k) = n k=0 a k r = r. ( 17 
)
Hence, r ∈ Span(r (t-n) , . . . , r (t) ). Therefore, it is natural to approximate r as an affine combination of the (n + 1) last iterates (r (t-n) , . . . , r (t) ). Using (n + 1) iterates might be costly for large n, so one might rather consider only a smaller number K, i.e., find (c1, . . . , cK

) ∈ R K s.t. K k=1 c k r (t-K-1+k) approximates r. Since r is a fixed point of r → Ar + b, K k=1 c k r (t-K-1+k
) should be one too. Under a normalizing condition

K k=1 c k = 1, this means that rextr -Arextr -b = K k=1 c k (r (t-K-1+k) -r (t-K+k) )
should be as close to 0n as possible; minimizing the norm of the RHS under c 1K = 1 admits a closed-form solution:

ĉ = (U (t) U (t) ) -1 1K 1 K (U (t) U (t) ) -1 1K , ( 18 
)
where

U (t) = [r (t-K+1) -r (t-K) , . . . , r (t) -r (t-1) ] ∈ R n×K .
Finally, to exhibit VAR sequences, we will use the following result on sign identification for sparse GLMs.

Theorem 8 (Sign identification). Let (β (t) ) t∈N be the sequence of iterates converging to β and produced by PG or CD when solving Problem (1) (the solution might not be unique, but the algorithms converge to a unique, well-defined value, which we call β). There exists T ∈ N s.t. : ∀j ∈ [p], t ≥ T =⇒ sign(β (t) j ) = sign( βj). The smallest epoch T for which this holds is when sign identification is achieved.

Proof For lighter notation in this proof, denote lj = xj 2 /γ and hj(β) = βj -1 l j x j ∇F (Xβ). The first order optimality conditions for the sparse GLM model defined in Eq. ( 1) are:

∀j ∈ [p], x j ∇F (X β) λ ∈    {1}, if βj > 0, {-1}, if βj < 0, [-1, 1], if βj = 0. ( 19 
)
Motivated by these conditions, the equicorrelation set [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF] is:

E def. = {j ∈ [p] : |x j ∇F (X β)| = λ} = {j ∈ [p] : |x j θ| = 1} .
We introduce the saturation gap associated to Problem (1):

δ def. = min λ lj 1 - |x j ∇F (X β)| λ : j / ∈ E . ( 20 
)
As θ = ∇F (X β)|/λ is unique, δ is well-defined, and strictly positive by definition of E. By [START_REF] Koh | An interior-point method for large-scale 1-regularized logistic regression[END_REF], the support of any solution is included in the equicorrelation set, with equality when the solution is unique [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF]. We will also need the following technical results about the soft-thresholding operator.

Lemma 9. For any x, y ∈ R, and any ν > 0:

| ST(x, ν) -ST(y, ν)| ≤ |x -y| (21) |x| > ν, |y| < ν ⇒ | ST(x, ν)| ≤ |x -y| -(ν -|y|) (22) |y| ≥ ν, sign x = sign y ⇒ |ST(x, ν) -ST(y, ν)| ≤ |x -y| -ν ( 23 
)

Proof

The first result in Lemma 9 comes from the nonexpansiveness of proximal operators [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 6.42]. For the other ones, see [START_REF] Hale | Fixed-point continuation for 1-minimization: Methodology and convergence[END_REF]Lemma 3.2].

We start by showing a weaker result: the coefficients outside the equicorrelation eventually vanish. The proof requires to study the primal iterates after each update (instead of after each epoch). Hence, we use the notation β(s) to denote the primal iterate after the s-th update of coordinate descent. This update only modifies the j-th coordinate, with s ≡ j-1 mod p:

β(s+1) j = ST hj( β(s) ), λ l j . ( 24 
)
Note that at optimality, for every j ∈ [p], one has:

βj = ST hj( β), λ l j . ( 25 
)
Let us consider an update s ∈ N of CD such that the updated coordinate j verifies β(s+1) j = 0 and j / ∈ E, hence, βj = 0. Then, the following holds true, using Eq. ( 22):

| β(s+1) j -βj| = ST hj( β(s) ), λ l j -ST hj( β), λ l j ≤ hj( β(s) ) -hj( β) -λ l j -|hj( β)| . ( 26 
)
Now notice that by definition of the saturation gap [START_REF] Lee | Proximal Newton-type methods for convex optimization[END_REF], and since j / ∈ E:

λ lj 1 - |x j ∇F (X β)| λ ≥ δ , that is, λ lj -|hj( β)| ≥ δ (using βj = 0) . ( 27 
)
Combining Equations ( 26) and ( 27) yields

| β(s+1) j -βj| ≤ hj( β(s) ) -hj( β) -δ . ( 28 
)
This can only be true for a finite number of updates, since otherwise taking the limit would give 0 ≤ -δ. Therefore, after a finite number of updates, β(s) j = 0 for j / ∈ E. We can now show the sign identification result for j ∈ E. First observe that for all j ∈ E, |hj( β)| ≥ λ l j . Indeed, if j ∈ S( β), 0 = βj = ST(hj( β), λ l j ) so |hj(

β)| > λ l j . If j ∈ E \ S( β), |hj( β)| = | 1 l j x j ∇F (X β)| = λ l j . Now let s ∈ N and j ∈ E be such that sign β(s+1) j = sign βj. β(s+1) j -βj 2 = ST hj( β(s) ), λ l j -ST hj( β), λ l j 2 ≤ hj( β(s) ) -hj( β) - λ lj 2 using (23) ≤ hj( β(s) ) -hj( β) 2 - λ 2 l 2 j , ( 29 
)
because since |hj( β)| ≥ λ l j and sign hj( β) = sign βj = sign β(s+1) j = sign hj( β(s) ), we have |hj( β(s) ) -hj( β)| ≥ λ l j . Equation ( 29) can only happen for a finite number of updates, otherwise taking the limit would yield a contradiction.

The proof for proximal gradient descent is a result of [15, Theorem 4.1], who give the bound T ≤ β(s) -β 2 2 / δ2 .

Note that Theorem 8 does not require an hypothesis on the uniqueness of the solution. Even if there are multiple solutions, CD or PG will converge to one of them [START_REF] Hale | Fixed-point continuation for 1-minimization: Methodology and convergence[END_REF], and identify its sign in a finite number of iterations.

III. Generalized models A. Coordinate descent for 1 regularization

Dual extrapolation was introduced for the Lasso [START_REF] Massias | Celer: a fast solver for the Lasso with dual extrapolation[END_REF]: we now generalize it to Problem (1).

Theorem 10 (VAR for coordinate descent and Sparse GLM).

When Problem (1) is solved by cyclic coordinate descent, the dual iterates (Xβ (t) ) t∈N form an asymptotical VAR sequence.

Proof We place ourselves in the identified sign regime, and consider only one epoch t of CD: let β(0) denote the value of the primal iterate at the beginning of the epoch ( β(0) = β (t) ), and for s ∈ [S], β(s) ∈ R p denotes its value after the js coordinate has been updated ( β(S) = β (t+1) ). Recall that in the framework of Problem ( 1), the data-fitting functions fi have 1/γ-Lipschitz gradients, and ∇F (u) = (f 1 (u1), . . . , f n (un)). For s ∈ [S], β(s) and β(s-1) are equal everywhere except at entry js, for which the coordinate descent update with fixed step size

x js 2 γ is β(s) js = ST β(s-1) js -γ x js 2 x js ∇F (X β(s-1) ), γ x js 2 λ , = β(s-1) js -γ x js 2 x js ∇F (X β(s-1) ) -γ x js 2 λ sign( βjs ) . Therefore, X β(s) -X β(s-1) = xj s ( β(s) js - β(s-1) js ) , = -γ x js 2 xj s x js ∇F (X β(s) ) + λ sign( βjs )
Using point-wise linearization of ∇F around X β, we have, with

D def. = diag(f 1 ( β x1), . . . , f n ( β xn)) ∈ R n×n : D 1/2 X β(s) = Idn -γ x js 2 D 1/2 xj s x js D 1/2 As D 1/2 X β(s-1) + γ x js 2 x js (DX β)D 1/2 xj s bs +o(X β(s) -X β) . ( 30 
)
Thus (D 1/2 Xβ (t) ) t∈N is an asymptotical VAR sequence, and so is (Xβ (t) ) t∈N :

Xβ (t+1) = AXβ (t) + b + o(Xβ (t) -X β), with A = D -1 2 AS . . . A1D 1 
2 and b = D -1 2 (bS + . . . + AS . . . A2b1). The proof for PG follows similar ideas and is omitted due to space constraint; see [START_REF] Massias | Celer: a fast solver for the Lasso with dual extrapolation[END_REF] for the Lasso case.

Theorem 10 show that we can construct an extrapolated dual point for any sparse GLM, by using extrapolation applied to the sequence (r (t) = Xβ (t) ) t∈N , with the guarantees of Proposition 7.

B. Multitask Lasso

Let q ∈ N be a number of tasks, and consider an observation matrix Y ∈ R n×q , whose i-th line is yi ∈ R q . For B ∈ R p×q , let B 2,1 = p 1 Bj (with Bj ∈ R 1×q the j-th line of B). Definition 11. The multitask Lasso estimator is defined as the solution of:

B ∈ arg min B∈R n×q 1 2 Y -XB 2 F + λ B 2,1 . ( 31 
)
Although we are unable to show that (Xβ (t) ) t∈N is an asymptotic VAR sequence, empirical results of Section V show that dual extrapolation still provides a tighter dual point in the identified support regime. Celer empirical adaptation to multitask Lasso consists in using d (t) j = (1 -x j Θ (t) )/ xj with the dual iterate Θ (t) ∈ R n×q . The inner solver is cyclic block coordinate descent, and extrapolation takes r (t) ∈ R nq equal to the stacked columns of XB (t) . The linear combination c k r (t-k) ∈ R nq is mapped to R n×q by unstacking it.

IV. Working sets Being able to construct a better dual point leads to a tighter gap and a smaller upper bound in Equation ( 6), hence to more features being discarded and a better Gap Safe screening rules. As we detail in this section, it also helps to better prioritize features, and to design an efficient working set policy.

A. Improved working sets policy

Working set methods start by solving Problem (1) restricted to a small set of features W (0) ⊂ [p] (the working set), then define iteratively new working sets W (t) and solve a sequence of growing problems [START_REF] Boisbunon | Active set strategy for high-dimensional non-convex sparse optimization problems[END_REF][START_REF] Santis | A fast active set block coordinate descent algorithm for 1-regularized least squares[END_REF]. It is easy to see that when

W (t)
W (t+1) and when the subproblems are solved up to the precision required for the whole problem, then working sets techniques converge.

It was shown by [START_REF] Massias | From safe screening rules to working sets for faster lasso-type solvers[END_REF] that Gap Safe rules allow to define a working set policy. The value dj(θ)

def. = 1-|x j θ| x j
can be seen as measuring the importance of feature j, and so given an initial size p (1) the first working set can be defined as:

W (1) = {j (1) 1 , . . . , j (1) 
p (1) } ,
where the selected features are the indices of the p (1) smallest values of d(θ). New primal and dual iterates are returned as solution of the first subproblem, which allow to recompute dj's and define iteratively:

W (t+1) = {j (t+1) 1 , . . . , j (t+1) 
p (t+1) } , ( 32 
)
where we impose dj(θ) = -1, ∀j ∈ W (t) to ensure nested working sets, i.e., W (t) ⊂ W (t+1) . Combined with CD as an inner solver, this algorithm was coined Celer (Constraint Elimination for the Lasso with Extrapolated Residuals). The results of Section III justify the use of dual extrapolation for any sparse GLM, thus enabling us to generalize Celer to the whole class of models (Line 16).

Theorem 12. Celer as defined in Line 16 converges as long as the inner solver converges.

Proof Since by construction W (t) ⊂ W (t+1) and |W (t+1) | = max(2|W (t) |, p), if t ≥ (log p -log p (1) )/ log 2 + 1, then the working set contains all features. Since subproblems are solved to precision , this guarantees convergence.

However, using a monotonic growth may lead to too large working sets, especially if the first size p (1) is chosen too big. Solving all subproblems to precision may also be a waste of computing time. In practice, as in [START_REF] Massias | Celer: a fast solver for the Lasso with dual extrapolation[END_REF], we introduce a simple WS variant coined pruning: the growth policy is p (t+1) = min(p, 2 β (t) 0), and the stopping criterion for the inner solver on W (t) is to reach a gap lower than a fraction ρ of the duality gap for the whole problem, P(β (t) ) -D(θ (t) ). In practice, we set ρ = 0.3.

B. Newton-Celer

For the Lasso and multitask Lasso, the Hessian does not dependent on the current iterate. This is however not true for Algorithm 1 Celer for Problem [START_REF] Aitken | On Bernoulli's numerical solution of algebraic equations[END_REF] input : X, y, λ, β (0) param: pinit = 100, , max_it init : with subproblem solver applied to (X W (t) , y, λ, (β (t-1) ) W (t) , )

θ (0) = θ (0) inner = 0n, W (0) = ∅ 1 if β (0) = 0p then p (1) = |S(β (0) )| //
14 set β (t) = 0p and (β (t) ) W (t) = β(t) 15 θ (t) inner = θ (t) inner / max(λ, X θ (t) inner ∞)
16 return β (t) , θ (t) other datafitting terms, e.g., Logistic regression, for which taking into account the second order information proves to be very useful for fast convergence [START_REF] Hsieh | QUIC: Quadratic approximation for sparse inverse covariance estimation[END_REF]. To leverage this information, we can use a prox-Newton method [START_REF] Lee | Proximal Newton-type methods for convex optimization[END_REF][START_REF] Scheinberg | Complexity of inexact proximal Newton methods[END_REF] as inner solver; an advantage of dual extrapolation is that it can be combined with any inner solver, as we detail below. Contrary to CD, Newton steps do not lead to an asymptotic VAR, which is needed to apply dual extrapolation. To address this issue, we propose to compute K passes of cyclic CD after the Prox-Newton step. The K values of Xβ obtained allow for the computation of θ accel along with θres. When Line 16 is used with this method as inner solver, we refer to it as the Newton-Celer variant.

V. Experiments

Implementation is done in Python and Cython [START_REF] Behnel | Cython: The best of both worlds[END_REF] for the lowlevel critical parts. The solvers exactly follow the scikit-learn API, so that Celer can be used as a drop-in replacement in existing code. The package is available under BSD3 license at https://github.com/mathurinm/celer. a) Lasso: Figure 1a shows the improved dual objective of θ accel , after sign identification.

Figure 3 shows the time to compute a Lasso path for Celer, Gap Safe rules (w. and w/o. dual extrapolation) [START_REF] Fercoq | Mind the duality gap: safer rules for the lasso[END_REF] and Blitz [START_REF] Johnson | Blitz: A principled metaalgorithm for scaling sparse optimization[END_REF]. Dual extrapolation improves the performance of Gap Safe rules, and the working set policy of Celer makes it efficient for both dense and coarse grids of λ.

b) Logistic regression: Figure 1b shows that even for an asymptotic VAR, the dual extrapolated point θ accel gives a better dual objective than the classical approach θres, after sign identification. Experiment for second order methods (Blitz, Newton-Celer) are ommitted due to space constraints. c) Multitask Lasso: Figure 1c shows that for the Multitask Lasso, where we replace sign by support identification, the dual extrapolation still gives an improved duality gap even if we have not proved the VAR behavior of dual iterates. Figure 4 shows that the working set policy of Celer does better than Gap Safes rules with strong active warm start on magneto-electroencephalographic data from MNE (no public implementation of Blitz for this problem).

Conclusion

In this work, we generalize the dual extrapolation procedure for the Lasso (Celer) to any l1-regularized GLM, in particular sparse Logistic regression. Theoretical guarantees based on sign identification of coordinate descent are provided. Experiments show that dual extrapolation yields more efficient Gap Safe screening rules and working sets solver. Finally, we adapt Celer to make it compatible with prox-Newton solvers, and empirically demonstrate its applicability to the Multi-task Lasso.

  Logistic regression, on leukemia for λ = λmax/10. Multitask Lasso, on M/EEG data for λ = λmax/20.

Fig. 1 :

 1 Fig.1: Dual objectives with classical and proposed approach, for Lasso (top), Logistic regression (middle), Multitask Lasso (bottom). The dashed lign marks sign identification (support identification for MTL)

Fig. 2 :

 2 Fig. 2: Time to compute a Lasso path from λmax to λmax/100 on the news20 dataset. Top: grid of 100 values. Bottom: grid of 10 values (λmax is the smallest value resulting in a 0 solution)

Fig. 3 :Fig. 4 :

 34 Fig. 3: Time to compute a Logistic regression path from λmax to λmax/100 on the news20 dataset. Top: grid of 100 values. Bottom: grid of 10 values

  warm start 2 else p(1) = pinit 3 for t = 1, . . . , max_it do

	4	compute θ	(t) res
	5 6	θ (t) = arg max θ∈{θ (t-1) ,θ (t-1) inner ,θ res } D(θ) (t) g (t) = P(β (t-1) ) -D(θ (t) )	// global gap
	7	if g (t) ≤ then break
	8	for j = 1, . . . , p do
	9	if j ∈ W (t-1) then d	(t) j = -1	// monotonicity
	10	else d	(t) j = (1 -|x j θ (t) |)/ xj
	11	if t ≥ 2 then p (t) = min(2p (t-1) , p)
	12	W (t) = j ∈ [p] : d (t) j	among p (t) smallest values of d (t)
		// Solver is CD or prox-Newton, uses dual extrapolation:
	13	get β(t) , θ	(t) inner
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