N
N

N

HAL

open science

Exploiting regularity in sparse Generalized Linear
Models

Mathurin Massias, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon

» To cite this version:

Mathurin Massias, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon.
sparse Generalized Linear Models. SPARS 2019 - Signal Processing with Adaptive Sparse Structured

Representations, Jul 2019, Toulouse, France. hal-02288859

HAL Id: hal-02288859
https://u-bourgogne.hal.science /hal-02288859
Submitted on 13 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Exploiting regularity in


https://u-bourgogne.hal.science/hal-02288859
https://hal.archives-ouvertes.fr

Exploiting regularity in sparse Generalized Linear Models

Mathurin Massias®, Samuel Vaiter*, Alexandre Gramfort®, Joseph Salmon*
1 INRIA, Palaiseau, France
I CNRS & Institut de Mathématiques de Bourgogne, Dijon, France
* IMAG, Univ Montpellier, CNRS, Montpellier, France
Email: mathurin.massias@inria.fr

Abstract—

Generalized Linear Models (GLM) are a wide class of
regression and classification models, where the predicted
variable is obtained from a linear combination of the in-
put variables. For statistical inference in high dimensions,
sparsity inducing regularization have proven useful while
offering statistical guarantees. However, solving the result-
ing optimization problems can be challenging: even for
popular iterative algorithms such as coordinate descent, one
needs to loop over a large number of variables. To mitigate
this, techniques known as screening rules and working sets
diminish the size of the optimization problem at hand, either
by progressively removing variables, or by solving a growing
sequence of smaller problems. For both of these techniques,
significant variables are identified by convex duality. In this
paper, we show that the dual iterates of a GLM exhibit a
Vector AutoRegressive (VAR) behavior after sign identifi-
cation, when the primal problem is solved with proximal
gradient descent or cyclic coordinate descent. Exploiting
this regularity one can construct dual points that offer
tighter control of optimality, enhancing the performance of
screening rules and helping to design a competitive working
set algorithm.

I. INTRODUCTION

Since the introduction of the Lasso [30], sparsity inducing
penalties have had a tremendous impact on Machine Learning
[3]. They have been applied to a variety of regression and
classification tasks: sparse logistic regression [19], Group Lasso
[36], multitask Lasso [25]. These estimators fall under the
framework of Generalized Linear Models, where the prediction
is drawn from an exponential family distribution whose mean
is a linear combination of the input variables. The key property
of ¢; regularization is that it allows to perform jointly feature
selection and prediction, which is particularly useful in high
dimensional settings. Amongst the algorithms proposed to solve
these, coordinate descent® [33, 14] is the most popular in
Machine Learning scenarios [10, 13].

Since only a fraction of the coefficients are non-zero in the
optimal parameter vector, a recurring idea to speed up solvers
is to limit the size of the optimization problem by ignoring
features which are not included in the solution. To do so, two
approaches can be distinguished:

o screening rules, introduced by [9] and later developed [34,
35, 7], progressively remove features from the problems in
a backward approach,

o working sets techniques [11, 26, 31, 17] solve a sequence
of smaller problems restricted to a growing number of
features.

Both the current state-of-art methods for screening (Gap Safe
rules, [12, 24]) and working sets (Blitz, [17, 18]) rely heavily on
a dual point to identify useful features. However, although a lot

Ithroughout the paper, this means cyclic and prozimal coordinate
descent unless specified otherwise

of attention has been devoted to creating a sequence of iterates
in the primal converging fast to the primal optimum [13], the
construction of dual iterates has not been scrutinized, and the
standard approach [21], although robust and converging, is
crude.

In this paper, we propose a principled way to construct a
sequence of dual points converging faster to the dual optimum.
Based on an extrapolation procedure [29], its cost is exactly
the same as the classical approach, which allows to retain
the stability and convergence guarantees of the latter. We
define, quantify and prove the asymptotic VAR behavior of dual
iterates for sparse GLMs solved with proximal gradient descent
or cyclic coordinate descent. The resulting new construction:

« provides a tighter optimality control through duality gap,

« improves uniformly the performance of Gap safe rules,

o improves the performance of the working set policy pro-

posed in [22], thanks to better feature identification,

We introduce the framework of ¢;-regularized Generalized
Linear Models, Gap safe rules in Section II. We justify and gen-
eralize dual extrapolation, orginally introduced for the Lasso
[23] to any ¢;-regularized GLM in Section III. We show how
to use dual extrapolation to create efficient working sets in
Section IV. Results of Section V illustrate the benefits of dual
extrapolation.

II. NOTATION AND FRAMEWORK

a) Notation: For any integer d € N, we denote by [d] the
set {1,...,d}. The design matrix X € R™*? is composed of
observations x; € R” stored row-wise, and whose j-th column is
x; € R"; the vector y € R™ (resp. {—1,1}") is the response vec-
tor for regression (resp. binary classification). The support of
BeRPisS(B)={j€lp] : B; #0}. For W C [p], fv and Xy
are 8 and X restricted to features in W. As much as possible,
exponents between parenthesis (e.g., Bm) denote iterates and
subscripts (e.g., 8;) denote vector entries or matrix columns.
The sign function is sign : = — x/|z| with the convention
0/0 = 0. The sigmoid function is o : z — 1/(1+e~7). The soft-
thresholding of z at level u is ST(z, u) = sign(z)-max (0, |z|—u).
Applied to vectors, sign, ¢ and ST(-,u) (for v € Ry4) act
element-wise. Element-wise product between vectors of same
length is denoted by ®. The vector of size n whose entries are
all equal to 0 (resp. 1) is denoted by 0, (resp. 1,). On square
matrices, ||-]|2 is the spectral norm. For a symmetric postive
definite matrix H, (z,y)y = =' Hy is the H-weighted inner
product, whose associated norm is denoted ||-||z. We extend
the small-o notation to vector valued functions in the following
way: for f : R" — R" and g : R" — R", f = o(g) if and only
it £l = o(llgl), #.c., |FIl/llgll tends to 0 when [lgl| tends to
0. For a convex and proper function f : R" — R U {oo}, its
Fenchel-Legendre conjugate f* : R™ — R U {oo} is defined by
F* () = sup, e u' @ — £ (@),



Definition 1 (Sparse Generalized Linear Model). We consider

the following problem:

ﬂEargmmZﬂ B xi) + MIBl 1)

BERP

P(B)

where all f; are convez functions with 1/~-Lipschitz gradients.
Instances of Pb. (1) are the Lasso (fi(t) = 3(yi—t)>, v =1) and
Sparse Logistic regression (fi(t) = log(1 + exp(—y:t)), v = 4).

Proposition 2. A dual formulation of Problem (1) reads:

0 = arg max ( Z fi*()\0¢)> (2)

0EAx

D(6)
where Ax = {0 € R"™ : || X 0||oo < 1}. 0 is unique, because the
fi’s are y-strongly convex. The KKT conditions read:

VZE[ } ':_fz(ﬁ Xi)
vj € [p], 2} 0 € 9|[(5;)
If for u € R™ we write F(u) = Yo, filus), the link equation

reads = —VF(XB)/\.

Remark 3. For any (5,0) € R? x Ax, one has D(8) < P(B).
Denoting P(B) —D(0) the duality gap, it can be used as an upper
bound for the sub-optimality of the current B: for any € > 0, any
B € R?, and any (feasible) 0 € Ax:

P(B) —D(0) <e=P(B)

(link equation) (3)
(subdifferential inclusion) (4)

~PB)<e. ()

This shows, that even though ﬁ is unknown in practice and the
sub-optimality gap cannot be evaluated, creating a dual (feasible)
point 0 € Ax allows to guarantee an e-solution is reached, and
it can therefore be used to get a tractable stopping criterion.

By design of the ¢1 penalty, /3’ is sparse, and the larger A is,
the sparser /3’ gets. Thus, a key principle to speed up these PG
or CD is to identify the support of B so that features outside of
it can be ignored, which leads to a smaller and easier problem
to solve. Removing features when it is guaranteed that they are
not in the support of the solution is at the heart of the so-called
Gap Safe Screening rules [12, 24]:

Proposition 4 (Gap Safe Screening rule). The Gap Safe
screening rule for Problem (1) reads: Vj € [p],V0 € Ax,

276 < 1= llos |/ 32(P

Therefore, while running an iterative solver and computing
the duality gap at iteration ¢, the criterion (6) can be tested
for all features j, and the features guaranteed to be inactive at
optimum can be ignored.

Equations (5) and (6) do not require a specific choice of 6.
Because of the link equation § = —VF(X )/, a natural way
to construct a dual feasible point 8 € Ax at iteration ¢, when
only a primal vector S is available, is:

08 = ~VF(XBY)/ max(\, | X T VF(X)) . (7)

B)-D(O) = Bi=0. (6)

This was coined residuals rescaling following the terminology
used of the Lasso case where —VF(Xp) =y — X [21].

To improve the control of sub-optimality, and to better
identify useful features, the aim of dual extrapolation is to

obtain a better dual point (i.e., closer to the optimum é) The
idea is to do it at a low computational cost by exploiting the
structure of the sequence of dual iterates (Xﬂ<t))teN; we explain
what is meant by “structure”, and how to exploit it, in the
following definition and proposition:

Definition 5. We say that (r®)en € (RY)Y is a Vector
AutoRegressive (VAR) sequence (of order 1) if there exists
A e R gnd b € R such that for t € N:

P = Ar® 4y (8)

We also say that the sequence (r“))teN, converging to 7, is an
asymptotic VAR sequence if

PEHD g ®

—b=o(r® —7) . (9)
Definition 6 (Vector AutoRegressive sequence). We say that
(rM)ien € (RMN ds a Vector AutoRegressive (VAR) sequence
(of order 1) if there exists A € R™*™ and b € R"™ such that for
t e N:

(D)

=Ar" 4 . (10)

We also say that the sequence (T<t))t€N7 converging to 7, is an
asymptotic VAR sequence if there exist A € R"*™ and b € R"
such that for t € N:

(D)

—Ar® — b =o(r® —7) . (11)

We can now introduce formally the extrapolation procedure,
as formalized for optimization tasks in [29] although the idea
dates back to [1] and [2, 8] in the vector case.

Proposition 7 (Extrapolation for VAR sequences [29, Thm
3.2.2]). Let (r')ien be a VAR sequence in R™, satisfying
rY = Ar® 1 b with A € R™™ o symmetric positive definite
matriz with ||All2 < 1, and b € R". Let K < n, and fort > K
let:

U® — [T(th) O T G T(t)} e RK
(12)
_ (U(i)TU(t))*llK %

(1, en) = 1L (UOTUM) 11, €RrR”, (13)

K
Textr = Z Ckr(t7K71+k> € Rn . (14)

k=1

Then,
||Area:t7' - b - Tezt'r” S O(PK) ) (15)
where p = vl oy

T+y/1-]1All
The justification for this approach is the following: for t €
N, we have 71 — 7 = A(+® — 7). Let (ao,...,an) € R"!
be the coefficients of A’s characteristic polynomial. By Cayley-
Hamilton’s theorem, Y arA¥ = 0. Since ||A||2 < 1, 1 is not
an eigenvalue of A and Z::O ay, # 0, so we can normalize these
coefficients to have Z;LO ar = 1. If t > n, we have:

D a(r TR ) < akAk> ™ —#) =0, (16)
k=0
e

k=0 k=0

(t—n+k) (17)



Hence, 7 € Span(r(tfn),...,r(t)). Therefore, it is natural to
approximate 7 as an affine combination of the (n + 1) last
iterates (r®=™, ..., r®). Using (n+1) iterates might be costly
for large n, so one might rather consider only a smaller num-
ber K, i.e., find (ci,...,cx) € R¥ sit. Eszl cprt—K—1+k)
approximates 7. Since 7 is a fixed point of r — Ar + b,
Zi;l crr K145 should be one too. Under a normalizing
condition Zkkzl cr = 1, this means that
K
Fowir — ATemtr — b = Z Ck(r<t71<71+k) _ r(t*K“rk))
k=1
should be as close to 0, as possible; minimizing the norm of
the RHS under ¢ 1x = 1 admits a closed-form solution:
- ) (18)
- 1}(U(t)TU(t))—11K ’
where U®) = [p(=K+D _p(=K) 0000 () (21 ¢ g K,
Finally, to exhibit VAR sequences, we will use the following
result on sign identification for sparse GLMs.

o

Theorem 8 (Sign identification). Let (3)):cn be the sequence
of iterates converging to BA and produced by PG or CD when
solving Problem (1) (the solution might not be unique, but the
algorithms converge to a unique, well-defined value, which we
call B). There exists T € N st :Vj € [p,t > T —
sign(ﬁj(.t)) = sign(B3;). The smallest epoch T' for which this holds
is when sign identification is achieved.

Proof For lighter notation in this proof, denote 1; = ||x;||*/v

and h;j(B) = B; — La; VF(X). The first order optimality
J

conditions for the sparse GLM model defined in Eq. (1) are:

T ; {1},  ifB; >0,
Vs € [pl, w € {-1}, ifp <o, (19)
[-1,1], if3;=0.

Motivated by these conditions, the equicorrelation set [32] is:
def.

E={jelp: |z VFXB) =X ={j€lp : |20 =1} .

We introduce the saturation gap associated to Problem (1):

T ~

As 6 = VF(XB)|/)\ is unique, § is well-defined, and strictly
positive by definition of E. By (19), the support of any solution
is included in the equicorrelation set, with equality when the
solution is unique [32]. We will also need the following technical
results about the soft-thresholding operator.

(20)

Lemma 9. For any xz,y € R, and any v > 0:
|ST(z,v) = ST(y,v)| < |z —y| (21)
lz| > v, |yl <v = |ST(z,v)| < |z —yl - (v = |yl) (22)
lyl 2 v,signz # signy = [ST(z,v) — ST(y,v)| < |z —y| — v
(23)

Proof The first result in Lemma 9 comes from the
nonexpansiveness of proximal operators [4, Theorem 6.42]. For
the other ones, see [15, Lemma 3.2]. ]

We start by showing a weaker result: the coefficients outside
the equicorrelation eventually vanish. The proof requires to

study the primal iterates after each update (instead of after
each epoch). Hence, we use the notation B(S) to denote the
primal iterate after the s-th update of coordinate descent. This
update only modifies the j-th coordinate, with s = j—1 mod p:

B =T (hy (B9, 1) (24)
Note that at optimality, for every j € [p], one has:
B =ST (hj(fé), %) : (25)

Let us consider an update s € N of CD such that the Lipdated
coordinate j verifies ,6’;5“) # 0 and j ¢ FE, hence, 5; = 0.
Then, the following holds true, using Eq. (22):

‘B§s+1) — By = ‘ST (hj(,g(S)), A) — ST (hj(3)7 %)‘

L

< B = @) - (2 - B)) - 6)

Now notice that by definition of the saturation gap (20), and
since j ¢ E:

~

LAY

>

thatis, = — |h;(B)] >6 (using 3; =0) . (27)
J
Combining Equations (26) and (27) yields
B = B < |hi(B) = hy(B)] =5 (28)

This can only be true for a finite number of updates, since
otherwise taking the limit would give 0 < —§. Therefore, after
a finite number of updates, BJ(.S) =0forj¢E.

We can now show the sign identification result for j € E.
First observe that for all j € E, |h;(8)] > 2. Indeed, if j €

L A
hy(B)] = | La] VF(XB)| = &

lj s

Now let s € N and j € E be such that sign B](.S+1) # sign Bj,

503 = (1 00.8) -5 0))

2
— )\) using (23)
L

< <|hj(3(5)) — hy(B)

3(5) NS
< | |hs(B) =y (B) -7 ) (29)
J

because since |h;(3)] > % and signh;(B) = signf; #
sign 31" = signh;(3)), we have [h;(B)) — hy(3)] > 2.
Equation (29) can only happen for a finite number of updates,
otherwise taking the limit would yield a contradiction.

The proof for proximal gradient descent is a result of [15,
Theorem 4.1], who give the bound T' < ||3®) — j||2/4°. ]

Note that Theorem 8 does not require an hypothesis on the
uniqueness of the solution. Even if there are multiple solutions,
CD or PG will converge to one of them [15], and identify its
sign in a finite number of iterations.



III. GENERALIZED MODELS
A. Coordinate descent for €1 reqularization

Dual extrapolation was introduced for the Lasso [23]: we now
generalize it to Problem (1).

Theorem 10 (VAR for coordinate descent and Sparse GLM).
When Problem (1) is solved by cyclic coordinate descent, the
dual iterates (Xﬁ(t))tew form an asymptotical VAR sequence.

Proof We place ourselves in the identified sign regime, and
consider only one epoch t of CD: let B denote the value of the
primal iterate at the beginning of the epoch (¥ = M), and
for s € [S], B® € RP denotes its value after the j, coordinate
has been updated (B<S) = B“H)). Recall that in the framework
of Problem (1), the data-fitting functions f; have 1/+-Lipschitz
gradients, and VF(u) = (f{(u1),..., fa(un)). For s € [S], 5
and B¢~V are equal everywhere except at entry js, for Wthh
the coordinate descent update with fixed step size = “ I”

B =T (B - el VROXU ), 1 Hzx) ,

= /Bj(ifl) - ol ‘21, ( ,B(S 1)) T HQ)\SlgH(BjS) .
Therefore,
XBY - X3V =y, (B - BV

= e T % (2, VF(XB)) + Asign(B;,))

Using point-wise linearization of VF around X /3’, we have, with
D = diag(fi' (87 x1), -, 1 (B %)) € R

D1/2XB(S)—<Id ﬁD mjsm;Dl/Q)DWXB(S*“

As

+ e, (DXB)D ey, +o(XBY — XB) . (30)

bs

Thus (Dl/zXﬁ(t))th is an asymptotical VAR sequence, and
sois (XBW)en: XD = AXBW £ b4 o(X 8D — XB), with
1 1 1
A=D"2Ag...Ai1D2 andb=D"2(bs+ ...+ As...Asb1).
The proof for PG follows similar ideas and is omitted due
to space constraint; see [23] for the Lasso case. u

Theorem 10 show that we can construct an extrapolated
dual point for any sparse GLM, by using extrapolation applied
to the sequence (r') = X))y, with the guarantees of
Proposition 7.

B. Multitask Lasso

Let ¢ € N be a number of tasks, and consider an observation
matrix Y € R"*? whose i-th line is y; € R?. For B € RP*? let
Bl = >_7 IB;|| (with B; € R'*? the j-th line of B).

Definition 11. The multitask Lasso estimator is defined as the
solution of:
~ o1
B € argmin [ — XBJ[% + Bl (31)
BeR"Xq
Although we are unable to show that (Xﬁ(t))teN is an
asymptotic VAR sequence, empirical results of Section V show
that dual extrapolation still provides a tighter dual point in
the identified support regime. Celer empirical adaptation to

multitask Lasso consists in using d;t) =(1— |z 7O /||
with the dual iterate ©) € R™*%. The inner solver is cyclic
block coordinate descent, and extrapolation takes r® e R™
equal to the stacked columns of XB®. The linear combination
> cxr®™® € R is mapped to R"*9 by unstacking it.

IV. WORKING SETS

Being able to construct a better dual point leads to a tighter
gap and a smaller upper bound in Equation (6), hence to more
features being discarded and a better Gap Safe screening rules.
As we detail in this section, it also helps to better prioritize
features, and to design an efficient working set policy.

A. Improved working sets policy

Working set methods start by solving Problem (1) restricted
to a small set of features W(® C [p] (the working set), then
define iteratively new working sets W and solve a sequence
of growing problems [6, 27]. It is easy to see that when
w® - WD and when the subproblems are solved up to
the precision required for the whole problem, then working sets
techniques converge.

It was shown by [22] that Gap Safe rules allow to define a
def. 1-— \x 0|

working set policy. The value d;(0) = =, || can be seen as

measuring the importance of feature j, and so given an initial
size pV) the first working set can be defined as:

GO,

1) —
W - "7.7 (1) )

where the selected features are the indices of the p<1) smallest
values of d(6). New primal and dual iterates are returned as
solution of the first subproblem, which allow to recompute d;’s
and define iteratively:

[(t+1)

+1 [(t+1
W(t ) = {]§ )7 e dpern S (32)
where we impose d;() = —1,7j € W® to ensure nested

working sets, i.e., W < WY Combined with CD as
an inner solver, this algorithm was coined Celer (Constraint
Elimination for the Lasso with Extrapolated Residuals). The
results of Section III justify the use of dual extrapolation for
any sparse GLM, thus enabling us to generalize Celer to the
whole class of models (Line 16).

Theorem 12. Celer as defined in Line 16 converges as long as
the inner solver converges.

Proof Since by construction W ¢ W (t+1) and (WY | =
max(2)W® | p), if t > (logp — logp™)/log2 + 1, then the
working set contains all features. Since subproblems are solved
to precision €, this guarantees convergence. |

However, using a monotonic growth may lead to too large work-
ing sets, especially if the first size p*) is chosen too big. Solving
all subproblems to precision € may also be a waste of computing
time. In practice, as in [23], we introduce a simple WS variant
coined pruning: the growth policy is p* = min(p, 2||3“|0),
and the stopping criterion for the inner solver on W is to
reach a gap lower than a fraction p of the duality gap for the
whole problem, P(ﬁ(t)) - D(9<t)). In practice, we set p = 0.3.

B. Newton-Celer

For the Lasso and multitask Lasso, the Hessian does not
dependent on the current iterate. This is however not true for
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Algorithm 1 Celer for Problem (1)

input : X,y, )\, A8©
param: pinit = 100, €, max_ it
init :0© = (0) =0, W(O) =0

if 5© #0, then p) = |$( BO)]
else p(1> = Pinit

for t=1,. max_it do
compute 0res

// warm start

9(75) = argmaxee{e(t 1 e(tnelr) 9&2 D(@)
g = P(8) = Do)
if g(t) < € then break
for j=1,...,pdo

if j € WtV then d(t) -1
else d = (1 — eT 00|z,
if t>2 then pt) = min(2p(t71),p)
w® = {j € [p : dgt) among p» smallest values of d(t)}
// Solver is CD or prox-Newton, uses dual extrapolation:
get B® 6" with applied

(X, ¥, A, (B47) B/w),
set B =0, and ﬁ< W) =
e(t) — e(t)

inner inner

return 3, 0®

// global gap

// monotonicity

subproblem solver to

B(t)
/ max(), HXTeszernoo)

other datafitting terms, e.g., Logistic regression, for which tak-
ing into account the second order information proves to be very
useful for fast convergence [16]. To leverage this information,
we can use a prox-Newton method [20, 28] as inner solver; an
advantage of dual extrapolation is that it can be combined with
any inner solver, as we detail below. Contrary to CD, Newton
steps do not lead to an asymptotic VAR, which is needed to
apply dual extrapolation. To address this issue, we propose to
compute K passes of cyclic CD after the Prox-Newton step.
The K values of X3 obtained allow for the computation of
Oaccel along with 6res. When Line 16 is used with this method
as inner solver, we refer to it as the Newton-Celer variant.

V. EXPERIMENTS

Implementation is done in Python and Cython [5] for the low-
level critical parts. The solvers exactly follow the scikit-learn
API, so that Celer can be used as a drop-in replacement in
existing code. The package is available under BSD3 license at
https://github.com/mathurinm/celer.

a) Lasso: Figure la shows the improved dual objective of
Oaccel, after sign identification.

Figure 3 shows the time to compute a Lasso path for Celer,
Gap Safe rules (w. and w/o. dual extrapolation) [12] and Blitz
[17]. Dual extrapolation improves the performance of Gap Safe
rules, and the working set policy of Celer makes it efficient for
both dense and coarse grids of .

b) Logistic regression: Figure 1b shows that even for an
asymptotic VAR, the dual extrapolated point €accel gives a
better dual objective than the classical approach Oyes, after
sign identification. Experiment for second order methods (Blitz,
Newton-Celer) are ommitted due to space constraints.

¢) Multitask Lasso: Figure 1c shows that for the Multitask
Lasso, where we replace sign by support identification, the dual
extrapolation still gives an improved duality gap even if we have
not proved the VAR behavior of dual iterates.

1072+

M - o —
—_—

1077 1014
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D epoch ¢ CD epoch 1

(a) Lasso, on leukemia for A = (b) Logistic regression, on

Amax /5. leukemia for X = Amax/10.

T T T T T T
0 100 200 300 100 500 600

BCD epoch ¢

104

104

(c) Multitask Lasso, on M/EEG data for A = Amax/20.

Fig. 1: Dual objectives with classical and proposed approach,
for Lasso (top), Logistic regression (middle), Multitask Lasso
(bottom). The dashed lign marks sign identification (support
identification for MTL)
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€

Fig. 2: Time to compute a Lasso path from Amax t0 Amax/100
on the news20 dataset. Top: grid of 100 values. Bottom: grid of
10 values (Amax is the smallest value resulting in a 0 solution)

Figure 4 shows that the working set policy of Celer does
better than Gap Safes rules with strong active warm start on
magneto-electroencephalographic data from MNE (no public
implementation of Blitz for this problem).

CONCLUSION

In this work, we generalize the dual extrapolation procedure
for the Lasso (Celer) to any li-regularized GLM, in particular
sparse Logistic regression. Theoretical guarantees based on sign
identification of coordinate descent are provided. Experiments
show that dual extrapolation yields more efficient Gap Safe
screening rules and working sets solver. Finally, we adapt Celer

Fig. 3: Time to compute a Logistic regression path from Amax
t0 Amax/100 on the news20 dataset. Top: grid of 100 values.
Bottom: grid of 10 values
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4: Time to compute a Multitask Lasso path from Apax to

Amax/100 on the M/EEG data (grid of 10 values). n = 305,p =
7498.

to make it compatible with prox-Newton solvers, and empiri-
cally demonstrate its applicability to the Multi-task Lasso.
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