
HAL Id: hal-02288935
https://u-bourgogne.hal.science/hal-02288935

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Infinite orbit depth and length of Melnikov functions
Pavao Mardešić, Dmitry Novikov, Laura Ortiz-Bobadilla, Jessie

Pontigo-Herrera

To cite this version:
Pavao Mardešić, Dmitry Novikov, Laura Ortiz-Bobadilla, Jessie Pontigo-Herrera. Infinite orbit depth
and length of Melnikov functions. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2019,
36 (7), pp.1941-1957. �10.1016/j.anihpc.2019.07.003�. �hal-02288935�

https://u-bourgogne.hal.science/hal-02288935
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


INFINITE ORBIT DEPTH
AND

LENGTH OF MELNIKOV FUNCTIONS

PAVAO MARDEŠIĆ, DMITRY NOVIKOV, LAURA ORTIZ-BOBADILLA,
AND JESSIE PONTIGO-HERRERA

Abstract. In this paper we study polynomial Hamiltonian systems dF = 0

in the plane and their small perturbations: dF + εω = 0. The first nonzero
Melnikov function Mµ = Mµ(F, γ, ω) of the Poincaré map along a loop γ of
dF = 0 is given by an iterated integral [3]. In [7], we bounded the length of the
iterated integral Mµ by a geometric number k = k(F, γ) which we call orbit
depth. We conjectured that the bound is optimal.

Here, we give a simple example of a Hamiltonian system F and its orbit
γ having infinite orbit depth. If our conjecture is true, for this example there
should exist deformations dF + εω with arbitrary high length first nonzero
Melnikov functionMµ along γ. We construct deformations dF + εω = 0 whose
first nonzero Melnikov function Mµ is of length three and explain the diffi-
culties in constructing deformations having high length first nonzero Melnikov
functions Mµ.

1. Introduction and Main Results

This paper is motivated by two classical problems in the study of orbits of vector
fields in the plane: the 16-th Hilbert problem and the center problem or rather their
infinitesimal versions.

The Infinitesimal Hilbert 16-th problem asks for a bound on the number of limit
cycles (i.e. isolated periodic orbits) created by a small polynomial deformation of
a given degree of an integrable vector field in the plane.

The infinitesimal center problem asks for a characterization of polynomial defor-
mations of an integrable system which preserve a family of loops.

In both problems one studies the Poincaré first return map (1.2) on a transversal.
The first (possibly) nonzero termMµ carries lots of information about the Poincaré
map. Having an a priori estimate on its complexity would be very important for
both infinitesimal problems. For the infinitesimal center problem, to have an a
priori estimate on the length is similar to having an estimate on the stabilization
index for Noetherian property.

It is known [2, 3], that when deforming a Hamiltonian vector field, the first
nonzero term Mµ is an iterated integral of length not exceeding its order µ. How-
ever, the order µ in general depends on the deformation. In [7], we gave a bound
on the length of Mµ by a geometric number orbit depth k which is independent on
the deformation. We showed that in different cases this bound is optimal and we
conjectured that it is so in general.
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In this paper we give an example where this bound is infinite. We believe that in
the example one can construct deformations whose first nonzero Melnikov function
Mµ is of arbitrarily high length. In that direction we construct for our example
deformations having first nonzero Melnikov function Mµ of length 3 and show the
difficulties in constructing deformations with higher length.

Remark 1.1.
(i) Our example answers negatively a question asked by Gavrilov and Iliev in [4].
(ii) Our example shows the complexity of both infinitesimal problems.

Let us be more precise. Let F ∈ C[x, y] be a polynomial and let γ ∈ π1(F−1(t))
be a loop for t a regular value of F . Consider a small polynomial deformation

dF + εω = 0, (1.1)

of the Hamiltonian dF = 0. Let τ be a transversal section to γ at a point p0,
parametrized by the values t of F . Denote by Pγ the Poincaré return map (holo-
nomy) of (1.1) along γ. Then

Pγ(t) = t+ εµMγ,µ(t) + o(εµ). (1.2)

If the Poincaré map is not the identity map, we assume that Mµ is nonzero and
call it the first non-zero Melnikov function along γ of the deformation (1.1).

By the Poincaré-Pontryagin criterion, the first order Melnikov function M1 is
given by an Abelian integral,

Mγ,1(t) =

∫
γ

ω. (1.3)

More generally, Mγ,µ(t) is given as a linear combination of iterated integrals of
length at most µ, see [2, 3]. However, this bound in general is not optimal. For
instance, for generic F and any loop γ and any deformation ω, the first non-zero
Melnikov functions Mγ,µ(t) is given by an Abelian integral (i.e. is an iterated
integral of length 1), irrespective of its order µ. This follows from [6, 2], see [7].
For other examples see [7], as well as papers cited there. Moreover, the bound µ,
for the length of Mγ,µ depends on the deformation (1.1).

In [4] a sufficent condition under which the first nonzero Melinkov function
Mγ,µ(t) is an Abelian integral is formulated. We generalized this condition in
[7]:

Let Σ be the set of atypical values of F , see [5], and let t 6∈ Σ be some regular
value of F . Denote Γt = {F−1(t)}. The fundamental group π1(C \ Σ, t) acts on
the fundamental group π1(Γt, p0) as follows. For each generator aj of π1(C \ Σ, t)
corresponding to a closed curve aj(s) ⊂ C \ Σ, choose its lifting ãj(s), i.e. a loop
ãj(s) ⊂ F−1(C \ Σ) such that F (ãj(s)) = aj(s) and ãj(0) = ãj(1) = p0. Then, by
Ehresmann’s fibration theorem, the fundamental groups π1(F−1(aj(s)), ãj(s)) and
π1(F−1(aj(s

′))), ãj(s
′)) are canonically isomorphic for sufficiently close s, s′. This

defines an automorphismMon(aj) of π1(Γt, p0) and the representationMon : π1(C\
Σ, t) → Aut(π1(Γt, p0)). This representation depends on the choice of the liftings
ãj , and different choices of liftings change Mon(aj) to conjugate automorphisms
σ−1j Mon(aj)σj , σj ∈ π1(Γt, p0). We fix some choice of ãj .

Definition 1.2 (see [4, 7]). Let O be the smallest normal subgroup of π1(Γt, p0)
containing the orbit of γ ∈ π1(Γt, p0) under the action ofMon(π1(C\Σ, t)). Denote
K = [O, π1(Γt, p0)] and let H1(O) = O/K.
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Remark 1.3. Note that O, K and H1(O) are independent on the particular choice
of ãj . Moreover, H1(O) is canonically isomorphic for different choices of p0 in the
following sense: the natural isomorphism between π1(Γt, p0) and π1(Γt, p

′
0) defined

by a path joining p0 and p′(0) descends to an isomorphism of the corresponding
H1(O), and this isomorphism is independent on the choice of this path.

In what follows, we denote π1(Γt, p0) by π1. The lower central sequence of π1 is
defined as:

π1 = L1 ⊃ L2 = [L1, π1] ⊃ · · · ⊃ Li+1 = [Li, π1] ⊃ · · · (1.4)

There is a natural homomorphism ι1 : H1(O) → H1(Γt,C), and let O1 =
ι1(H1(O)) = OL2

L2
⊗ C. In general, ι1 is neither surjective nor injective. In [4]

it is shown that if ι1 is injective then Mµ(t) is an Abelian integral.
In [7], we defined the orbit depth k = k(F, γ),

Definition 1.4. Given a polynomial F ∈ C[x, y] and a loop γ ∈ π1 as above, the
orbit depth k = k(F, γ) is defined as

k = sup {j ≥ 1 | O ∩ Lj 6⊆ K } ⊂ N ∪ {+∞} . (1.5)

We say that an element v ∈ O is of depth j if it belongs to Lj and its class in
H1(O) is nonzero. Orbit depth is k <∞ if k is the highest depth of elements in O,
and it is infinite if there are elements of O of arbitrary high depth.

In [7, Theorem 1.7]) we proved that the orbit depth k = k(F, γ) bounds the
length of iterated integrals representing the first nonzero Melnikov function Mγ,µ

of small deformations (1.1).
We conjectured that it was an optimal bound for the length of the first nonzero

Melnikov function Mγ,µ along γ of deformations of dF = 0. We hence believe that
for a Hamiltonian system dF = 0 and a loop γ ∈ π1(F−1(t)) of infinite orbit depth
there exist polynomial deformations (1.1) such that the first non-zero Melnikov
function Mγ,µ is an iterated integral of arbitrary high length.

Theorem 1.5. There exists a polynomial function F ∈ R[x, y] and a loop γ ∈
π1(F−1(t)) such that the orbit depth k of γ is infinite.

Such an example is given by

F (x, y) = (x2 − 1)(y2 − 1), (1.6)

and the loop γ ⊂ {F = t} given by the real cycle vanishing at (0, 0) along the path
(0, t) ⊂ R, for t ∈ (0, 1) (see Figure 1).

Our theorem also answers negatively to the question if dimH1(O) ≤ dimH1(F−1(t0)),
which was raised as part of open question (1) in [4].

We also prove

Theorem 1.6. There exist a rational deformation dF + εω of F given by (1.6)
such that the first nonzero Melnikov function Mγ,µ of the deformation (1.1) is an
iterated integral of length 3. An example of such deformation is a form ω of type

ω = a1(F )
dx

x+ 1
+ a2(F )

dy

y − 1
+ a3(F )

dx

x− 1
, (1.7)

with a1(t) = t2 + 2t, a2(t) = t and a3(t) = t2 + t.
If Mγ,2 = Mγ,3 ≡ 0 for deformation (1.1) with ω as (1.7), then the deformation

is integrable.
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We conclude that one needs a richer set of deformations to get an example of a
perturbation with first nonzero Melnikov function Mγ,µ of length ≥ 4.

One of the principal tools of the proof is Proposition 3.4, establishing connection
between Poincaré return maps of paths on Γt and the vector fields on the transversal
τ whose flows give these maps.

2. Example with infinite orbit depth

We consider the polynomial F (x, y) = (x2 − 1)(y2 − 1). The critical values of F
are 0 and 1, and the critical points are (±1,±1) on {F = 0} and (0, 0) at {F = 1}.
Our goal in this section is to show that the orbit depth of the real cycle γ vanishing
at the critical point (0, 0) is infinity.

The normalizations Γt of complexifications of non-singular level curves {F = t},
t 6= 0, 1, are torii with 4 points removed. The fundamental group π1(Γt, p0) is a free
group generated by loops γ, δ0, δ1, δ2, δ3, where δi are loops vanishing at (±1,±1).

To be more precise, we take 0 < t � 1, choose p0 close to the edge {x = −1}
of the square, and denote δ0, δ1, δ2, δ3 the geometric loops vanishing at (−1,−1),
(1,−1), (1, 1) and (−1, 1) correspondingly, see the figure at [7]: we take a meridian
of the cylinder which is {F = t} near the corresponding singular point, with base
point on γ, and then pull the base point clockwise along γ to p0. We orient γ
counterclockwise, and orient δi in such a way that the intersection numbers (γ, δi)
are all equal to one.

.

Figure 1. Generators of π1(Γt, p0).

The atypical values of H are exactly its critical values 0, 1. Therefore, the action
of the monodromy of the foliation on the fundamental group of Γt is generated by
two automorphismsMon0 andMon1 of π1(Γt, p0) corresponding to the loops going
around the critical values 0 and 1 correspondingly, as described above.

.

Figure 2. Generators of π1(C \ {0, 1}, t) corresponding to Mon0,Mon1.
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Lemma 2.1. Denote δ = δ0δ1δ2δ3. The monodromy operators Mon0,1 are

Mon1 = {γ 7→ γ, δi 7→ γδi} (2.1)
Mon0 = {γ 7→ δγ, δ0 7→ δ0,

δ1 7→ δ0δ1δ
−1
0 ,

δ2 7→ δ0δ1δ2δ
−1
1 δ−10 ,

δ3 7→ δ0δ1δ2δ3δ
−1
2 δ−11 δ−10 } (2.2)

Proof. These formulas follow from standard homotopical computations proving the
Picard-Lefschetz formula, see e.g. [1]. From the local topology in a neighborhood
of the center critical point, we have Mon1γ = γ, and Mon1δi = γδi, since the
intersection number between γ and δi is one, and γ is the cycle vanishing at the
center critical value when the regular value tends to 1. For the monodromy around
the critical value 0, we divide the real cycle γ into pieces γ = ρ0ρ1ρ2ρ3, where ρi goes
from a point xi in γ ∩Ui to a point xi+1 in γ ∩Ui+1, where Uj is a neighborhood of
the critical point at which δj vanish, with x0 and x4 equal to the chosen initial point
p0. Let δ̊i be the generator of π1(F−1(t) ∩ Ui, xi). From Picard-Lefschetz formula,
locally at the neighborhood Ui we have Mon0(ρi) = δ̊iρi, and Mon0δ̊i = δ̊i. Notice
that δi = ρ0 · · · ρiδ̊iρ−1i · · · ρ

−1
0 . Then, applying the local monodromy at each saddle

critical point we get the result. �

2.1. Chipping out Homology and Mon1. Note that δ = Mon0(γ)γ−1 is in O,
and that γ, δ span the orbit of γ in H1(Γt). From the exact sequence

0→ (O ∩ L2)/K → O/K → O1 → 0,

where O1 = 〈γ, δ〉 ⊂ H1(Γt), it is clear that the next step is to consider the action
of the monodromy on L2 = [π1, π1]. It turns out that, up to subgroup generated
by γ and δ, the action of Mon1 on L2 is trivial, thus allowing to disregard Mon1.

Let Γ be the normal subgroup of π1 generated by γ, δ. Evidently, Γ ⊂ O and
[Γ, π1] ⊂ K is a normal subgroup of π1 generated by commutators [γ, c], [δ, c], c ∈ π1.

The group (O∩L2)/K is a subgroup of L2/K, which is a factor of L2/[Γ, π1]. The
latter is isomorphic to the commutator G2 = [G,G] of the free group G generated
by δ1, δ2, δ3.

Lemma 2.2. Mon1 preserves both L2 and Γ. The induced action of Mon1 on
π1/Γ is trivial.

Proof. As Mon1 is an automorphism of π1, it preserves L2. Also, Mon1(γ) = γ,
Mon1(δ) = γδ0γδ1γδ2γδ3 = δmod Γ ∈ Γ, so Mon1 preserves Γ. Also Mon1(δi) =
γδi = δi mod Γ, which proves the last statement. �

As Γ∩L2 ⊂ K, this implies that Mon1 acts trivially on L2/K and therefore can
be disregarded.

Corollary 2.3. O is generated by γ and Moni0(δ), i = 0, 1, . . . .

Lemma 2.4. Mon0 preserves Li ∩ 〈δ0, δ1, δ2, δ3〉 and the induced action of Mon0

on Li ∩ 〈δ0, δ1, δ2, δ3〉/ (Li+1 ∩ 〈δ0, δ1, δ2, δ3〉) is trivial.

Proof. Follows immediately from Lemma 2.1. �

So we have to investigate the orbit of δ in the free group generated by 〈δi, i =
0, 1, 2, 3〉, under the action of Mon0 given by Lemma 2.1.

Define M(σ) = δ−11 δ−10 Mon0(σ)δ0δ1 on 〈δ, δ1, δ2, δ3〉,

M = {δ0 7→ δ−11 δ0δ1, δ1 7→ δ1, δ2 7→ δ2, δ3 7→ [δ2, δ3]δ3}, (2.3)
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and define V ar(σ) = M(σ)σ−1. Note that for σ ∈ O
V ar(σ) = [δ−11 δ−10 ,Mon0(σ)]Mon0(σ)σ−1 = Mon0(σ)σ−1 modK ∈ O. (2.4)

This means that both Mon0 and M generate the same orbit, and one can use
either of them. However, M is computationally more convenient. We formally
define V ar(γ) = δ and V ari+1(γ) = V ari(δ).

Corollary 2.5. For any i ≥ 1, V ari(γ) ∈ Li ∩ 〈δ, δ1, δ2, δ3〉.

Proof. We have V ar(γ) = δ ∈ π1 = L1. Therefore V ari(γ) belong to the sub-
group generated by δi. By induction, and using Lemma 2.4 and (2.4), we see
that Mon0(V ari(γ)) = V ari(γ) modLi+1 ∩ 〈δ, δ1, δ2, δ3〉. Therefore V ari+1(γ) ∈
Li+1 ∩ 〈δ, δ1, δ2, δ3〉. �

Lemma 2.6. Any element w ∈ O can be represented as

w = γn0V ar(γ)n1 . . . V ari(γ)nk modK, i = i(w). (2.5)

Proof. Indeed, any element in O/K is a product of M i(γ), and these elements can
be represented in this form: if

M i(γ) = γn0δn1 . . . V ari(γ)nk modK, (2.6)

then

M i+1(γ) = M(γn0)M(δn1) . . .M(V ari(γ)nk) modK

= (V ar(γ)γ)n0(V ar(δ)δ)n1 . . . (V ari+1(γ)V ari(γ))nk modK

= γn0δn0+n1 . . . V ari(γ)nk−1+nkV ari+1(γ)nk modK,

as V ari(γ) commute modulo K. �

Define by induction the maps dk : π1 → π1 as d1 = Id, and dk+1(σ) = [δ2, dk(σ)].
Note that dk(σ) = [δ2, [δ2, [. . . [δ2, σ] . . . ] ∈ Lk for all k ≥ 1, σ ∈ π1.

Proposition 2.7. Denote x = δ1δ2, z = δ2δ3 and define

v1 = δ, vk = [x, dk−1(z)] for k ≥ 2. (2.7)

Then vi ∈ O and V ari(γ) = vi modK.

Before proving Proposition 2.7, we prove

Lemma 2.8. dk−1([δ2, z]z) = dk(z)dk−1(z).

Proof. By induction,

dk([δ2, z]z) = [δ2, dk−1([δ2, z]z)] = [δ2, dk(z)dk−1(z)] =

= [δ2, dk(z)][δ2, dk−1(z)]
[
[dk−1(z), δ2], dk(z)

]
=

= dk+1(z)dk(z)[dk(z)−1, dk(z)] = dk+1(z)dk(z). �

Proof of Proposition 2.7. From Lemma 2.1 we see that v1 = Mon0(γ)γ−1 = δ.
Note that by (2.3)

M(x) = x, M(δ2) = δ2, M(z) = δ2zδ
−1
2 = [δ2, z]z. (2.8)

We have
δ = δ1δ2δ3δ0[δ−10 , δ−1] = δ1δ2δ3δ0 modK, (2.9)

so, modulo K,

V ar2(γ) = M(δ1δ2δ3δ0)δ−1 = δ1 · δ2 · δ2δ3δ−12 · δ
−1
1 δ0δ1 · δ−1 =

= [δ1δ2, δ2δ3][δ2δ3, δ] = [x, z] = v2. (2.10)

In particular, v2 ∈ O.
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For the third variation, again modulo K,

V ar3(γ) = M([x, z])v−12 = [x, [δ2, z]z]v
−1
2 =

= [x, [δ2, z]][x, z][[z, x], [δ2, z]]v
−1
2 = [x, [δ2, z]]. (2.11)

as [[z, x], [δ2, z]] = [v−12 , [δ2, z]] ∈ K.
Now, from (2.8) follows M(vk) = [x, dk−1([δ2, z]z)], so modulo K,

V ark+1(γ) = M(vk)v−1k = [x, dk(z)dk−1(z)]v−1k =

= [x, dk(z)][x, dk−1(z)]
[
[dk−1(z), x], dk(z)

]
v−1k =

= [x, dk(z)] vk [v−1k , dk(z)] v−1k = [x, dk(z)] = vk+1. �

Proposition 2.9. O = 〈γ, vi, i = 1, ...〉.

Proof. Denote Ov = 〈γ, vi, i = 1, ...〉 the normal subgroup of π1 generated by γ, vi.
It follows from Proposition 2.7 that vi ∈ O, so Ov ⊂ O.

Let us prove the opposite inclusion. By Lemma 2.6, O = 〈γ, V ari(γ), i = 1, . . . 〉.
By Lemma 2.7,

V ari(γ) = viWi,1({[a1j , V arj(γ)]}j≥0), i ≥ 0, (2.12)

whereWi,1 are some words. Substituting these equalities into their right hand sides,
we get

V ari(γ) = viWi,2({[bj , vj ], [a2j , [a1j , V arj(γ)]]}j≥0), i ≥ 0. (2.13)
Repeating substitution `− 1 times, we get for any ` ≥ 1

V ari(γ) = viεi,`wi,`, εi,` ∈ Ov, wi,` ∈ [π1, [π1, [. . . [π1,O] . . . ] ⊂ L`+1. (2.14)

This implies that OL`+1 ⊂ OvL`+1 for any ` ≥ 1. This implies that O ⊂ Ov. �

Corollary 2.10. K = 〈[π1, γ], [π1, vi], i = 1, ...〉.

2.2. Depth is infinite. Here we prove Theorem 1.5. The main idea is to construct
for any k a matrix representation ρk of π1 sending all generators of O except vk+2

to identity. We prove that ρk(vk+2) 6∈ ρk(K) for a generic choice of parameters a, c
of the representation ρk, which implies Theorem 1.5.

Let A0 = a, B0 = 1 and C0 = c, where a, c 6= 0, 1. Define inductively the
2k × 2k-matrices Ak, Bk, Ck as follows:

Ak+1 =

[
Ak 0
0 I

]
, Bk+1 =

[
Bk I
0 Bk

]
, Ck+1 =

[
I 0
0 Ck

]
, (2.15)

where I is the corresponding identity matrix.

Proposition 2.11. Let x = δ1δ2 and z = δ2δ3 be as in Porposition 2.7. Con-
sider the representation ρk : π1 → GL(2k) defined by ρk(γ) = ρk(δ) = I, ρk(x) =
Ak, ρk(δ2) = Bk and ρk(z) = Ck. Then

(1) ρk(vi) = I for i 6= k + 2 and ρk(vk+2) 6= I, and
(2) ρk(vk+2) /∈ [ρk(vk+2), ρk(π1)] = ρk(K) for generic a, c.

Remark 2.12. As π1 is a free group and γ, δ, x, δ2, z are its generators, such a
representation ρk exists.

Proof. We start with another description of Ak, Bk and Ck. Let

I2 =

[
1 0
0 1

]
, J2 =

[
0 1
0 0

]
, E2 =

[
0 0
0 1

]
, F2 =

[
1 0
0 0

]
.

Recall that tensor products are multiplied factorwise:

(X1 ⊗ Y1)(X2 ⊗ Y2) = X1X2 ⊗ Y1Y2.
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Denote by bj1...jl to be the tensor product of (k − l) copies of I2 and l copies of
J2, with J2 being exactly the jth1 , . . . , jthl factors. Similarly, denote by ej1...jl to be
the tensor product of (k − l) copies of E2 and l copies of J2, with J2 being exactly
the jth1 , . . . , jthl factors. Finally, denote α = F⊗k2 , γ = E⊗k2 and β =

∑k
j=1 bj .

Using this notations, we have

Ak = I2k + (a− 1)α, Bk = I2k + β and Ck = I2k + (c− 1)γ. (2.16)

Our immediate goal is to compute [Bk, Ck]. Evidently,

A−1k = I2k + ( 1
a − 1)α, C−1k = I2k + ( 1

c − 1)γ. (2.17)

As J2
2 = 0, we have bj1...jlbj′1...j′l′ equals bj1...jlj′1...j′l′ if the sets {j1 . . . jl},{j

′
1 . . . j

′
l′}

do not intersect, and zero otherwise.
Therefore

βl = l!
∑

1≤j1<···<jl≤k

bj1...jl , βk = k!J⊗k2 and βk+1 = 0. (2.18)

In particular,

B−1k = I2k + β̃, where β̃ = −β + β2 − · · · ± βk.
Now, from N2

2 = N2, N2J2 = 0, J2N2 = J2 we have

γ2 = γ, γβl = γβ̃ = 0, (2.19)

and
βlγ = ε[l] = l!

∑
1≤j1<···<jl≤k

ej1...jl , (2.20)

Note that ε[l]ε[l
′] = 0 for all l, l′ ≥ 1, ε[k] = k!J⊗k2 and ε[l] = 0 for l > k.

Now, using the above formulae we see that

[Bk, Ck] =(I2k + β)(I2k + (c− 1)γ)(I2k + β̃)(I2k + ( 1
c − 1)γ)

=I2k − ( 1
c − 1)βγ = I2k − ( 1

c − 1)ε[1], (2.21)

and, as
(
ε[1]
)2

= 0,
[Bk, Ck]−1 = I2k + ( 1

c − 1)ε[1]. (2.22)
Continuing,

[Bk, [Bk, Ck]] = I2k − ( 1
c − 1)βε[1] = I2k − ( 1

c − 1)ε[2], (2.23)

and, by induction, for a commutator with l entries of Bk,

[Bk, [. . . [Bk, Ck]] . . . ] = I2k − ( 1
c − 1)ε[l]. (2.24)

Now, similarly, from

F 2
2 = F2, F2J2 = J2, J2F2 = 0 (2.25)

we have

α2 = α, ε[l]α = 0 for all l,

αε[k] = ε[k] = k!J⊗k2 , αε[l] = 0 for l 6= k.

Therefore

ρk(vl+2) = [Ak, [Bk, [. . . [Bk, Ck]] . . . ]] = I2k + ( 1
c − 1)( 1

a − 1)αε[l], (2.26)

i.e.

ρk(vl+2) = I2k for l + 2 6= k,

ρk(vk+2) = I2k + ( 1
c − 1)( 1

a − 1)k!J⊗k2 6= I2k , (2.27)

which proves the first claim of Proposition 2.11.
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Let s =
∏
gmii ∈ π1, where gi ∈ {γ, δ, x, δ2, z} and mi ∈ Z. Then ρk(s) =

D+U , where U is a strictly upper triangular matrix and D = diag(am, 1, . . . , 1, cn).
Therefore

[ρk(s), ρk(vk+2)] = I2k +
(
am

cn − 1
)

( 1
c − 1)( 1

a − 1)k!J⊗k2 . (2.28)

Now, assume
ρk(vk+2) =

∏
j

[ρk(sj), ρk(vk+2)]. (2.29)

By (2.27),(2.28), we have

I2k + ( 1
c − 1)( 1

a − 1)k!J⊗k2 = I2k +
(∑(

amj

cnj
− 1
))

( 1
c − 1)( 1

a − 1)k!J⊗k2 , (2.30)

or, equivalently, 1 =
∑(

amj

cnj
− 1
)
. Collecting similar terms, we get∑

λi
ami

cni = 1 +
∑

λi, where λi,mi, ni ∈ Z,

and for any i one of the exponents mi, ni is non-zero. This cannot hold for all
a, c: if the left hand side is a constant, then all λi vanish, and we get 0 = 1.
Therefore any representation (2.29) fails on a Zariski open subset of C(a,c), so all
such representations fail for a generic choice of a, c. �

Proof of Theorem 1.5. By Corollary 2.10 and Proposition 2.11(1), we have ρk(K) =
[ρk(π1), ρk(vk+2)]. By Proposition 2.11(2), ρk(vk+2) /∈ [ρk(π1), ρk(vk+2)] for a
generic choice of a, c. This means that (O ∩ Lk+2) \ K contains vk+2, so is non-
empty for all k. �

3. First nonzero Melnikov function of length 3

3.1. Cohomologies: notations. Denote f1 = x + 1, f2 = y − 1, f3 = x − 1 and
f4 = y + 1. Denote φi = log fi and ηi = dφi = dfi

fi
.

The cycles γ, δ, δ1, δ2, δ3 form a basis of H1(Γt), and γ, δ form a basis of the orbit
of γ in H1(Γt). As φi are univalued on γ, the restrictions to Γt of polynomial forms
{Fηi}3i=1 lie in the orthogonal complement O⊥ ⊂ H1(Γt) of the orbit O1 ⊂ H1(Γt)
of γ in H1(Γt), and in fact form its basis. We have∫

δ1
η1 = 0,

∫
δ1
η2 = 0,

∫
δ1
η3 = 2πi∫

δ2
η1 = 0,

∫
δ2
η2 = 2πi,

∫
δ2
η3 = −2πi∫

δ3
η1 = 2πi,

∫
δ3
η2 = −2πi,

∫
δ3
η3 = 0.

(3.1)

Note that dηi = 0, so the Gelfand-Leray derivatives dηi
dF vanish.

3.2. Linear perturbations. Consider the rational 1-form of type (1.7), i.e.

ω = a1(F )η1 + a2(F )η2 + a3(F )η3, (3.2)

where ai(t) are holomorphic on τ , and consider the perturbation

dF + εω = 0, F = (x2 − 1)(y2 − 1). (3.3)

Remark 3.1. Note that restriction to Γt of any form ω such that
∫
γ(t)

ω ≡ 0 is
cohomologous to a linear combination of ηi.

The Poincaré map along the cycles γ is

Pγ(t) = t+ εMγ,1(t) + ε2Mγ,2(t) + ε3Mγ,3(t) + · · · , (3.4)

with Mγ,1(t)) =
∫
γ(t)

ω ≡ 0. Our goal is to find a polynomial form ω providing the
highest possible order of the first non-vanishing Melnikov function Mγ,i(t)
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Proposition 3.2. Mγ,2 ≡ 0 and Mv3,3 6≡ 0 if, and only if,

a3(t) = α1

∫ t

0

α2(τ)

α2
1(τ)

dτ + c0α1

a1(t) = a3(t) + α1(t)

a2(t) = λα1,

(3.5)

where λ ∈ C∗ and α1(t) and α2(t) are linearly independent functions over C, and
α1 is not constant.

To prove Proposition 3.2, we consider the second and third variations of γ, i.e.
v2 and v3 from Proposition 2.7, and the corresponding Poincaré maps Pv2 and Pv3 .
Proposition 3.4 implies that

Pv2(t) = t+ ε2Mv2,2(t) +O(ε3),
Pv3(t) = t+ ε3Mv3,3(t) +O(ε4),

(3.6)

and provides explicit expression of Mv2,2(t),Mv3,3(t) in terms of coefficients ai(F ).
This allows to find conditions on ai guaranteeing Mv3,3(t) 6≡ 0 and Mv2,2(t) ≡ 0.
We prove that the last condition is equivalent to Mγ,2(t) ≡ 0 in Lemma 3.7.

Remark 3.3 (Geometric interpretation of Proposition 3.2). The forms (3.2) form a
three dimensional module Ω over the ring of germs of holomorphic functions at t.
The Poincaré map along γ is a map Pγ : U ⊂ Ω→ Hol(τ), where Hol(τ) is the set
of germs of holomorphic mappings g : (τ, p0)→ τ .

The perturbations (1.1) are germs of lines in Ω, and the order of the first non-zero
Melnikov function of the perturbation can be interpreted as the order of vanishing
of P on these lines, i.e. the order of tangency of these lines to the set {R = 0}
of integrable perturbations. Theorem 1.6 claims that the maximum order of this
tangency is either at most three or the line lies entirely in {R = 0}.

To construct the perturbations with first non-zero Melnikov function Mk of
higher length, we necessarily have to increase k, i.e. the order of tangency of
the perturbation with the set of integrable foliations. This means that we have
either to consider non-linear perturbations, i.e. germs of curves in Ω, or consider a
wider class Ω̃ of perturbations, e.g. by including relatively exact forms.

Still, the first non-zero Melnikov function of a non-linear perturbation

dF + εω1 + ε2ω2 + ... = 0, ωi ∈ Ω (3.7)

can be of high order, but of small length. It is easy to see that the terms of highest
length of the corresponding Melnikov functions depend only on ω1. Thus, to ensure
that the length of the first non-vanishing Melnikov functions is at least 4, we should
take ω1 such that dF + εω1 = 0 is integrable (otherwise M3 6= 0), and find non-
linear terms in such a way that Mγ,4 ≡ 0 (as its longest terms are determined by
ω1, they necessarily vanish, so its length could be at most 3), but Mγ,5 6= 0 and
has length 4 (it cannot be of length 5 by the same reason). The latter would follow
from Mv4,5 6= 0. This program can be realized, but it is computationally hard.
Moreover, it is not clear how one can generalize this approach to higher length, so
we omit the computations.

3.3. Poincaré maps as time-one flows of vector fields on the transversal.
Consider the family (1.1) as a one-dimensional foliation

F = {dF + εω = 0, dε = 0} (3.8)

in C3
x,y,ε. Let Θ = τ×(Cε, 0) be a transversal to the algebraic leaf Γ = Γt×{0} at the

point (p0, 0), and denote D = Diff((Θ, (p0, 0))) the group of germs of holomorphic
diffeomorphisms of Θ. Holonomy of F along various paths γ ∈ π1(Γ, (p0, 0)) defines
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a representation P̃ : π1 → D preserving ε, i.e. P̃γ : (x, ε) → (Pγ(x, ε), ε) for any
γ ∈ π1.

Define vγ = (dP̃γ)(∂ε), ve = ∂ε, and let φsγ be the s-time flow of vγ (necessarily
Lvγ (ε) = 1). By definition, P̃γ conjugates flows of ve and vγ . In particular, for all
p ∈ τ

P̃γ(p, ε) = P̃γ(φεe(p, 0)) = φεγ(P̃γ(p, 0)) = φεγ(p, 0), (3.9)

as P̃γ(p, 0) ≡ (p, 0) for all γ ∈ π1.
Let (t = F (p), ε) be parameterization of Θ. The expansion (1.2) is the expansion

of P̃γ in degrees of ε,

P̃γ(t, ε) = (t+ εµMγ,µ(t) + o(εµ), ε). (3.10)

Let
vγ = (v0γ(t) + εv1γ(t) + ...)∂t+ ∂ε (3.11)

be decomposition of vγ . Evidently, v0γ = · · · = vµ−2γ ≡ 0, and vµ−1γ (t) = Mγ,µ(t).

Proposition 3.4. Let γ1, γ2, γ = [γ1, γ2] ∈ π1, and let

Pγi(t, ε) = t+ εµiMγi,µi + o(εµi), i = 1, 2,

with Mγ1,µ1
,Mγ2,µ2

6≡ 0.
Then v0γ = · · · = vµ−2γ ≡ 0 for µ = µ1 + µ2, and

vµ−1[γ1,γ2]
(t) = W (Mγ1,µ1

(t),Mγ2,µ2
(t)), (3.12)

where W (f, g) = fg′ − f ′g denotes the Wronskian of f, g.

Alternatively,
vµ−1[γ1,γ2]

(t)∂t = [Mγ1,µ1
(t)∂t,Mγ2,µ2

(t)∂t] , (3.13)

where brackets denote the Lie bracket of vector fields.

Remark 3.5. Essentially, (1.1) induces a homomorphism R of the fundamental
group π1 of Γt to the group of germs at identity of analytic curves in the groupoid
Diff(τ).

More precisely, for any γ ∈ π1 we get a germ R(γ) at identity of an analytic
curve

{ω̂γ} =
{
P̃γ(·, ε)

}
⊂ Diff(τ).

The Lie algebra X of Diff(τ) "is" the Lie algebra of germs at p0 of vector fields
on τ , and vγ defines the corresponding (under exponential map) path log ω̂γ in this
Lie algebra. The path P̃γ(·, ε) is not necessarily a one-parametric group, and the
path log ω̂γ is not necessarily constant, but we are interested in the leading term
of ω̂γ only. If µ = 1, then the leading term is the tangent vector Mγ,1∂t to ω̂γ .
However, if µ > 1 then the tangent vector is zero.

To include the case µ > 1 consider the group G of germs at identity of analytic
curves in the groupoid Diff(τ). G has natural filtration by order of tangency of
the germ to the constant germ, i.e. by the order of the first non-zero term in its
Taylor decomposition in ε. which induces a filtration on its Lie algebra, and the
associated graded algebra is a Lie algebra Ĝ isomorphic to X ⊗C[[ε]], up to a shift
of grading by 1. The homomorphism R pulls back the above filtration of G to a
filtration of π1, compatible with the group commutator (for generic perturbations
this filtration most probably coincides with the lower central series Li). Starting
from this filtration on π1, one can build a Lie algebra in a standard way, and
Proposition 3.4 shows that R lifts to a Lie algebra mapping between this Lie algebra
and Ĝ.
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Proof. The monodromy of γ = γ1γ2γ
−1
1 γ−12 is given by Pγ = P−1γ2 ◦P

−1
γ1 ◦Pγ2 ◦Pγ1 .

Denote Pγi(t, ε) = t+ εµiMγi,µi + · · ·+ εµMγi,µ + o(εµ) for i = 1, 2. Then

Pγ1 ◦ Pγ2(t, ε) = Pγ2(t, ε) +

µ∑
j=µ1

εjMγ1,j(Pγ2(t, ε)) + o(εµ) =

= t+

µ∑
j=µ2

εjMγ2,j(t) +

µ∑
j=µ1

εjMγ1,j(t) + εµM ′γ1,µ1
Mγ2,µ2

+ o(εµ).

Similarly,

Pγ2 ◦ Pγ1(t, ε) = t+

µ∑
j=µ1

εjMγ1,j(t) +

µ∑
j=µ2

εjMγ2,j(t) + εµM ′γ2,µ2
Mγ1,µ1

+ o(εµ),

and therefore

Pγ2 ◦ Pγ1(t, ε) = Pγ1 ◦ Pγ2(t, ε) + εµ
(
Mγ1,µ1

M ′γ2,µ2
−M ′γ1,µ1

Mγ2,µ2

)
+ o(εµ).

As
(
P−1γ2 ◦ P

−1
γ1

)′
= 1+O(ε), application of (P−1γ2 ◦P

−1
γ1 (s, ε), ε) provides the required

equality

Pγ = P−1γ2 ◦P
−1
γ1 ◦Pγ2 ◦Pγ1(t, ε) = t+εµ

(
Mγ1,µ1

M ′γ2,µ2
−M ′γ1,µ1

Mγ2,µ2

)
+o(εµ). �

3.4. Explicit computations. By Poincaré-Pontryagin criterion, Mσ,1 =
∫
σ
ω.

From (3.1) we have

(2πi)−1
∫
δ1+δ2

ω = a2(t),

(2πi)−1
∫
δ2(t)

ω = a2(t)− a3(t),

(2πi)−1
∫
δ2+δ3

ω = a1(t)− a3(t).

By Proposition 3.4 we have

(2πi)−2Mv2,2(t) = W (a2(t), a1(t)− a3(t)),

(2πi)−3Mv3,3(t) = W
(
a2(t),W (a2(t)− a3(t), a1(t)− a3(t))

)
.

(3.14)

In what follows, the 2πi factors are not important, so we will omit them.

Lemma 3.6. Mv2,2 ≡ 0 and Mv3,3 6≡ 0 if, and only if,

a3(t) = α1

∫ t

0

α2(τ)

α2
1(τ)

dτ + c0α1

a1(t) = a3(t) + α1(t)

a2(t) = λα1(t), with λ ∈ C∗,

(3.15)

where α1(t) and α2(t) are linearly independent functions over C, and α1 is not
constant.

Proof. From Mv3,3 6≡ 0 we see that a2(t), a1(t)− a3(t) 6≡ 0.
Then Mv2,2 ≡ 0 is equivalent to

a2(t) = λ1(a1(t)− a3(t)), for some λ1 ∈ C∗. (3.16)

This implies, by linearity of Wronskians,

Mv3,3 = W (a2(t),W (a3(t), a1(t))) = λ1W (a1(t)− a3(t),W (a3(t), a1(t))) . (3.17)

Then, Mv3,3 6≡ 0 if, and only if,

W (a1, a3) 6= λ2(a1(t)− a3(t)), for all λ2 ∈ C. (3.18)
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In other words,
a1(t)− a3(t) = α1(t)

a′3(t)a1(t)− a′1(t)a3(t) = α2(t),
(3.19)

where α1(t) and α2(t) are linearly independent functions over C, and α1 is not
constant, in order to get condition (3.18).

The solution of the system (3.19) is

a1(t) = a3(t) + α1(t)

a3(t) = α1

∫ t
0
α2(τ)
α2

1(τ)
dτ + c0α1, c0 ∈ C.

Substituting a1 and a3 in expression (3.16) we get a2(t). �

In general, Mv2,2 ≡ 0 does not necessarily imply Mγ,2(t) ≡ 0. However,

Lemma 3.7. For a form ω of form (3.2), the condition Mv2,2(t) ≡ 0 is equivalent
to Mγ,2(t) ≡ 0.

Proof. Evidently, if Mγ,2(t) ≡ 0 then Mv2,2(t) = Var(Mγ,2(t)) ≡ 0, so one implica-
tion is trivial.

Since Mγ,1 ≡ 0 by Françoise algorithm we have that Mγ,2 =
∫
γ
ω′ω. Using

integration by parts, we can rewrite ω as

ω =

3∑
i=1

ai(t)dφi = −
3∑
i=1

φia
′
i(F )dF + d(

3∑
i=1

ai(F )φi), φi = log fi.

Denote g = −
∑3
i=1 φia

′
i(F ) and R =

∑3
i=1 ai(F )φi. Then, ω′ = dg and so Mγ,2 =∫

γ(t)
gω. Developing this expression we get

Mγ,2 =
∑

1≤i<j≤3

W (ai(t), aj(t))

∫
γ(t)

φidφj . (3.20)

Next Lemma is useful in following computations.

Lemma 3.8. Assume that functions fi(x), i = 1, . . . ,m, are holomorphic in some
simply connected domain U ⊂ Cx containing the projection γx of γ to the x-axis
Cx. Then the iterated integral

∫
γ
(f1dx) . . . (fmdx) vanishes.

Proof. This integral is equal to
∫
γx

(f1dx) . . . (fmdx), so this follows from Cauchy
theorem. �

By Lemma 3.8,
∫
γ(t)

φ1dφ3 =
∫
γ(t)

log(x+ 1) dx
x−1 ≡ 0. On the other hand, since

Mv2,2 = W (a2(t), a1(t)− a3(t)) ≡ 0, we have W (a1, a2) +W (a2, a3) = 0, therefore

Mγ,2 = W (a1(t), a2(t))

(∫
γ(t)

φ1dφ2 −
∫
γ(t)

φ2dφ3

)
.

Substituting φ2dφ3 by −φ3dφ2 + d(φ2φ3), and since
∫
γ(t)

d(φ2φ3) = 0, we have

Mγ,2 = W (a1(t), a2(t))

(∫
γ(t)

φ1dφ2 + φ3dφ2

)
.
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Recall that φ1 = log(x+ 1), φ2 = log(y − 1) and φ3 = log(x− 1), so

M2(γ(t)) = W (a1(t), a2(t))

∫
γ(t)

(log(x+ 1) + log(x− 1))
dy

y − 1

= W (a1(t), a2(t))

∫
γ(t)

log(x2 − 1)
dy

y − 1

= W (a1(t), a2(t))

∫
γ(t)

log

(
t

y2 − 1

)
dy

y − 1
.

Again, by Lemma 3.8 this integral vanishes. �

Proof of Proposition 3.2. Proposition 3.2 follows from Lemmas 3.6, 3.7. �

3.4.1. Mγ,2 = Mγ,3 = 0 implies center.

Proposition 3.9. For deformation (1.1) with ω as in (3.2), identical vanishing of
both Mγ,2,Mγ,3 is equivalent to preservation of the center.

One implication is trivial, so we assume Mγ,2 = Mγ,3 ≡ 0 and prove that (1.1)
preserves the center.

First, there is a trivial symmetric case.

Lemma 3.10. If either a2(t) ≡ 0 or a1(t)− a3(t) ≡ 0, then (1.1) defines a center.

Proof. Indeed, then the foliation (1.1) is symmetric with respect to the symmetry
y → −y or with respect to the symmetry x→ −x, correspondingly. �

Further, we assume that a1(t)−a3(t), a2(t) 6≡ 0. The conditionsMγ,2 = Mγ,3 = 0
imply Mv2,2 = Mv3,3 = 0. From (3.14)(3.17), this is equivalent to

a1 − a3 = λ1a2, λ1 ∈ C∗

W (a1, a3) = λ2a2, λ2 ∈ C.
(3.21)

This implies

W (a1, a2) = −a22
(
a1
a2

)′
= −λa2, λ =

λ2
λ1
, (3.22)

i.e. necessarily

a1 = a2

(
λ

∫
dt

a2
+ c1

)
a3 = a2

(
λ

∫
dt

a2
+ c1 − λ1

)
.

(3.23)

Denote A(t) =
∫
dt
a2
, so

ω = a2(t)
[
A(t)α+dφ

]
, α = λ

(
dφ1+dφ3

)
, φ = c1φ1+φ2+(c1−λ1)φ3. (3.24)

As a2(t) = A′(t)−1, the foliation (1.1) is then equal to

dF + ε
1

A′(F )
(A(F )α+ dφ) = 0, (3.25)

which is orbitally equivalent to

dA(F ) + εη = 0, η = A(F )α+ dφ. (3.26)

If λ = 0, then α = 0, and this is a Hamiltonian system with Hamiltonian A(F )+ εφ
(recall that φ is a holomorphic function in a neighborhood of γ). Thus λ = 0 implies
preservation of center, and it remains to prove that vanishing ofMγ,3 implies λ = 0.

We consider (3.26) as a perturbation of a Hamiltonian system with Hamiltonian
A(F ).
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Lemma 3.11. The first non-zero Melnikov functions Mγ,k of (3.25) and the first
non-zero Melnikov functions M̃γ,k of (3.26) are related by

M̃k = g′(F )Mk. (3.27)

Proof. Indeed, the passage from (3.25) to (3.26) amounts to reparameterization of
the transversal τ by values of A(F ). For a point p ∈ τ with F (p) = t,

M̃γ,k =
∂A(F (P (ε, p)))

∂εk
= A′(t)

∂F (P (ε, p))

∂εk
= A′(t)Mγ,k. �

Remark 3.12. In other words, the first non-zero Melnikov function has tensor type
of a vector field, which is expected from Proposition 3.4 and the following Remark.

Proof of Proposition 3.9. We will compute M̃γ,3. By Françoise’s algorithm [2, 3],
we have that

M̃γ,3 =

∫
γ

(η′η)′η, (3.28)

where the Gelfand-Leray derivative is taken with respect to the Hamiltonian A(F ).
Developing the derivative,

M̃γ,3 =

∫
γ

η′′ηη +

∫
γ

η′η′η +

∫
γ

η′ ∧ η
dA

η, (3.29)

where η′ = d(Aα+dφ)
dA = α, and η′′ = 0, as the forms α, dφ are closed. Then,

M̃γ,3 =

∫
γ

αα(Aα+ dφ) +

∫
γ

α ∧ (Aα+ dφ)

dA
η. (3.30)

By Lemma 3.8 the triple integrals
∫
γ
ααdφ1,

∫
γ
ααdφ3 vanish. Also, as

α = λd logF − λd log(y2 − 1), (3.31)

Lemma 3.8 implies that the integral
∫
γ
ααdφ2 vanishes.

Hence,

M̃γ,3 =

∫
γ

α ∧ (Aα+ dφ)

dA
η =

∫
γ

α ∧ dφ
dA

η. (3.32)

We have α ∧ dφ = α ∧ dφ2. By (3.31), we have α ∧ dφ2 = λdF
F ∧ dφ2, so

α ∧ dφ
dA

=
λdFF ∧ dφ2
A′(F )dF

=
λ

FA′(F )
dφ2, (3.33)

and, as η = A(F )α+ dφ,

M̃γ,3 =
λ

tA′(t)

∫
γ

dφ2η =
λ

A′(t)

∫
γ

dφ2α+
λ

tA′(t)

∫
γ

dφ2dφ. (3.34)

Again,
∫
γ
dφ2α ≡ 0 by (3.31) and Lemma 3.8. Moreover,∫
γ

dφ2dφ =

∫
γ

dφ2dφ2 +
c1
λ

∫
γ

dφ2α− λ
∫
γ

dφ2dφ3 = −λ
∫
γ

dφ2dφ3,

as
∫
γ
dφ2dφ2 ≡ 0 by Lemma 3.8. Therefore

M̃γ,3 =
−λ2

tA′(t)

∫
γ

dφ2dφ3. (3.35)

We claim that ∫
γ

dφ2dφ3 6≡ 0. (3.36)
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Indeed, from
∫
γ
dφi ≡ 0 and

∫
[σ1,σ2]

ω1ω2 = det
{∫

σi
ωj

}2

i,j=1
, we see that

∫
dφ2dφ3

vanishes on K, and, therefore, defines a linear functional on (O/K)∗. Therefore,

V ar2
∫
γ

dφ2dφ3 =

∫
v2

dφ2dφ3 = det

( ∫
δ1+δ2

dφ2
∫
δ1+δ2

dφ3∫
δ2+δ3

dφ2
∫
δ2+δ3

dφ3

)
= 4π2

by (3.1), which proves (3.36).
Thus M̃γ,3, as well as Mγ,3, vanish identically only if λ = 0, which finishes the

proof of Proposition 3.9. �

Proof of Theorem 1.6. Take ω as in (1.7), with coefficients ai(F ) as in Proposi-
tion 3.2. The first Melnikov function Mγ,1 vanishes identically for all ω of this
type. Also, Mγ,2 vanishes by Proposition 3.2. Therefore Mγ,3 is the first non-
zero Melnikov function of (1.1) or it is identically zero. In both cases, it is linear
on the orbit, see [4, 7], and therefore V ar3 (Mγ,3(t)) = Mv3,3(t) 6= 0. There-
fore Mγ,3(t) 6= 0, and, moreover, has length three. Taking α1 = t, α2 = t2 and
c0 = λ = 1, one gets the example of Theorem 1.6.

The last statement of Theorem 1.6 follows from Proposition 3.9. �

3.5. Length bigger than 4. Now, for deformation (1.1) consider the functions
Mvi,i, where vi were defined in Proposition 2.7. Note that Mvi,j , given by iterated
integrals of length at most j, necessarily vanish on vi ∈ Li for j < i, so Mvi,i

are (generically) the first non-zero Melnikov functions of vi with respect to the
deformation (1.1).

Lemma 3.13. The condition Mv2,2 = Mv3,3 = 0 implies Mvi,i = 0 for all i ≥ 4.

Remark 3.14. Vanishing of Mvi,i is necessary for vanishing of Mγ,i (i.e. follows
from center conditions), but not sufficient, see for example Proposition 3.9.

Proof. Denote β1 =
∫
δ1+δ2

ω, β2 =
∫
δ2
ω and β3 =

∫
δ2+δ3

ω. By Proposition 3.4,

Mv2,2 = W (β1, β3)

Mv3,3 = W (β1,W (β2, β3))

Mv4,4 = W (β1,W (β2,W (β2, β3)))

...
Mvi,i = W (β1,W (β2, . . . ,W (β2, β3)) . . . ).

.

Suppose Mv2,2 ≡ 0. If β3 ≡ 0 then evidently all these Wronskians vanish.
Otherwise, β1 = λ1β3, for some λ ∈ C.

Suppose also that M3(v3) ≡ 0. Again, the case β1 ≡ 0 is trivial. Otherwise,
W (β2, β3) = λ2β1, for some λ2 ∈ C, and therefore

W (β2, β3) = λ1λ2β3,

which implies

Mvi+1,i+1 = λ1λ2Mvi,i = · · · = (λ1λ2)i−2Mv3,3 ≡ 0. �
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