%0 Journal Article %T Small time asymptotics for Brownian motion with singular drift %+ Department of Mathematics [Seattle] %+ School of Mathematics and Statistics [Beijing] %+ Institut de Mathématiques de Bourgogne [Dijon] (IMB) %+ Department of Mathematics [Manchester] (School of Mathematics) %+ School of Mathematical Science, University of Science and Technology of China, Hefei, 230026, China %A Chen, Zhen-Qing %A Fang, Shizan %A Zhang, Tusheng %Z Simons Foundation 520542National Natural Science Foundation of China1167137211431014114015571173100911721101 %< avec comité de lecture %@ 0002-9939 %J Proceedings of the American Mathematical Society %I American Mathematical Society %V 147 %N 8 %P 3567-3578 %8 2019-08-01 %D 2019 %Z 1808.02326 %R 10.1090/proc/14511 %K Kato class measure %K heat kernel %K small time large deviation %K small time asymptotics %K diffusion-processes %K behavior %Z Mathematics [math]Journal articles %X We establish a small time large deviation principle and a Varadhan type asymptotics for Brownian motion with singular drift on $ \mathbb{R}^d$ with $ d\geq 3$ whose infinitesimal generator is $ \frac 12 \Delta + \mu \cdot \nabla $, where each $ \mu _i$ of $ \mu = (\mu _1, \ldots , \mu _d)$ is a measure in some suitable Kato class. %G English %L hal-02316412 %U https://u-bourgogne.hal.science/hal-02316412 %~ UNIV-BOURGOGNE %~ CNRS %~ INSMI %~ IMB_UMR5584