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Toward universality in degree 2 of the Kricker lift of the

Kontsevich integral and the Lescop equivariant invariant

Benjamin Audoux & Delphine Moussard

Abstract

In the setting of finite type invariants for null-homologous knots in rational homology
3–spheres with respect to null Lagrangian-preserving surgeries, there are two candidates to
be universal invariants, defined respectively by Kricker and Lescop. In a previous paper,
the second author defined maps between spaces of Jacobi diagrams. Injectivity for these
maps would imply that Kricker and Lescop invariants are indeed universal invariants; this
would prove in particular that these two invariants are equivalent. In the present paper, we
investigate the injectivity status of these maps for degree 2 invariants, in the case of knots
whose Blanchfield modules are direct sums of isomorphic Blanchfield modules ofQ–dimension
two. We prove that they are always injective except in one case, for which we determine
explicitly the kernel.

MSC: 57M27

Keywords: 3–manifold, knot, homology sphere, beaded Jacobi diagram, finite type invari-
ant.
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1 Introduction

The work presented here has its source in the notion of finite type invariants. This notion first
appeared in independent works of Goussarov and Vassiliev involving invariants of knots in the
3–dimensional sphere S3; in this case, finite type invariants are also called Vassiliev invariants.
Finite type invariants of knots in S3 are defined by their polynomial behaviour with respect
to crossing changes. The discovery of the Kontsevich integral, which is a universal invariant
among all finite type invariants of knots in S3, revealed the depth of this class of invariants. It
is known, for instance, that it dominates all Witten-Reshetikhin-Turaev quantum invariants. A
theory of finite type invariants can be defined for any kind of topological objects provided that
an elementary move on the set of these objects is fixed; the finite type invariants are defined by
their polynomial behaviour with respect to this elementary move. For 3–dimensional manifolds,
the notion of finite type invariants was introduced by Ohtsuki [Oht96], who constructed the first
examples for integral homology 3–spheres, and it has been widely developed and generalized since
then. In particular, Goussarov and Habiro independently developed a theory which involves any
3–dimensional manifolds—and their knots—and which contains the Ohtsuki theory for Z–spheres
[GGP01, Hab00]. In this case, the elementary move is the so-called Borromean surgery.

Garoufalidis and Rozansky introduced in [GR04] a theory of finite type invariants for knots in
integral homology 3–spheres with respect to null-moves, which are Borromean surgeries satisfy-
ing a homological condition with respect to the knot. This theory was adapted to the “rational
homology setting” by Lescop [Les13] who defined a theory of finite type invariants for null-
homologous knots in rational homology 3–spheres with respect to null Lagrangian-preserving
surgeries. In these theories, the degree 0 and 1 invariants are well understood and, up to them,
there are two candidates to be universal finite type invariants, namely the Kricker rational lift of
the Kontsevich integral [Kri00, GK04] and the Lescop equivariant invariant built from integrals
over configuration spaces [Les11]. Both of them are known to be universal finite type invari-
ants in two situations already: for knots in integral homology 3–spheres with trivial Alexander
polynomial, with respect to null-moves [GR04], and for null-homologous knots in rational ho-
mology 3–spheres with trivial Alexander polynomial, with respect to null Lagrangian-preserving
surgeries [Mou17]. In particular, the Kricker invariant and the Lescop invariant are equivalent
for such knots—in the sense that they separate the same pairs of knots. Lescop conjectured in
[Les13] that this equivalence holds in general.

Universal finite type invariants are known in other settings: the Kontsevich integral for links
in S3 [BN95], the Le–Murakami–Ohtsuki invariant and the Kontsevich–Kuperberg–Thurston
invariant for integral homology 3–spheres [Le97] and for rational homology 3–spheres [Mou12a].
To establish universality of these invariants, the general idea is to give a combinatorial description
of the graded space associated with the theory by identifying it with a graded space of diagrams.
Such a project is developed in [Mou17] to study the universality of the Kricker and the Lescop
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invariants as finite type invariants of QSK–pairs, which are pairs made of a rational homology
3–sphere and a null-homologous knot in it.

Null Lagrangian-preserving surgeries preserve the Blanchfield module (defined overQ), so one
can reduce the study of finite type invariants of QSK–pairs to the set of QSK–pairs with a fixed
Blanchfield module. In order to describe the graded space G(A, b) associated with finite type
invariants of QSK–pairs with Blanchfield module (A, b), a graded space of diagrams Aaug(A, b)
is constructed in [Mou17], together with a surjective map ϕ : Aaug(A, b)→ G(A, b). Injectivity
of this map would imply universality of the Kricker invariant and the Lescop invariant for QSK–
pairs with Blanchfield module (A, b) and consequently equivalence of these two invariants for
such QSK–pairs.

Let (A, b) be any Blanchfield module with annihilator δ ∈ Q[t±1]. As detailed in [Mou17],
we can focus on the subspace Gb(A, b) = ⊕n∈ZGbn(A, b) of G(A, b) associated with Borromean
surgeries and study the restricted map ϕ : A(A, b)→ Gb(A, b) defined on a subspace A(A, b) of
Aaug(A, b). Both the Lescop and the Kricker invariants are families Z = (Zn)n∈N of finite type
invariants, where Zn has degree n when n is even and Zn is trivial when n is odd. For QSK–
pairs with Blanchfield module (A, b), Zn takes values in a space An(δ) of trivalent graphs with
edges labelled in 1

δQ[t±1]. The finiteness properties imply that Zn induces a map on Gbn(A, b).
The map ϕ : A(A, b) → Gb(A, b) decomposes as the direct sum of maps ϕn : An(A, b) →
Gbn(A, b). Composing with Zn, we get a map ψn : An(A, b)→ An(δ); this provides the following
commutative diagram:

Gbn(A, b)

An(δ)

An(A, b)

ϕn

ψn

Zn .

Note that the injectivity of ψn implies the injectivity of ϕn. When (A, b) is a direct sum of N
isomorphic Blanchfield modules, it has been established in [Mou17] that ψn is an isomorphism
when n ≤ 2

3N . In particular, this applies for any n ∈ N when (A, b) is the trivial Blanchfield
module.

In this paper, we look into the case n = 2 when (A, b) is a direct sum of N isomorphic
Blanchfield modules of Q-dimension two. According to the above-mentioned result, the map ψ2

is then injective as soon as N ≥ 3. The only remaining cases are hence N = 1 and N = 2. We
prove the following (Propositions 4.7, 4.10 and 5.3):

Theorem 1.1. If (A, b) is a Blanchfield module of Q-dimension two, with annihilator δ, then:

1. the map ψ2 : A2(A, b)→ A2(δ) is injective but not surjective;

2. the map ψ2 : A2(A ⊕ A, b ⊕ b) → A2(δ) is injective if and only if δ 6= t + 1 + t−1; in this
case, it is an isomorphism.

It follows that, in degree 2, Kricker and Lescop invariants are indeed universal and equivalent
for QSK–pairs with a Blanchfield module which is either of Q–dimension two or a direct sum
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of isomorphic Blanchfield modules of Q–dimension two, except in one exceptional case. But the
most interesting, though unexpected, outcome of the above theorem is this latter exceptional
case—namely the case of a Blanchfield module which is a direct sum of two isomorphic Blanch-
field modules of order t + 1 + t−1—for which the map ψ2 is not injective. The kernel of ψ2 in
this situation is explicited in Proposition 4.10. A topological realization C is given in Figure 1:
C is a linear combination of QSK-pairs whose class in G2(A, b) is the image by ϕ2 of a generator
of the kernel of ψ2. This leads to two alternatives. Either C has topological reasons to vanish
in G2(A, b), then the map ϕ2 itself is not injective and some more efforts should be done to
understand the combinatorial nature of Gn(A, b); or the Kricker and Lescop invariants do not
induce, in general, injective maps on Gbn(A, b), suggesting the existence of some yet unknown
finite type invariants in this setting. In both cases, the discussion is recentered on the explicited
counterexample which appears as a key example that should be studied further.

Acknowledgments. This work has been initiated while the second author was visiting the
first one in Aix–Marseille Université, courtesy of the ANR research project “VasKho” ANR-11-
JS01-00201. Hence, it has been carried out in the framework of Archimède Labex (ANR-11-
LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investisse-
ments d’Avenir” French Government programme managed by the French National Research
Agency (ANR). The second author is supported by a Postdoctoral Fellowship of the Japan
Society for the Promotion of Science. She is grateful to Tomotada Ohtsuki and the Research
Institute for Mathematical Sciences for their support. While working on the contents of this
article, she has also been supported by the Italian FIRB project “Geometry and topology of
low-dimensional manifolds”, RBFR10GHHH, and by the University of Bourgogne.

2 Definitions and strategy

2.1 Definitions

Blanchfield modules. A Blanchfield module is a pair (A, b) such that:

(i) A is a finitely generated torsion Q[t±1]-module;

(ii) multiplication by (1− t) defines an isomorphism of A;

(iii) b : A×A→ Q(t)
/
Q[t±1] is a non-degenerate hermitian form, i.e. b(η, γ)(t) = b(γ, η)(t−1),

b(P (t)γ, η) = P (t)b(γ, η), and if b(γ, η) = 0 for all η ∈ A, then γ = 0.

Since Q[t±1] is a principal ideal domain, there is a well-defined (up to multiplication by an
invertible element of Q[t±1]) annihilator δ ∈ Q[t±1] for A. Condition (ii) implies that δ(1) 6= 0
and Condition (iii) that δ is symmetric, i.e. δ(t−1) = υ(t)δ(t) with υ(t) invertible in Q[t±1];
see [Mou12b, Section 3.2] for more details. Moreover, it follows from b being hermitian that
b(γ, η) ∈ 1

PQ[t±1] if γ has order P .
In this paper, we focus on Blanchfield modules of Q–dimension 2. In this case, either A is

cyclic, or it is a direct sum of two Q[t±1]–modules with the same order. In this latter case, it
follows from δ being symmetric and δ(1) 6= 0 that δ(t) = t+ 1.
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(M,K) :=

C := 2 +

−2 −

where stands for

Figure 1: A topological realization for a generator of the kernel of ψ2

Each picture represents the QSK–pair obtained by considering the copy of the thick unknot in the rational

homology 3–sphere obtained by 0–surgery on the other two knots. The sum corresponds to the image by ϕ2 of

the generator of Ker(ψ2) given in Proposition 4.10. There is indeed a correspondence between the four

H–diagrams in the expression of this generator and the four terms in C, which are all of the form (M,K)(T1)(T2)

where T1 and T2 denote the two tripod graphs and Y (T ) denotes the result of the borromean surgery along T

on Y . More precisely, each H–diagram is sent to (M,K)− (M,K)(T1)− (M,K)(T2) + (M,K)(T1)(T2), but

(M,K)(T1) = (M,K)(T2) = (M,K). See [Mou12b] for the computation of the Alexander module of (M,K),

[GGP01, Lemma 2.1] for the explicit action of the tripod graphs and [Mou17] for other definitions and details.
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Spaces of (A, b)–colored diagrams. Fix a Blanchfield module (A, b) and let δ ∈ Q[t±1] be

the annihilator of A. An (A, b)–colored diagram D is a uni-trivalent graph without strut (
•

•
),

given with:

• an orientation for each trivalent vertex, that is a cyclic order of the three half-edges that
meet at this vertex;

• an orientation and a label in Q[t±1] for each edge;

• a label in A for each univalent vertex;

• a rational fraction fDvv′(t) ∈
1
δQ[t±1] for each pair (v, v′) of distinct univalent vertices of D,

satisfying fDv′v(t) = fDvv′(t
−1) and fDvv′(t) mod Q[t±1] = b(γv, γv′), where γv and γv′ are the

labels of v and v′ respectively.

In the pictures, the orientation of trivalent vertices is given by . When it does not seem to

cause confusion, we write fvv′ for fDvv′ . We also call legs the univalent vertices. For k ∈ N, we
call k–legs diagram and k≤–legs diagram an (A, b)–colored diagram with, respectively, exactly
and at most k legs. The degree of a colored diagram is the number of trivalent vertices of its
underlying graph; the unique degree 0 diagram is the empty diagram.

The automorphism group Aut(A, b) of the Blanchfield module (A, b) acts on (A, b)–colored
diagrams by evaluation of an automorphism on the labels of all the legs of a diagram simulta-
neously. For n ≥ 0, we set:

An(A, b) =
Q
〈
(A, b)–colored diagrams of degree n

〉
Q
〈
AS, IHX,LE,OR,Hol,LV,EV,LD,Aut

〉 ,
where the relations AS (anti-symmetry), IHX, LE (linearity for edges), OR (orientation reversal),
Hol (holonomy), LV (linearity for vertices), EV (edge-vertex) and LD (linking difference: this
relation deals with the rational fractions associated to pairs of vertices) are described in Figure 2
and Aut is the set of relations D = ζ.D where D is a (A, b)–colored diagram and ζ ∈ Aut(A, b).
Since the opposite of the identity is an automorphism of (A, b), we have A2n+1(A, b) = 0 for all
n ≥ 0.

Spaces of δ–colored diagrams. Let δ ∈ Q[t±1]. A δ–colored diagram is a trivalent graph
whose vertices are oriented and whose edges are oriented and labelled by 1

δQ[t±1]. The degree
of a δ–colored diagram is the number of its vertices. For every integer n ≥ 0, set:

An(δ) =
Q
〈
δ–colored diagrams of degree n

〉
Q
〈
AS, IHX,LE,OR,Hol,Hol′

〉 ,

where the relation Hol′ is represented in Figure 3 and the relations AS, IHX, LE, OR, Hol are
represented in Figure 2 but with edges now labelled in 1

δQ[t±1]. Note that in the case of An(A, b),
the relation Hol′ is induced by the relations Hol, EV, LD and LV, as shown in Figure 4, where
LV is used to see that one diagram is trivial at each application of LD.
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= − 1 =
1

−
1

AS IHX

xP + yQ
= x

P
+ y

Q P (t)
=

P (t−1) P
Q

R

=
tP

tQ

tR
LE OR Hol

D

•xγ1 + yγ2v
= x

D1

•γ1
v

+ y
D2

•γ2
v

•
v
γ

PQ

D

=

•
v
Qγ

P

D′

xfD1
vv′ + yfD2

vv′ = fDvv′ , ∀v′ 6= v fD
′

vv′ = QfDvv′ ,∀v′ 6= v

LV EV

1

•
v1

γ1

1

•
v2

γ2

D

= 1

•
v1

γ1

1

•
v2

γ2

D′

+

P

D′′

fDv1v2 = fD
′

v1v2 + P

LD

Figure 2: Relations on colored diagrams
In these pictures, x, y ∈ Q, P,Q,R ∈ Q[t±1] and γ, γ1, γ2 ∈ A.

g

f

=

g

tf

Figure 3: Relation Hol′

In this picture, f, g ∈ 1
δ
Q[t±1].
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Q

P
=
LD

P
1

1•
0

v1 •
0
v2

fv1v2 = Q

=
Hol

tP
t

t•
0

v1 •
0
v2

fv1v2 = Q

=
EV

tP
1

1•
0

v1 •
0
v2

fv1v2 = Q

=
LD

Q

tP

Figure 4: Recovering the relation Hol’ from Hol, EV, LD and LV

• •
v v′

P Q ;

P (t)Q(t−1)fvv′(t)

Figure 5: Pairing of two vertices

To an (A, b)–colored diagram D of degree n, we associate a δ–colored diagram ψn(D) as
follows. Denote by V the set of legs of D. Define a pairing of V as an involution of V with no
fixed point. For every such pairing p, define Dp as the diagram obtained by replacing, in D,
every pair

(
v, p(v)

)
of associated legs—and their adjacent edges—by a colored edge as indicated

in Figure 5. Now set:

ψn(D) =
∑
p∈p

Dp,

where p is the set of pairings of V . Note that, if D has an odd number of legs, then p is empty
and ψn(D) = 0. One can easily check that this assignment yields a well-defined Q-linear map
ψn : An(A, b)→ An(δ).

2.2 Strategy

Getting rid of An(δ). The map ψn involves two diagram spaces defined by different kind
of diagrams, namely (A, b)–colored diagrams and δ–colored diagrams. The following result will
allow us to work with (A, b)–colored diagrams only.

Theorem 2.1 ([Mou17, Theorem 2.12]). Let n and N be non negative integers such that N ≥ 3n
2 .

Fix a Blanchfield module (A, b) with annihilator δ and define the Blanchfield module (A, b)⊕N

as the direct sum of N copies of (A, b). Then δ is also the annihilator of (A, b)⊕N and the map
ψn : An

(
(A, b)⊕N

)
→ An(δ) is an isomorphism.

This result provides a rewritting of the map ψn in the general case. There is indeed a natural
map ιn : An(A, b)→ An

(
(A, b)⊕N

)
defined on each diagram by interpreting the labels of its legs
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as elements of the first copy of (A, b) in (A, b)⊕N , which makes the following diagram commute:

An
(
(A, b)⊕N

)

An(δ)

An(A, b)

ιn

ψn

ψn
∼= .

In particular, the injectivity of ψn is equivalent to the injectivity of ιn, what does not involve
An(δ) anymore. More generally, there is a natural map ι`n : An

(
(A, b)⊕`

)
→ An

(
(A, b)⊕N

)
defined similarly to ιn. When it does not seem to cause confusion, ι`n is simply denoted ιn.
When n = 2, for every N ≥ 3, we have:

A2(A, b) A2

(
(A, b)⊕2

)
A2

(
(A, b)⊕N

)ι22

ι12

∼=ψ1
2

ψ2
2

A2(δ)

.

We focus on determining whether the maps ι12 and ι22 are injective or not. For that, it is sufficient
to consider the case N = 3.

Filtration by the number of legs. The second point in our strategy is to consider the

filtration induced by the number of legs. For k = 0, . . . , 3n, let A(k)
n (A, b) be the subspace of

An(A, b) generated by k≤–legs diagrams and set:

Â(k)
n (A, b) =

Q
〈
k≤–legs diagrams of degree n

〉
Q〈AS, IHX,LE,OR,Hol,LV,EV,LD,Aut〉

.

Recall that all these diagram spaces are trivial when n is odd. Moreover, in a uni-trivalent

graph, the numbers of univalent and trivalent vertices have the same parity, thus A(2k+1)
2n (A, b) =

A(2k)
2n (A, b) and Â(2k+1)

2n (A, b) ∼= Â(2k)
2n (A, b). Obviously, Â(3n)

n (A, b) = An(A, b) = A(3n)
n (A, b).

However, a subtlety of the structure of the spaces An(A, b) is that the natural surjection

Â(k)
n (A, b) � A(k)

n (A, b) is not, in general, an isomorphism. A counterexample is given in
Proposition 4.1 (5.ii.), which underlies the case where ι22 is not injective.

Reduction of the presentations. To study the injectivity status of the map ι2, we first

study the structure of the space A2

(
(A, b)⊕3

)
to determine if A(k)

2

(
(A, b)⊕3

)
is isomorphic to

9



Â(k)
2

(
(A, b)⊕3

)
for k = 2, 4. If we have such isomorphisms, then Corollary 3.5 states that the

map ιn is injective. Otherwise, we have to perform a similar study of the structure of A2(A, b).
To understand the structures of these diagram spaces, the strategy is to simplify the given

presentations by restricting simultaneously the set of generators and the set of relations. This
reduction process is initialized in Section 3.2 for a general Blanchfield module and pursued in
the next sections for each specific case.

3 Preliminary results

3.1 Distributed diagrams

We define notations that we will use throughout the rest of the paper. Let (A, b) be a Blanchfield

module with annihilator δ. For a positive integer N , set (A, b)⊕N =
N⊕
i=1

(Ai, bi), where each

(Ai, bi) is an isomorphic copy of (A, b), given with a fixed isomorphism ξi : A→ Ai that respects
the Blanchfield pairing. Define the permutation automorphisms ξij of (A, b)⊕N as ξj ◦ ξ−1

i on
Ai, ξi ◦ ξ−1

j on Aj and identity on the other A`’s. Define Autξ as the restriction of the Aut
relation to these permutation automorphisms. Also denote by Autt and Aut−1 the restrictions
of the Aut relation to the automorphisms that are the multiplication by t and −1 respectively
on one Ai and identity on the other Aj ’s. If (A, b) is cyclic, then define Autres as the union of
Autξ, Autt and Aut−1. Otherwise, define Autres as the Aut relation restricted to permutation
automorphisms and to automorphisms fixing one Ai setwise and the others pointwise.

Finally, for ` ≥ 0, we say that an
(
(A, b)⊕`

)
–colored diagram D is distributed if there is

a partition of the legs of D into a disjoint union of pairs ti∈I{vi, wi} and an injective map
σ : I → {1, . . . , `} such that the legs vi and wi are labelled in Aσ(i) and the linking between
vertices in different pairs is trivial.

Proposition 3.1 ([Mou17, Propositions 7.11 & 7.12]). For all non negative integers n, k and `
such that ` ≥ k

2 :

Â(k)
n

(
(A, b)⊕`

)
∼=
Q
〈

distributed k≤–legs diagrams of degree n
〉

Q
〈
AS, IHX,LE,OR,Hol,LV,EV,LD,Autres

〉 .
In particular, for all integers N ≥ 3n

2 :

An
(
(A, b)⊕N

) ∼= Q
〈

distributed
(
(A, b)⊕N

)
–colored diagrams of degree n

〉
Q
〈
AS, IHX,LE,OR,Hol,LV,EV,LD,Autres

〉 .

For positive integers `1 ≤ `2, let ι̂n : Â(k)
n

(
(A, b)⊕`1

)
→ Â(k)

n

(
(A, b)⊕`2

)
be the natural map

defined on each diagram by interpreting the labels of its legs as elements of the first `1 copies of
(A, b) in (A, b)⊕`2 .

Corollary 3.2. For all non negative integers n, k, `1 and `2 such that `1, `2 ≥ k
2 , the map

ι̂n : Â(k)
n

(
(A, b)⊕`1

)
→ Â(k)

n

(
(A, b)⊕`2

)
is an isomorphism.
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Proof. A distributed k≤–legs diagram involves at most 2k copies of A; up to Autξ, we can assume
that these are copies whithin the first `1 ones. Conclude with Proposition 3.1.

The next lemma will be useful in particular to restrict the study of the map ι2 to suitable
quotients.

Corollary 3.3. Let n, N , k and ` be non negative integers such that N ≥ 3n
2 and k

2 ≤ ` ≤ N .

If A(k)
n

(
(A, b)⊕N

) ∼= Â(k)
n

(
(A, b)⊕N

)
, then the map A(k)

n

(
(A, b)⊕`

)
→ A(k)

n

(
(A, b)⊕N

)
induced

by ιn is an isomorphism.

Proof. By Corollary 3.2, the map ι̂n : Â(k)
n

(
(A, b)⊕`

)
→ Â(k)

n

(
(A, b)⊕N

)
is an isomorphism.

Hence we have the following commutative diagram:

Â(k)
n

(
(A, b)⊕`

)

A(k)
n

(
(A, b)⊕`

) A(k)
n

(
(A, b)⊕N

)∼=

.

The statement follows.

Lemma 3.4. Let n, k, `1 and `2 be non negative integers such that `1 ≤ `2 and k
2 ≤ `2. Let

Ã(k)
n denote the image of Â(k)

n in Â(k+2)
n . Then the map Â(k+2)

n ((A, b)⊕`1)
/
Ã(k)
n ((A, b)⊕`1) →

Â(k+2)
n ((A, b)⊕`2)

/
Ã(k)
n ((A, b)⊕`2) induced by ι̂n is injective.

Proof. Let us define a left inverse of ι̂n. Let D be a distributed (k + 2)≤–legs diagram. For
each leg colored by η ∈ Ai with `1 < i ≤ `2, replace the label by ξ1 ◦ ξ−1

i (η). Choose any
linkings coherent with these new labels. Thanks to the relation LD, any such choice defines

the same class σn(D) in the quotient Â(k+2)
n ((A, b)⊕`1)

/
Ã(k)
n ((A, b)⊕`1). This provides a well-

defined map σn : Â(k+2)
n ((A, b)⊕`2)

/
Ã(k)
n ((A, b)⊕`2) → Â(k+2)

n ((A, b)⊕`1)
/
Ã(k)
n ((A, b)⊕`1) such

that σn ◦ ι̂n = Id.

Corollary 3.5. Let n, ` and N be non negative integers such that n is even, ` ≤ N and N ≥ 3n
2 .

If Â(2k)
n

(
(A, b)⊕N

) ∼= A(2k)
n

(
(A, b)⊕N

)
for all integers k such that ` ≤ k ≤ 3n

2 , then the map

ιn : An
(
(A, b)⊕`

)
→ An

(
(A, b)⊕N

)
is injective. Moreover, it implies that Â(2k)

n

(
(A, b)⊕`

) ∼=
A(2k)
n

(
(A, b)⊕`

)
for all k ≥ 0.

Proof. We prove by induction on k that Â(2k)
n

(
(A, b)⊕`

) ∼= Ã(2k)
n

(
(A, b)⊕`

) ∼= A(2k)
n

(
(A, b)⊕`

)
and that the map A(2k)

n

(
(A, b)⊕`

)
→ A(2k)

n

(
(A, b)⊕N

)
induced by ιn is injective. For k ≤ `,

Corollary 3.2 says that ι̂n : Â(2k)
n

(
(A, b)⊕`

)
→ Â(2k)

n

(
(A, b)⊕N

)
is an isomorphism. For k > `,

we use the following observation.

Fact. Let f : E1 → E2 be a morphism between two vector spaces. Let F1 ⊂ E1 and F2 ⊂ E2

be linear subspaces such that f(F1) ⊂ F2 and let f̄ : E1
/
F1 → E2

/
F2 be the map induced by f .

If f̄ and f|F1
are injective, then f is injective.
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Together with Lemma 3.4 and the induction hypothesis, this implies that the map ι̂n :

Â(2k)
n

(
(A, b)⊕`

)
→ Â(2k)

n

(
(A, b)⊕N

)
is injective. In both cases, we get the following commutative

diagram:

Â(2k)
n

(
(A, b)⊕`

)

Ã(2k)
n

(
(A, b)⊕`

)

A(2k)
n

(
(A, b)⊕`

)
A(2k)
n

(
(A, b)⊕N

)
,

which concludes the proof.

3.2 First reduction of the presentations

Getting rid of lollipops. We start with a lemma on 0–labelled vertices.

Lemma 3.6. If D is an (A, b)–colored diagram with a 0–labelled vertex v, then

D =
∑

v′ vertex of D
v′ 6=v

Dvv′ ,

where Dvv′ is obtained from D by pairing v and v′ as in Figure 5.

Proof. Since the vertex v is labelled by 0, the linking fvv′ is a polynomial for any vertex v′ 6= v.
The conclusion follows using the relations LD and LV.

Now, the following lemma reduces the set of generators.

Lemma 3.7. The general presentation of An(A, b) and the presentations of Â(k)
n

(
(A, b)⊕`

)
and

An
(
(A, b)⊕N

)
given in Proposition 3.1 are still valid when removing from the generators the

diagrams whose underlying graph contains a connected component
•

.

Proof. Thanks to the OR relation, such a diagram can be written

D =

Q(t)
•η

P (t)

tD′.

12



Writing δ =
∑q

k=p akt
k, we have:

D =
1

δ(1)

q∑
k=p

ak


tkQ(t)
•η

P (t)

tD′

 =
1

δ(1)


Q(t)
•δ(t)η

P (t)

tD′

 =
1

δ(1)


Q(t)
•0

P (t)

tD′

 ,

where the first equality holds since each diagram in the sum is equal to D by Hol′ and the
second equality follows from EV and LV. Then, using Lemma 3.6, D can be written as a sum of
diagrams with less legs. Check that all the relations involving D can be recovered from relations
on diagrams with less legs. Conclude by decreasing induction on the number of legs.

Finally, we state a corollary of Lemma 3.6 which will be useful later.

Corollary 3.8. Let D be an (A, b)–colored diagram and let v be a univalent vertex of D. If the
annihilator of A is δ = t+ a+ t−1, then

D+ = −aD −D− +
∑

v′ vertex of D
v′ 6=v

Dvv′ ,

where D+ and D− are obtained from D by multiplying the label of v and the linkings fvv′ by t
and t−1 respectively, and Dvv′ is obtained from D by pairing v and v′ as in Figure 5.

Taming 6 and 4–legs generators. We now give two lemmas that initialize the reduction
process announced in Section 2.2. For that, define YY–diagrams similarly as (A, b)–colored dia-

grams with underlying graph
•

• •

•

• •
, except that edges are neither oriented nor labelled.

Thanks to OR, those can be thought of as honest (A, b)–colored diagrams with edges labelled
by 1 and oriented arbitrarily. Define also Hol as the relations given in Figure 6; note that Hol
is easily deduced from Hol and EV.

•η1 v1

•
η2

v2
•
η3

v3

D

•η4 w1

•
η5

w2
•
η6

w3 =

•tη1 v1

•
tη2

v2
•
tη3

v3

D′

•η4 w1

•
η5

w2
•
η6

w3 fD
′

viwj = tfDviwj

Figure 6: The relation Hol

Lemma 3.9. The space A2(A, b) admits the presentation with:

• as generators: YY–diagrams and all 4≤–legs diagrams;

• as relations: AS, LV, LD, Aut and Hol on all generators and IHX, LE, Hol, OR and EV
on 4≤–legs generators.
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The space A2

(
(A, b)⊕3

)
admits the similar presentation with generators restricted to dis-

tributed
(
(A, b)⊕3

)
–colored diagrams and the relation Aut restricted to Autres.

Proof. Any degree two (A, b)–colored diagram with six legs has underlying graph
•

• •

•

• •
.

Using LE, any such diagram can be written as a Q–linear combination of diagrams having all
edges labelled by powers of t. Then, using OR and EV, these powers of t can be pushed to the
legs. This produces a canonical decomposition of any 6–legs diagram in terms of YY–diagrams.
Hence it provides a Q–linear map from the Q–vector space freely generated by all (A, b)–colored
diagrams of degree 2 to the module A′2(A, b) defined by the presentation given in the statement.
This map descends to a well-defined map τ from A2(A, b) to A′2(A, b). Indeed, it is sufficient to
check that all generating relation in A2(A, b) is sent to zero. It is immediate for AS, LE, OR,
LV, LD and Aut; it is true for EV and Hol by applying LV and Hol respectively on the image;
it also holds for IHX since there is no such relation involving diagrams with underlying graph

•

• •

•

• •
.

Now, it is clear that sending a diagram to itself gives a well-defined map A′2(A, b)→ A2(A, b)
which is the inverse of τ .

Now, we address the case of 4–legs generators. For that, we define H–diagrams similarly as

(A, b)–colored diagrams with underlying graph
•

• •

•

, except that edges are neither oriented

nor labelled. Again, thanks to OR, those can be thought of as honest (A, b)–colored diagrams
with edges labelled by 1 and oriented arbitrarily.

Lemma 3.10. The space Â(4)
2 (A, b) admits the presentation with:

• as generators: H–diagrams and all 2≤–legs diagrams;

• as relations: AS, IHX, LV, LD and Aut on all generators and LE, Hol, OR and EV on
2≤–legs generators.

The space Â(4)
2

(
(A, b)⊕3

)
admits the similar presentation with generators restricted to distributed(

(A, b)⊕3
)
–colored diagrams and the relation Aut restricted to Autres.

Proof. First use Lemma 3.7 to reduce the 4–legs generators to those with underlying graph
•

• •

•

and then proceed as in the previous lemma. Here, the relation Hol is also needed

to remove the power of t from the central edge and the obtained decomposition is not anymore
canonical. However, two possible decompositions are related by the relation of Aut associated
with the automorphism that multiplies the whole Blanchfield module by t.

Taming leg labels. Now, we want to go further in the reduction of the presentations. Fix a
Q-basis ω of A. For all γ, η ∈ ω, fix f(γ, η) ∈ Q(t) such that b(γ, η) = f(γ, η) mod Q[t±1]. For
` ≥ 1, identify (A, b)⊕` with ⊕1≤i≤`(Ai, bi) and let Ω be the union of the ξi(ω) for i = 1, . . . , `.
An (A, b)⊕`–colored diagram (resp. YY–diagram, H–diagram) is called ω–admissible, or simply
admissible when there is no ambiguity on ω, if:

14



(i) its legs are colored by elements of Ω,

(ii) for two vertices v and w that are respectively colored by ξi(γ) and ξj(η), fvw = f(γ, η) if
i = j and fvw = 0 otherwise.

Every (A, b)⊕`–colored diagram (resp. YY–diagram, H–diagram) D has a canonical ω–reduction,
which is the decomposition as a Q–linear sum of ω–admissible diagrams obtained as follows.
Write all the labels of the legs as Q–linear sums of elements of Ω. Then use LV to write D
as a Q–linear sum of diagrams with legs labelled by Ω ∪ {0} and the Ω-labelled legs satisfying
Condition (ii). Finally, apply repeatedly Lemma 3.6 to remove 0–labelled vertices.

In the next step, we will not be able to reduce further the sets of generators and relations
without rewriting some of the relations first. Denote by Autω the set of relations D = Σ where D
is an ω–admissible diagram and Σ is the ω–reduction of ζ.D for ζ ∈ Aut(A, b). Define similarly
Autωres and Autωt . Define Hol

ω
as the set of relations that identify an ω–admissible diagram D

with the ω–reduction of the corresponding diagram D′ of Figure 3.
In general, if a family of generators is given for the group Aut(A, b), then the Aut relations, as

well as the Autω relations, can be restricted to the set of relations provided by the automorphisms
of this generating family.

Lemma 3.11. The space A2(A, b) admits the presentation with:

• as generators: ω–admissible YY–diagrams and all 4≤–legs diagrams;

• as relations: AS, Autω and Hol
ω

on 6–legs generators and AS, IHX, Hol, LE, OR, LV,
LD, EV and Aut on 4≤–legs generators.

The space A2

(
(A, b)⊕3

)
admits the similar presentation with generators restricted to distributed(

(A, b)⊕3
)
–colored diagrams and the relations Autω restricted to Autωres. If A is cyclic, Autωres

can be replaced by the union of Autξ and Autωt .

Proof. Starting from the presentation given in Lemma 3.9 and using the ω–reduction, one can
proceed as in the proof of Lemma 3.9. The only difficulty is to prove that the ω–reduction of
all Aut and Hol relations are indeed zero in the new presentation. To see that for Aut, consider
a relation D = ζ.D for an (A, b)–colored diagram D and an automorphism ζ ∈ Aut(A, b). Let
D =

∑
i αiDi be the ω–reduction of D. For each i, write ζ.Di =

∑
s β

i
sD

i
s the ω–reduction of

the diagram ζ.Di. Check that ζ.D =
∑

i αi
∑

s β
i
sD

i
s is the ω–reduction of ζ.D. It follows that

the relation D = ζ.D is sent onto a Q–linear combination of the relations Di =
∑

s β
i
sD

i
s, which

are in Autω. Relations Hol can be handled similarly.
For the last assertion, note that the relation Autξ never identifies an admissible diagram

with a non-admissible one and that the relation Aut−1 on admissible distributed diagrams only
induces trivial relations.

For the reduction of the 4–legs generators, we focus on the (A, b)⊕3 case and we introduce
a more restrictive notion of admissible diagrams. An ω–admissible H–diagram is strongly ω–
admissible, or simply strongly admissible when there is no ambiguity on ω, if its legs are colored
in A1 and A2 and if two legs adjacent to a same trivalent vertex are labelled in different Ai’s.

Lemma 3.12. The space Â(4)
2

(
(A, b)⊕3

)
admits the presentation with:
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• as generators: strongly ω–admissible H–diagrams and all 2≤–legs diagrams;

• as relations: AS and Autωres on 4–legs generators and AS, IHX, LE, Hol, OR, LV, LD,
EV and Aut on 2≤–legs generators.

If A is cyclic, Autωres can be replaced by the union of Autξ and Autωt .

Proof. Via at most one Autξ relation, any ω–admissible H–diagram is equal to an ω–admissible
H–diagram whose legs are labelled by A1 and A2. Moreover, if γ1, η1 ∈ A1 and γ2, η2 ∈ A2, then
the IHX relation gives:

•γ1

•η1 • γ2

• η2

=
•γ1

•γ2 • η1

• η2

−
•γ1

•η2 • η1

• γ2

.

It follows that any H–diagram has a canonical decomposition in terms of strongly ω–admissible
H–diagrams. Proceed then as in the proof of Lemma 3.11.

A set E of ω–admissible YY–diagrams (resp. H–diagrams) is essential if any ω–admissible
YY–diagram (resp. H–diagram) which is not in E is either equal to a diagram in E via an AS
or Autξ relation, or trivial by AS. Denote by AutE the set of relations D = Σ, where D is an
element of E and Σ is the ω–reduction of ζ.D for some ζ ∈ Aut(A, b), rewritten in terms of E .

Define similarly Hol
E

and AutE∗ , where Aut∗ is any subfamily of Aut described as the relations
arising from the action of a subset of Aut(A, b)—for instance Autres or Autt.

Lemma 3.13. If E is an essentiel set of ω–admissible YY–diagrams (resp. H–diagrams), then
the YY–diagrams (resp. H–diagrams) in the set of generators of the presentation given in
Lemma 3.11 (resp. Lemma 3.12) can be restricted to E and the relations Autω, Autωres, Autωt
and Hol

ω
can be replaced by AutE , AutEres, AutEt and Hol

E
respectively. Moreover, if E is min-

imal, then AS and Autξ on YY–diagrams (resp. H-diagrams) can be removed from the set of
relations.

Proof. If an ω–admissible diagram is trivial by AS, then a relation Hol or Aut involving this
diagram gives a trivial relation; indeed, the terms in the corresponding decomposition are trivial
or cancel by pairs. Similarly, if two ω–admissible diagrams are related by a relation AS, then
the relations Hol and Aut applied to these diagrams provide the same relations.

If D is an ω–admissible diagram and D′ = ξij .D for some permutation automorphism ξij ,
then any Hol relation involving D′ is recovered from the action of ξij on the corresponding Hol
relation involving D, and the relation resulting from the action of some automorphism ζ on D′

is recovered by the action of ξij ◦ ζ ◦ ξij on D.
For the last assertion, it is sufficient to notice that an AS relation makes either two gener-

ators to be equal, or a generator to be trivial, and that an Autξ relation always identifies two
generators.

At this point, we have reduced the presentation for A2(A, b) so that we only have to consider
non (AS and Autξ–trivially) redundant YY–diagrams with prescribed rational fractions on pairs
of vertices depending only on the labels, which are all in a given Q–basis of A, and 4≤–legs
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diagrams; the YY–diagrams being only subject to Aut and Hol relations rewritten in these
YY–diagrams.

A similar reduction has been done for A2

(
(A, b)⊕3

)
, where Aut is even replaced by Autres;

if A is cyclic, the latter can further be replaced by Autt. Likewise, the presentation for

Â(4)
2

(
(A, b)⊕3

)
has been reduced so that we only have to consider non (AS and Autξ–trivially)

redundant H–diagrams with prescribed rational fractions on pairs of vertices depending only on
the labels, which are all in a given Q–basis of A, and 2≤–legs diagrams; the H–diagrams being
only subject to Autres relations rewritten in these H–diagrams; if A is cyclic, Autres can further
be replaced by Autt.

4 Case when A is of Q–dimension two and cyclic

In this section, we assume that A is a cyclic Blanchfield module of Q–dimension two. Let
δ = t + a + t−1 be its annihilator; note that a 6= −2. Let γ be a generator of A. Since the
pairing b is hermitian and non degenerate, we can set b(γ, γ) = r

δ mod Q[t±1] with r ∈ Q∗.
Throughout this section, we fix the basis ω to be {γ, tγ} and we set f(tε1γ, tε2γ) = tε1−ε2 rδ ,
where ε1, ε2 ∈ {0, 1}. Accordingly, set γi = ξi(γ) for i = 1, 2, 3.

4.1 Structure of A2 ((A, b)
⊕3)

The main results of this section are gathered in the following proposition.

Proposition 4.1. If (A, b) is a cyclic Blanchfield module of Q–dimension two with annihilator
t+ a+ t−1, then:

1. A(2)
2

(
(A, b)⊕3

) ∼= Â(2)
2

(
(A, b)⊕3

)
;

2. A2

(
(A, b)⊕3

)/
A(2)

2

(
(A, b)⊕3

)
is freely generated by the diagrams H1 and G1 of Figure 7;

3. the natural map Â(2)
2

(
(A, b)⊕3

)
→ Â(4)

2

(
(A, b)⊕3

)
is injective and the corresponding quo-

tient Â(4)
2

(
(A, b)⊕3

)/
Â(2)

2

(
(A, b)⊕3

)
is freely generated by the H–diagrams H1 and H3 given

in Figure 7;

4. if a 6= 1, then A2

(
(A, b)⊕3

)
= A(4)

2

(
(A, b)⊕3

) ∼= Â(4)
2

(
(A, b)⊕3

)
;

5. if a = 1, then

i. A(4)
2

(
(A, b)⊕3

)
 A2

(
(A, b)⊕3

)
and the quotient A(4)

2

(
(A, b)⊕3

)/
A(2)

2

(
(A, b)⊕3

)
is

freely generated by the H–diagram H1 given in Figure 10;

ii. A(4)
2

(
(A, b)⊕3

)
� Â(4)

2

(
(A, b)⊕3

)
.

The proof of this proposition will derive from the next results, which resume the reduction
process where it was left at the end of Section 3.2. In order to make the text easier, we will
denote by Autit, for any i ∈ {1, 2, 3}, the Autt relation applied on Ai.

Lemma 4.2. The space A2

(
(A, b)⊕3

)
admits the presentation with:
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H1 :=
•γ1

•γ2 • γ1

• γ2

G1 :=

•γ1

•
γ2

•
γ3

•γ1

•
γ2

•
γ3

H3 :=
•γ1

•γ2 • tγ1

• tγ2

Figure 7: Some generators for our diagram spaces
In these pictures, all edges are labelled by 1 and the linkings are given

by fvw = r/δ when v and w are labelled by the same γi and 0 otherwise.

D1 :=

•γ1

•
γ2

•
tγ2

•γ1

•
γ3

•
tγ3

=
Aut1t

•tγ1

•
γ2

•
tγ2

•tγ1

•
γ3

•
tγ3

D2 :=

•γ1

•
γ2

•
tγ2

•tγ1

•
γ3

•
tγ3

Figure 8: First family of 6–legs generators

• as generators: the YY–diagrams D1, D2 of Figure 8 and G1, G2, G3, G4 of Figure 9 and
all 4≤–legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 4≤–legs generators and the
following relations, where H1, H2, H3, H4 are the H–diagrams given in Figure 10:

D1 = D2

(a+ 2)D1 = r(H3 −H4)
aG1 + 2G2 = rH1

G1 + aG2 +G4 = rH3

aG3 + 2G4 = rH4

(a+ 1)G2 +G3 = rH2

.

Proof. Thanks to Lemmas 3.11 and 3.13, we only have to check that the relations Hol and Autt
applied to the admissible diagrams of Figures 8 and 9 give exactly the six new relations.

We begin with the first family. Applying Aut2
t to D1, we obtain:

•γ1

•
γ2

•
tγ2

•γ1

•
γ3

•
tγ3

=

•γ1

•
tγ2

•
t2γ2

•γ1

•
γ3

•
tγ3

.

By Corollary 3.8, we have:

•γ1

•
tγ2

•
t2γ2

•γ1

•
γ3

•
tγ3

= −a
•γ1

•
tγ2

•
tγ2

•γ1

•
γ3

•
tγ3

−
•γ1

•
tγ2

•
γ2

•γ1

•
γ3

•
tγ3

+ r

•γ1 •γ1

•
γ3

•
tγ3

.
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G1 :=

•γ1

•
γ2

•
γ3

•γ1

•
γ2

•
γ3

=
Aut3t

•γ1

•
γ2

•
tγ3

•γ1

•
γ2

•
tγ3

=
Aut2t

•γ1

•
tγ2

•
tγ3

•γ1

•
tγ2

•
tγ3

=
Aut1t

•tγ1

•
tγ2

•
tγ3

•tγ1

•
tγ2

•
tγ3

=
Hol

•γ1

•
γ2

•
γ3

•tγ1

•
tγ2

•
tγ3

G2 :=

•γ1

•
γ2

•
γ3

•γ1

•
γ2

•
tγ3

=
Aut2t
Autξ

•γ1

•
γ2

•
tγ3

•γ1

•
tγ2

•
tγ3

=
Aut1t
Autξ

•γ1

•
tγ2

•
tγ3

•tγ1

•
tγ2

•
tγ3

=
Hol

•γ1

•
γ2

•
γ3

•γ1

•
tγ2

•
tγ3

=
Aut1t
Autξ

•γ1

•
γ2

•
tγ3

•tγ1

•
tγ2

•
tγ3

G3 :=

•γ1

•
γ2

•
tγ3

•γ1

•
tγ2

•
γ3

=
Aut1t
Autξ

•γ1

•
tγ2

•
tγ3

•tγ1

•
γ2

•
tγ3

G4 :=

•γ1

•
γ2

•
tγ3

•tγ1

•
tγ2

•
γ3

Figure 9: Second family of 6–legs generators

H1 :=
•γ1

•γ2 • γ1

• γ2

=
Aut2t

•γ1

•tγ2 • γ1

• tγ2

=
Aut1t

•tγ1

•tγ2 • tγ1

• tγ2

H2 :=
•γ1

•γ2 • γ1

• tγ2
=

Aut2t

•γ1

•tγ2 • tγ1

• tγ2

H3 :=
•γ1

•γ2 • tγ1

• tγ2

H4 :=
•γ1

•tγ2 • tγ1

• γ2

Figure 10: Family of 4–legs generators
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In this equality, the second and fourth diagrams are trivial by AS and we get D1 = D1. Appli-
cation of Aut3

t to D1 is similar and gives the same result. Now, applying the Hol relation to D1,
we obtain:

•γ1

•
γ2

•
tγ2

•γ1

•
γ3

•
tγ3

=

•tγ1

•
tγ2

•
t2γ2

•γ1

•
γ3

•
tγ3

.

Applying Corollary 3.8 as previously, we get D1 = D2. One can check that applying Hol and
Autt to the second form of D1 does not give any additional relation.

We now have to apply the same relations to D2. Applying Aut1
t to D2 gives:

•γ1

•
γ2

•
tγ2

•tγ1

•
γ3

•
tγ3

=

•tγ1

•
γ2

•
tγ2

•t2γ1

•
γ3

•
tγ3

.

Once again we use Corollary 3.8 to get:

•tγ1

•
γ2

•
tγ2

•t2γ1

•
γ3

•
tγ3

= −a
•tγ1

•
γ2

•
tγ2

•tγ1

•
γ3

•
tγ3

−
•tγ1

•
γ2

•
tγ2

•γ1

•
γ3

•
tγ3

+r
•
γ2

•
tγ2

•
γ3

•
tγ3

,

and finally:

D1 =
r

a+ 2

•γ2

•tγ2 • γ3

• tγ3

.

One can check that applying the other Autt or the Hol relations to D2 does not give any
additional relation.

We turn to the second family of 6–legs generators. Applying Aut3
t to G2 gives:

•γ1

•
γ2

•
γ3

•γ1

•
γ2

•
tγ3

=

•γ1

•
γ2

•
tγ3

•γ1

•
γ2

•
t2γ3

,

and by Corollary 3.8, we have:

•γ1

•
γ2

•
tγ3

•γ1

•
γ2

•
t2γ3

= − a
•γ1

•
γ2

•
tγ3

•γ1

•
γ2

•
tγ3

−
•γ1

•
γ2

•
tγ3

•γ1

•
γ2

•
γ3

+ r

•γ1

•
γ2

•γ1

•
γ2 ,

so we get the relation:

aG1 + 2G2 = r
•γ1

•γ2 • γ1

• γ2

.
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Application of Hol gives:

•γ1

•
γ2

•
tγ3

•γ1

•
γ2

•
tγ3

=

•γ1

•
γ2

•
tγ3

•tγ1

•
tγ2

•
t2γ3

,

which, developed with Corollary 3.8, gives:

G1 + aG2 +G4 = r
•γ1

•γ2 • tγ1

• tγ2

.

By Aut1
t and Aut2

t respectively, we get:

•γ1

•
γ2

•
tγ3

•tγ1

•
tγ2

•
γ3

=

•tγ1

•
γ2

•
tγ3

•t2γ1

•
tγ2

•
γ3

and
•γ1

•
γ2

•
tγ3

•γ1

•
tγ2

•
γ3

=

•γ1

•
tγ2

•
tγ3

•γ1

•
t2γ2

•
γ3

,

which, using Corollary 3.8, provides respectively:

aG3 + 2G4 = r
•γ1

•tγ2 • tγ1

• γ2

and (a+ 1)G2 +G3 = r
•tγ1

•γ2 • γ1

• γ2

.

One can check that the other relations Autt and Hol applied to the different given forms of the
Gi’s do not provide further relations.

Corollary 4.3. The space A2

(
(A, b)⊕3

)
admits the presentation with:

• as generators: the diagram G1 given in Figure 7 and 4≤–legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 4≤–legs generators and the
following relation between G1 and the H–diagrams given in Figure 10:

(1− a)(a+ 2)2G1 = 4H3 + 2aH2 − 2H4 − a(a+ 3)H1. (R6)

Now, we turn our attention to 4–legs generators.

Lemma 4.4. The space Â(4)
2

(
(A, b)⊕3

)
admits the presentation with:

• as generators: the H–diagrams H1, H2, H3, H4 given in Figure 10 and 2≤–legs diagrams;

21



• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 2≤–legs generators and the
following two relations:

aH1 + 2H2 = −r •γ1 • γ1

aH2 +H3 +H4 = −r •γ1 • tγ1 .

Proof. Thanks to Lemmas 3.12 and 3.13, we only have to check that Autt applied to the diagrams
of Figure 10 provides exactly the above two relations. This is straightforward.

Corollary 4.5. The space Â(4)
2

(
(A, b)⊕3

)
admits the presentation with:

• as generators: the H–diagrams H1 and H3 given in Figure 10 and 2≤–legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 2≤–legs generators.

Proof of Proposition 4.1. Thanks to Corollaries 4.3 and 4.5, A2

(
(A, b)⊕3

)
has a presentation

given by the generators G1, H1, H3 and all 2≤–legs diagrams, and the relation (R6) and all
usual relations on 2≤–legs diagrams. Using (R6) to write H3 in terms of the other generators,
we obtain a presentation with, as generators, G1, H1 and 2≤–legs diagrams and, as relations,
the usual relations on 2≤–legs diagrams. This concludes the first two points of the proposition.
The third point is given by Corollary 4.5.

If a 6= 1, in the presentation of A2

(
(A, b)⊕3

)
given in Corollary 4.3, one can remove the

generator G1 and the relation (R6). This implies the fourth point of the proposition.
If a = 1, in the presentation of A2

(
(A, b)⊕3

)
given in Corollary 4.3, G1 is not subject to any

relation. On the other hand, compared with Lemma 4.4, (R6) provides then a third relation

between the Hi’s which holds in A2

(
(A, b)⊕3

)
but not in Â(4)

2

(
(A, b)⊕3

)
. This new relation can

be used to show that H1 and H3 are equal up to diagrams with fewer legs. This concludes the
fifth point of the proposition.

4.2 On the maps ι2

The main goal of this section is to determine the injectivity and surjectivity status of the maps
ι12 : A2(A, b)→ A2

(
(A, b)⊕3

)
and ι22 : A2

(
(A, b)⊕2

)
→ A2

(
(A, b)⊕3

)
when A is of Q–dimension

two and cyclic. It is a direct consequence of Corollary 3.5 and Proposition 4.1 that:

Proposition 4.6. If (A, b) is a cyclic Blanchfield module of Q–dimension 2 with annihilator
different from t+ 1 + t−1, then the maps ι12 and ι22 are injective.

It remains to deal with injectivity when δ = t + 1 + t−1 and to determine the surjectivity
status of the maps ι2. We start with ι12.

Proposition 4.7. Let (A, b) be a cyclic Blanchfield module of Q-dimension two. Then the map
ι12 is injective but not surjective.
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Proof. Thanks to the first point of Proposition 4.1 and Corollary 3.3, the map ι12 induces an

isomorphism from A(2)
2 (A, b) to A(2)

2

(
(A, b)⊕3

)
. Hence we can work with the map ι12 induced by

ι12 on the quotients A2
/
A(2)

2
.

It is easy to check that A2(A, b)
/
A(2)

2 (A, b) is generated by the following H–diagram:

G =

•γ

•tγ • γ

• tγ

.

By [Mou17, Proposition 7.10], ι12(G) is half the sum of all diagrams obtained from G by replacing
two γ’s by γ1 and the other two by γ2. Thanks to Autξ, this gives:

ι12(G) =
•γ1

•tγ1 • γ2

• tγ2

+
•γ1

•tγ2 • γ1

• tγ2

+
•γ1

•tγ2 • γ2

• tγ1

.

Applying an IHX relation to the first diagram, Aut2
t to the second one and various AS relations,

it can be reformulated into:

ι12(G) =
•γ1

•γ2 • γ1

• γ2

+
•γ1

•γ2 • tγ1

• tγ2

− 2
•γ1

•tγ2 • tγ1

• γ2

.

Using Relation (R6) and the relations of Lemma 4.4, we finally obtain:

ι12(G) =
1

2
(1− a)(a+ 2)2G1 +

1

2
(a+ 1)(a+ 2)H1,

up to 2≤–legs diagrams. It follows by the second point of Proposition 4.1 that ι12 is injective but
not surjective.

We now deal with the map ι22. For that, we have to study the structure of A2

(
(A, b)⊕2

)
.

The next lemma describes the elements of Aut
(
(A, b)⊕2

)
for a cyclic Blanchfield module (A, b)

with irreducible annihilator. For P ∈ Q[t±1], set P̄ (t) = P (t−1).

Lemma 4.8. If δ is irreducible in Q[t±1], then the group Aut
(
(A, b)⊕2

)
is generated by the

automorphisms

χP :

{
γ1 7→ Pγ1

γ2 7→ γ2

for P ∈ Q[t±1] such that PP̄ = 1 mod δ and

λP,Q :

{
γ1 7→ Pγ1 +Qγ2

γ2 7→ Q̄γ1 − P̄ γ2

for P,Q ∈ Q[t±1] such that PP̄ +QQ̄ = 1 mod δ.
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Γ1 =

•γ1

•
γ2

•
tγ2

•γ1

•
γ2

•
tγ2

Γ2 =

•γ1

•
γ2

•
tγ2

•tγ1

•
γ2

•
tγ2

Γ3 =

•tγ1

•
γ2

•
tγ2

•tγ1

•
γ2

•
tγ2

Figure 11: Some admissible YY–diagrams

Proof. In the whole proof, polynomials are considered in Q[t±1]
/
(δ). For P ∈ Q[t±1] such that

PP̄ = 1, define

χ′P :

{
γ1 7→ γ1

γ2 7→ Pγ2
,

and note that χ′P = λ0,1 ◦ χP ◦ λ0,1. Let ζ ∈ Aut
(
(A, b)⊕2

)
and write

ζ :

{
γ1 7→ Pγ1 +Qγ2

γ2 7→ Rγ1 + Sγ2
.

Since ζ must preserve b, we have PP̄ + QQ̄ = 1, RR̄ + SS̄ = 1 and PR̄ + QS̄ = 0. If Q = 0,
then PR̄ = 0, so that R = 0 and ζ = χP ◦ χ′S . If Q 6= 0, then S = −Q̄−1P̄R, so that

1 = RR̄+ SS̄ = RR̄(QQ̄)−1(QQ̄+ PP̄ ) = RR̄(QQ̄)−1.

Finally Q̄−1RQ̄−1R = 1 and ζ = λP,Q ◦ χ′Q̄−1R
.

We denote by Autχ and Autλ the subfamilies of Aut relations obtained by the action of the
automorphisms χP and λP,Q respectively.

Proposition 4.9. If (A, b) is a cyclic Blanchfield module of Q–dimension 2, then:

1. A2

(
(A, b)⊕2

)
= A(4)

2

(
(A, b)⊕2

)
,

2. A(2)
2

(
(A, b)⊕2

)
= Â(2)

2

(
(A, b)⊕2

)
,

3. A(4)
2

(
(A, b)⊕2

) ∼= Â(4)
2

(
(A, b)⊕2

)
,

4. A(4)
2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

) ∼= Â(4)
2

(
(A, b)⊕3

)/
Â(2)

2

(
(A, b)⊕3

)
; in particular, this quotient

has Q–dimension 2.

Proof. It is easy to see that A2

(
(A, b)⊕2

)/
A(4)

2

(
(A, b)⊕2

)
is generated by the diagrams Γ1 and

Γ2 of Figure 11. Application of an Hol relation to Γ1 followed by a use of Corollary 3.8 gives:

Γ1−Γ2 = r
•γ1

•γ2 • tγ1

• tγ2

+r
•t2γ2

•tγ1 • tγ1

• tγ2
= r

•γ1

•γ2 • tγ1

• tγ2

−r
•γ1

•tγ2 • γ1

• γ2

,
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Γ4 =

•γ1

•
γ2

•
tγ2

•γ2

•
γ1

•
tγ1

Γ5 =

•γ1

•
γ2

•
tγ2

•tγ2

•
γ1

•
tγ1

Γ6 =

•tγ1

•
γ2

•
tγ2

•tγ2

•
γ1

•
tγ1

Figure 12: Some trivial admissible YY–diagrams

where the second equality comes from a Hol and an AS relations on the second diagram. Ap-
plication of Aut1

t to Γ2 followed by a use of Corollary 3.8 and again of an Aut1
t relation gives:

aΓ1 + 2Γ2 = r
•γ2

•tγ2 • γ2

• tγ2

= r
•γ1

•tγ1 • γ1

• tγ1

,

where the second equality comes from an Autξ relation. Since a 6= −2, it follows that both Γ1

and Γ2 can be expressed in term of 4–legs generators. Hence A2

(
(A, b)⊕2

)
= A(4)

2

(
(A, b)⊕2

)
,

that is the first point of the proposition.
The second point follows from Proposition 4.1 (1) and Corollaries 3.2 and 3.3. Note that we

have:
A(2)

2

(
(A, b)⊕2

) ∼= Â(2)
2

(
(A, b)⊕2

) ∼= Â(2)
2

(
(A, b)⊕3

) ∼= A(2)
2

(
(A, b)⊕3

)
.

Hence, to prove the third point, we can work on the quotients A2
/
A(2)

2
and Â2

/
Â(2)

2
.

If a 6= 1, the third point is given by Corollary 3.5 thanks to the first and fourth points
of Proposition 4.1. Assume a = 1. The diagrams Γi for i = 1, . . . , 6 represented in Figures 11
and 12 form a minimal essential set E of admissible YY–diagrams. Thanks to Lemmas 3.11, 3.13

and 4.8, we only need to consider Hol
E
, AutEχ and AutEλ. The Hol and Autχ relations applied

to Γi with i > 3 obvioulsy give trivial relations; check that the relations Autλ applied to these
diagrams also give trivial relations thanks to cancellations in the decomposition.

The Hol relation applied to Γ1 or Γ2 recovers the above two relations. Up to these two
relations, Hol applied to Γ3 gives a trivial relation up to 2≤–legs diagrams.

It remains to write the AutE relations corresponding to the Γi’s with i ≤ 3. A relation Autχ
with an automorphism χP applied to Γ3 is recovered from the relation Autχ with χtP applied
to Γ1. The relations Autχ applied to Γ1 and Γ2 can be written by hand. However, the relations
Autλ imply wild computations which required the help of a computer. The program given in
Appendix A checks that a relation Autλ applied on Γi for i = 1, 2, 3 can be recovered from the
above two relations and usual relations on 4≤–legs generators. This concludes the third point of
the proposition.

We have seen that A(4)
2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

) ∼= Â(4)
2

(
(A, b)⊕2

)/
Â(2)

2

(
(A, b)⊕2

)
. By Corol-

lary 3.2, we have Â(4)
2

(
(A, b)⊕2

)/
Â(2)

2

(
(A, b)⊕2

) ∼= Â(4)
2

(
(A, b)⊕3

)/
Â(2)

2

(
(A, b)⊕3

)
. This gives the

isomorphism of the fourth point. The dimension of the quotient is given by the third point of
Proposition 4.1.

25



Proposition 4.10. Let (A, b) be a cyclic Blanchfield module of Q–dimension two, with annihi-
lator δ. Then the map ι22 : A2

(
(A, b)⊕2

)
→ A2

(
(A, b)⊕3

)
:

• is an isomorphism if δ 6= t+ 1 + t−1;

• has a non trivial kernel generated by the combination of H–diagrams

2
•γ1

•γ2 • γ1

• γ2

+
•γ1

•tγ2 • tγ1

• γ2

− 2
•γ1

•γ2 • tγ1

• tγ2

−
•γ1

•γ2 • γ1

• tγ2

if δ = t+ 1 + t−1.

Proof. First assume δ 6= t+1+ t−1. The fourth point of Proposition 4.1 and Corollary 3.3 imply

that ι22 induces an isomorphism from A(4)
2

(
(A, b)⊕2

)
to A(4)

2

(
(A, b)⊕3

)
. This proves the first point

since A2

(
(A, b)⊕2

)
= A(4)

2

(
(A, b)⊕2

)
by Proposition 4.9 and A2

(
(A, b)⊕3

)
= A(4)

2

(
(A, b)⊕3

)
by

the fourth point of Proposition 4.1.
Now assume that δ = t + 1 + t−1. The second point of Proposition 4.9 asserts that

A(2)
2

(
(A, b)⊕2

) ∼= Â(2)
2

(
(A, b)⊕2

)
. Moreover, A(2)

2

(
(A, b)⊕3

) ∼= Â(2)
2

(
(A, b)⊕3

)
by the first point

of Proposition 4.1. Hence it follows from Corollary 3.2 that ι22 is an isomorphism at the A(2)
2 –

level. By the first point of Proposition 4.9, the quotient A2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
is equal to

A(4)
2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
, so its image by ι22 is included in A(4)

2

(
(A, b)⊕3

)/
A(2)

2

(
(A, b)⊕3

)
.

Now, the H–diagram H1 of Figure 10 is clearly in the image of ι22. Finally, by Proposition 4.1
(5.i.) and Proposition 4.9 (4), the kernel of ι22 has dimension 1.

More precisely, thanks to Relation (R6), the image through ι22 of

D = 2
•γ1

•γ2 • γ1

• γ2

+
•γ1

•tγ2 • tγ1

• γ2

− 2
•γ1

•γ2 • tγ1

• tγ2

−
•γ1

•γ2 • γ1

• tγ2

is zero. In the quotient Â(4)
2

(
(A, b)⊕3

)/
Â(2)

2

(
(A, b)⊕3

)
, D is equal to 3(H1−H3), which is non zero

by Proposition 4.1 (3). Moreover, Â(4)
2

(
(A, b)⊕3

)/
Â(2)

2

(
(A, b)⊕3

) ∼= A2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
by Proposition 4.9 (1,4). It follows that D is non trivial in A2

(
(A, b)⊕2

)
.

5 Case when A is of Q–dimension two and non cyclic

In this section, we assume that (A, b) is a non cyclic Blanchfield module of Q–dimension two. As
mentioned at the beginning of Section 3, it implies that A is the direct sum of two Q[t±1]-modules
of order t+ 1. Hence we can write:

A =
Q[t±1]

(t+ 1)
γ ⊕ Q[t±1]

(t+ 1)
η.

Moreover, it follows from b being hermitian and non-degenerate that, up to rescaling η, b(γ, γ) =
b(η, η) = 0 and b(γ, η) = 1

t+1 . Throughout the section, we consider {γ, η} as the basis ω for A
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and we set f(γ, γ) = f(η, η) = 0, f(γ, η) = 1
t+1 and f(η, γ) = t

t+1 . Accordingly, set γi = ξi(γ)
and ηi = ξi(η), for i = 1, 2, 3.

Lemma 5.1. The automorphism group Aut(A, b) is generated by the following automorphisms:

µx :

{
γ 7→ xγ
η 7→ x−1η

ν :

{
γ 7→ η
η 7→ −γ ρy :

{
γ 7→ γ + yη
η 7→ η

where x runs over Q \ {0,±1} and y over Q \ {0}.

Proof. Any automorphism ζ of (A, b) is given by

ζ :

{
γ 7→ xγ + yη
η 7→ zγ + wη

with x, y, z, w in Q. Since ζ preserves the Blanchfield pairing b, we have xw − yz = 1. If z = 0,
then xw = 1 and ζ = ρyx−1 ◦ µx. If w = 0, then yz = −1 and ζ = ν ◦ ρ−xy−1 ◦ µy. Finally, if
zw 6= 0, then ζ = µw−1 ◦ ν ◦ ρ−zw ◦ ν−1 ◦ ρyw−1 .

We denote by Autµ, Autν and Autρ the subfamilies of Aut relations obtained by the action
of the automorphisms given by µx, ν and ρy respectively on one copy of A and identity on the
others.

Proposition 5.2. If (A, b) is a non cyclic Blanchfield module of Q–dimension two, then:

1. A(2)
2

(
(A, b)⊕3

) ∼= Â(2)
2

(
(A, b)⊕3

)
;

2. A2

(
(A, b)⊕3

)
= A(4)

2

(
(A, b)⊕3

) ∼= Â(4)
2

(
(A, b)⊕3

)
;

3. A2

(
(A, b)⊕3

)/
A(2)

2

(
(A, b)⊕3

)
is freely generated by the admissible H–diagram

•γ1

•γ2 • η1

• η2

.

Proof. We start with the presentation given by Lemma 3.11 to deal with 6–legs generators. Let
D be an admissible YY–diagram with two legs v and w labelled by the same γi or the same ηi.
Application of any Autµ relation shows that the diagram D is trivial. Application of an Autν ,
Autξ or Hol relation to D gives a trivial relation in Autων , Autωξ or Hol

ω
. Application of an Autρ

relation to D gives in Autωρ the relation of Autων obtained by applying Autν to the diagram D′

obtained from D by changing the labels of v and w to γi and ηi respectively and the linking fvw
to 1

t+1 . Hence we can remove from the generators the admissible YY–diagrams with a common
label on two distinct legs without adding any relation. Then, using Lemma 3.13, it is easily seen
that one can restrict the 6–legs generators to the admissible YY–diagrams:

Y1 =

•γ1

•
γ2

•
η2

•η1

•
γ3

•
η3

and Y2 =

•γ1

•
γ2

•
γ3

•η1

•
η2

•
η3

.
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On these generators, Autµ and Autξ act trivially, so we are left with checking the relations
coming from Hol and Autν relations. Note however that applying these relations may change
the prescribed the rational fractions on pairs of vertices, so that use of an LD relation may be
needed to correct them. For instance, application of Autν , regarding A1, on Y1 gives

Y1 =

•−η1

•
γ2

•
η2

•γ1

•
γ3

•
η3

+
•γ2

•η2 • γ3

• η3

.

The prescribed rational fraction between the top vertices of Y1 is indeed 1
1+t , whereas the one of

the 6–legs term on the right is f(−η, γ) = −t
1+t = 1

1+t − 1; use of an LD relation is hence needed
and produces the 4–legs term. Then applications of LV and Autξ relations lead to

2Y1 =
•γ2

•η2 • γ3

• η3

.

Similarly, application of Hol to Y1 gives

Y1 =

•tγ1

•
tγ2

•
tη2

•η1

•
γ3

•
η3

= −
•γ1

•
γ2

•
η2

•η1

•
γ3

•
η3

+
•γ2

•η2 • γ3

• η3

.

Here, the second equality is due to the fact that tx = −x for any x ∈ A. The rational fraction
on the top pair of vertices has to be corrected so that it corresponds to the prescribed one; this
produces the 4–legs term. Once again, we get

2Y1 =
•γ2

•η2 • γ3

• η3

.

Applications of Autν on A2 and A3 give trivial relations. On Y2, the only relations that do act
non trivially are Hol and Autν applied simultaneously on the three Ai; both give:

2Y2 = 3
•γ1

•γ2 • η1

• η2

+ •γ1 • η1 + .

Finally, we can remove all 6–legs generators without adding any relation. This proves the second
assertion.

We turn to the study of the 4–legs generators. Thanks to Lemmas 3.12 and 3.13 and removing
as previously generators with a common label on two distinct legs, we are led to the diagrams:

X1 =
•γ1

•γ2 • η1

• η2

and X2 =
•γ1

•η2 • η1

• γ2
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on which we have to check the effect of the Autν relations. Applying Autν on A1 or A2 to X1

or X2 always gives:

X1 +X2 = − •γ1 • η1 .

Since no more relation arises from the 4–legs generators, this proves the first and third assertions.

Proposition 5.3. Let (A, b) be a non cyclic Blanchfield module of Q–dimension two. Then
the maps ι12 : A2(A, b) → A2

(
(A, b)⊕3

)
and ι22 : A2

(
(A, b)⊕2

)
→ A2

(
(A, b)⊕3

)
are injective.

Moreover, ι22 is surjective, while ι12 is not.

Proof. It is easily seen that A2(A, b) is generated by admissible diagrams. Such a diagram with
at least four legs has necessarily two legs labelled by γ or two legs labelled by η; the relation

Autµ implies that it is trivial. It follows that A2(A, b) = A(2)
2 (A, b). Hence, by Proposition 5.2

and Corollary 3.5, ι12 is injective but not surjective.

Similarly, we have A2

(
(A, b)⊕2

)
= A(4)

2

(
(A, b)⊕2

)
and it follows from the second point of

Proposition 5.2 and Corollary 3.3 that ι22 is an isomorphism.

A Programs

Let (A, b) be a cyclic Blanchfield module with annihilator δ = t+ 1 + t−1. Let γ be a generator
of A. As recalled at the beginning of Section 4.1, b(γ, γ) = r

δ mod Q[t±1] with r ∈ Q∗. We set
γi = ξi(γ) for i = 1, 2. A Q–basis of A⊕2 is given by the tεγi with ε = 0, 1 and i = 1, 2.

This appendix aims at determining the relations induced on A2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
by

applying the Autλ relations to the diagrams Γi of Figure 11. Set

λa,b,c,d :

{
γ1 7→ (at+ b)γ1 + (ct+ d)γ2

γ2 7→ (ct−1 + d)γ1 − (at−1 + b)γ2

for a, b, c, d ∈ Q such that a2 + b2 + c2 + d2 = 1 + ab+ cd. We wrote three programs in OCaml1

which compute the reductions of λa,b,c,d.Γ1, λa,b,c,d.Γ2 and λa,b,c,d.Γ3. Here, a, b, c and d are
considered as parameters and all the computations are made in

Qa,b,c,d := Q[a, b, c, d]
/
a2 + b2 + c2 + d2 − ab− cd− 1.

Note that every element in Qa,b,c,d has a unique representative in Q[a, b, c, d] that involves no ak

with k ≥ 2.

A.1 Implementation of the variables

Elements of Qa,b,c,d are implemented as lists of vectors (α, ka, kb, kc, kd) ∈ Q × {0, 1} × N3 ⊂
Q× N4, corresponding to the sum of the αakabkbckcdkd . Addition and multiplication in Qa,b,c,d

1avalaible at http://www.i2m.univ-amu.fr/~audoux/Reduc_Gamma#.ml with #= 1, 2, 3.
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are implemented accordingly, using the relation a2 = 1 + ab+ cd− b2 − c2 − d2 to remove terms
with powers of a higher than 2.

Generators of A2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
are separated between 6–legs and 4–legs ones.

The former are implemented as
(
(k1, i1), . . . , (k6, i6)

)
∈
(
Z× {1, 2}

)6
corresponding to

•tk1γi1

•
tk2γi2

•
tk3γi3

•tk4γi4

•
tk5γi5

•
tk6γi6

and the latter as
(
(k1, i1), . . . , (k4, i4)

)
∈
(
Z× {1, 2}

)4
corresponding to

•tk1γi1

•tk2γi2 •tk3γi3

•tk4γi4
.

In both cases, the linking between legs v and w labelled by tkjγij and tk`γi` is fvw = tkj−k` rδ .

General elements of A2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
are implemented in two ways:

• for inputs: as linear combinations of the above generators;

• for outputs: as vectors (α1, α2, α3, α4, α5, α6) ∈ Q6
a,b,c,d corresponding to the linear combi-

nation α1Γ1 +α2Γ2 +α3H1 +α4H2 +α5H3 +α6H4, where the Hi and the Γi are given in
Figures 10 and 11.

A.2 Reduction algorithms

The programs are based on two reduction algorithms reduc4 and reduc6, one for 4–legs genera-
tors and one for 6–legs generators. Both algorithms take, as input, a diagram Γ implemented as
an element of

(
Z× {1, 2}

)4 or 6
representing one of the above generators and send, as output, a

vector (α1, . . . , α6) ∈ Q6
a,b,c,d which expresses Γ as Γ = α1Γ1+α2Γ2+α3H1+α4H2+α5H3+α6H4.

The reduc4 algorithm goes as follows.

Take
(
(k1, e1), (k2, e2), (k3, e3), (k4, e4)

)
. (Call it Γ.)

Check if e1 + e2 + e3 + e4 is odd (that is if one of the Ai appears an odd number of times),
or if (k1, e1) = (k2, e2) or (k3, e3) = (k4, e4) (that is if two legs adjacent to a same

trivalent vertex share the same label);
if so then send (0, 0, 0, 0, 0, 0).

−→ At this point, legs sharing an adjacent trivalent vertex have distinct labels, and each Ai
appears 0, 2 or 4 times in leg labels.

Check if some ki is < 0 or > 1;
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if so then send the sum of the results of reduc4 applied to the elements

given by Corollary 3.8 to increase or decrease ki.

−→ At this point, each leg label is either some γi or some tγi.

Check if e1 = e2 = e3 = e4 (that is if all legs are labelled in the same Ai; if so then Γ is either
•γi

•tγi • γi

• tγi
,

•tγi

•γi • tγi

• γi
,

•γi

•tγi • tγi

• γi
or

•tγi

•γi • γi

• tγi
);

if so then send

(−1)k1+k3
(
reduc4

(
(0, 1), (1, 1), (0, 2), (1, 2)

)
+reduc4

(
(0, 1), (1, 2), (0, 1), (1, 2)

)
+reduc4

(
(0, 1), (1, 2), (0, 2), (1, 1)

))
(see [Mou17, Proposition 7.10]).

−→ At this point, each Ai appears exactly twice in leg labels.

Check if e1 = e2 (that is if the two A1–labelled legs are both on the left or both on the right),
if so then send

reduc4
(
(k1, e1), (k3, e3), (k2, e2), (k4, e4)

)
-reduc4

(
(k1, e1), (k4, e4), (k2, e2), (k3, e3)

)
(using an IHX move).

Check if e1 = e4 (that is if the two A1–labelled legs are both at the top or both at the bottom),
if so then send -reduc4

(
(k1, e1), (k2, e2), (k4, e4), (k3, e3)

)
(using an AS move).

−→ At this point, each Ai appears simultaneously in labels of opposite legs only.

Use S := k1 +k2 +k3 +k4 and, if S = 2, the parity of k1 +k2 and k1 +k2 to determine

to which element, among H1, H2, H3 or H4, Γ is equal to, and send the

corresponding output.

The reduc6 algorithm goes as follows.

Take
(
(k1, e1), (k2, e2), (k3, e3), (k4, e4), (k5, e5), (k6, e6)

)
. (Call it Γ.)

Check if e1 + e2 + e3 + e4 + e5 + e6 is odd (that is if one of the Ai appears an odd number
of times),

or if (k1, e1) = (k2, e2) or (k2, e2) = (k3, e3) or (k3, e3) = (k1, e1) or (k4, e4) = (k5, e5)
or (k5, e5) = (k6, e6) or (k6, e6) = (k4, e4) (that is if two legs adjacent to a same
trivalent vertex share the same label);

if so then send (0, 0, 0, 0, 0, 0).

−→ At this point, legs sharing an adjacent trivalent vertex have distinct labels, and each Ai
appears an even number of times in leg labels.

Check if some ki is < 0 or > 1;
if so then send the sum of the results of reduc6 and reduc4 applied to the

elements given by Corollary 3.8 to increase or decrease ki.

−→ At this point, each leg label is either some γi or some tγi, and each Ai appears 2 or 4 times
in leg labels—if all legs were Ai–labelled, then two legs sharing a same adjacent trivalent
vertex would have a same label.

Check if e1 + e2 + e3 + e4 + e5 + e6 = 8 (that is if A1 appears 4 times and A2 twice in leg
labels),

if so then send

reduc6
(
(k1, 3− e1), (k2, 3− e2), (k3, 3− e3), (k4, 3− e4), (k5, 3− e5), (k6, 3− e6)

)
(using a Autξ move).
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Γ2 =

•(at+ b)γ1

+(ct+ d)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

•(at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

−r(ab+ cd)


•

(dt+ c)γ1

−(bt+ a)γ2

•(dt2 + ct)γ1

−(bt2 + at)γ2

• (ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

+

•
(dt+ c)γ1

−(bt+ a)γ2

•(at+ b)γ1

+(ct+ d)γ2

• (dt+ c)γ1

−(bt+ a)γ2

•
(at2 + bt)γ1

+(ct2 + dt)γ2

+

•
(at+ b)γ1

+(ct+ d)γ2

•(ct−1 + d)γ1

−(at−1 + b)γ2

• (at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

+

•
(at+ b)γ1

+(ct+ d)γ2

•(ct−1 + d)γ1

−(at−1 + b)γ2

• (dt2 + ct)γ1

−(bt2 + at)γ2

•
(at3 + bt2)γ1

+(ct3 + dt2)γ2

+

•
(dt2 + ct)γ1

−(bt2 + at)γ2

•(at2 + bt)γ1

+(ct2 + dt)γ2

• (at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2


Figure 13: Input for λa,b,c,d.Γ2

−→ At this point, A1 appears twice and A2 four times in leg labels, and the two A1–labelled
legs are on distinct connected components of γ, otherwise two A2–labelled legs sharing a
same adjacent trivalent vertex would have a same label.

Check if ei = 1 for i ∈ {2, 3, 5, 6} (that is if the two A1–labelled legs are not both at the top),
if so then send reduc6

(
(k′1, e

′
1), (k′2, e

′
2), (k′3, e

′
3), (k′4, e

′
4), (k′5, e

′
5), (k′6, e

′
6)
)
where(

(k′1, e
′
1), (k′2, e

′
2), (k′3, e

′
3)
)
and

(
(k′4, e

′
4), (k′5, e

′
5), (k′6, e

′
6)
)
are respectively the

cyclic permutations of
(
(k1, e1), (k2, e2), (k3, e3)

)
and

(
(k4, e4), (k5, e5), (k6, e6)

)
such that e′1 = e′4 = 1.

−→ At this point, the two legs at the top are A1–labelled and the four other are A2–labelled,
with, on each connected component of Γ, one occurence of γ2 and one occurence of tγ2.

Use k3 + k5− k2− k6 and the parity of k1 + k4 to determine to which element, among

±Γ1 or ±Γ2, Γ is equal to, and send the corresponding output.
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Γ1 =

•(at+ b)γ1

+(ct+ d)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

•(at+ b)γ1

+(ct+ d)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

−r(ab+ cd)


•

(ct−1 + d)γ1

−(at−1 + b)γ2

•(dt+ c)γ1

−(bt+ a)γ2

• (ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

+

•
(dt+ c)γ1

−(bt+ a)γ2

•(at+ b)γ1

+(ct+ d)γ2

• (dt+ c)γ1

−(bt+ a)γ2

•
(at+ b)γ1

+(ct+ d)γ2

+

•
(at+ b)γ1

+(ct+ d)γ2

•(ct−1 + d)γ1

−(at−1 + b)γ2

• (at+ b)γ1

+(ct+ d)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

+

•
(at+ b)γ1

+(ct+ d)γ2

•(ct−1 + d)γ1

−(at−1 + b)γ2

• (dt2 + ct)γ1

−(bt2 + at)γ2

•
(at2 + bt)γ1

+(ct2 + dt)γ2

+

•
(dt2 + ct)γ1

−(bt2 + at)γ2

•(at2 + bt)γ1

+(ct2 + dt)γ2

• (at+ b)γ1

+(ct+ d)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2


Figure 14: Input for λa,b,c,d.Γ1

A.3 Computations and results

As the computation for Γ2 is slightly more complicated than for Γ1 and Γ3, we start with Γ2.
The action of λa,b,c,d on Γ2 produces:

•(at+ b)γ1

+(ct+ d)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

•(at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

,

with the same linkings as in Γ2. However, in our implementation of the diagrams as linear
combinations of the generators described in Section A.1, the convention gives, for two legs v and
w labelled by Pγ1 +Qγ2 and Rγ1 +Sγ2 respectively, a linking equal to fvw = (PR̄+QS̄) rδ . For

instance, numbering the vertices as
•1

•
2

•
3

•4

•
5

•
6

, we have f
λa,b,c,d.Γ2

14 = fΓ2
14 = rt−1

δ whereas the
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Γ1 =

•(at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

•(at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

−r(ab+ cd)


•

(ct−1 + d)γ1

−(at−1 + b)γ2

•(dt+ c)γ1

−(bt+ a)γ2

• (ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2

+

•
(dt+ c)γ1

−(bt+ a)γ2

•(at2 + bt)γ1

+(ct2 + dt)γ2

• (dt+ c)γ1

−(bt+ a)γ2

•
(at2 + bt)γ1

+(ct2 + dt)γ2

+

•
(at2 + bt)γ1

+(ct2 + dt)γ2

•(ct−1 + d)γ1

−(at−1 + b)γ2

• (at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2

+

•
(at2 + bt)γ1

+(ct2 + dt)γ2

•(ct−1 + d)γ1

−(at−1 + b)γ2

• (dt2 + ct)γ1

−(bt2 + at)γ2

•
(at3 + bt2)γ1

+(ct3 + dt2)γ2

+

•
(dt2 + ct)γ1

−(bt2 + at)γ2

•(at3 + bt2)γ1

+(ct3 + dt2)γ2

• (at2 + bt)γ1

+(ct2 + dt)γ2

•
(ct−1 + d)γ1

−(at−1 + b)γ2


Figure 15: Input for λa,b,c,d.Γ3

linking in the above diagram is

f14 =
r
(

(at+b)(at−2+bt−1)+(ct+d)(ct−2+dt−1)
)

δ

=
r
(

(ab+cd)+(a2+b2+c2+d2)t−1+(ab+cd)t−2
)

δ

=
r
(

(a2+b2+c2+d2−ab−cd)t−1+(ab+cd)t−1δ
)

δ

= rt−1

δ + r(ab+ cd)t−1.

This can be fixed, thanks to LV, by adding a term

−r(ab+ cd)


•

(dt+ c)γ1

−(bt+ a)γ2

•(dt2 + ct)γ1

−(bt2 + at)γ2

• (ct−1 + d)γ1

−(at−1 + b)γ2

•
(dt+ c)γ1

−(bt+ a)γ2


.

Likewise, the linking fΓ2
25 , fΓ2

36 , fΓ2
35 and fΓ2

26 can be fixed by adding similar 4–legs terms. All
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the other linkings vanish already as expected. Finally, we get the decomposition of Γ2 given in
Figure 13.

To compute the corresponding relation, we defined six matrices, one for each term in the
formula of Figure 13, rows corresponding to legs and columns to each of the four monomials
that appear in the leg labels. The program uses these matrices to develop with LV the six
diagrams in order to get a weighted sum of generators, as they are described in Section A.1.
Then, by applying either reduc4 or reduc6 to each term in this weighted sum, it expresses it as
a linear combination of Γ1, Γ2 and the Hi’s. Finally, the program uses the relations H1 = −2H2

and H4 = −H2 −H3 from Lemma 4.4—which hold in A2

(
(A, b)⊕2

)/
A(2)

2

(
(A, b)⊕2

)
by the same

computations as in A2

(
(A, b)⊕3

)/
A(2)

2

(
(A, b)⊕3

)
—to reduce this linear combination in terms of

Γ1, Γ2, H2 and H3 only. We end up with

Γ2 = (b2 + d2− ab− cd− 1)Γ1 + (2b2 + 2d2− 2ab− 2cd− 1)Γ2 + r(3ab+ 3cd− 3b2− 3d2 + 3)H3,

that is
(a2 + c2)(Γ1 + 2Γ2 − 3rH3) = 0.

But it was already known that Γ1 + 2Γ2 = r
•γ1

•tγ1 • γ1

• tγ1

and the same computation as in

the proof of Proposition 4.7 gives
•γ1

•tγ1 • γ1

• tγ1

= H1 +H3 − 2H4 = 3H3.

Similarly, the action of λa,b,c,d on Γ1 leads to the decomposition given in Figure 14. The
program reduces it to

Γ1 = (ab+ cd+ 1)Γ1 + 2(ab+ cd)Γ2 − 3r(ab+ cd)H3,

that is
(ab+ cd)(Γ1 + 2Γ2 − 3rH3) = 0,

which recovers once again a previously known formula.
Finally, the action of λa,b,c,d on Γ3 leads to the decomposition given in Figure 15. The

program reduces it to

Γ1 = (2− b2 − d2)Γ1 + 2(1− b2 − d2)Γ2 + 3r(b2 + d2 − 1)H3,

that is
(b2 + d2 − 1)(Γ1 + 2Γ2 − 3rH3) = 0,

which still recovers the same previously known formula.
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