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Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast

interactions and the exo-metabolome.
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Summary:

Sequential fermentation of grape must inoculated viiththermotoleransand thenS.
cerevisiae24 h later (typical wine-making practice) was conducted with or without cell-cell
contact between the two yeast species. We monitored cell viability of the two species
throughout fermentation by flow cytometry. The cell viability ®f cerevisiaedecreased

under both conditions, but the decrease was greater if there was cell-cell contact. An
investigation of the nature of the interactions showed competition between the two species for
nitrogen compounds, oxygen, and must sterols. Volatile-compound analysis showed
differences between sequential and pure fermentation and that cell-cell contact modifies yeast
metabolism, as the volatile-compound profile was significantly different from that of
sequential fermentation without cell-cell contact. We further confirmed that cell-cell contact
modifies yeast metabolism by analyzing the exo-metabolome of all fermentations by FT-ICR-
MS analysis. These analyses show specific metabolite production and quantitative metabolite
changes associated with each fermentation condition. This study shows that cell-cell contact
not only affects cell viability, as already reported, but markedly affects yeast metabolism.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
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l. I ntroduction
Alcoholic fermentation in grape must is mainly perhed by the well-known yeast
Saccharomyces cerevisiablowever,S. cerevisiads not the only yeast present on grape
berries and in grape must. Other interesting yeas#dled nonSaccharomycesare
increasingly being studied because of their abiityimprove the complexity of the wine
aroma by increasing the concentration of certaomatic molecules, such as terpenoids or
higher alcohols (Ciani, 1997; Esteve-Zarzoso etl@98; Rojas et al., 2001; Jolly et al., 2006;
Fleet, 2008; Benito, 2018; Zhang et al., 2018)ptbler molecule of interest, such as glycerol
(Romano et al., 1992; Barbosa et al., 2015). Tldymtion of these molecules is mostly due
to enzymatic activities present in n&accharomycegeasts, which are lower or absent from
S. cerevisiaestrains (Esteve-Zarzoso et al., 1998; Strauss.e@01; Jolly et al., 2014).
Lachancea thermotolerans (L. thermotoleramshaturally present in grape must (Torija et
al., 2001; Kapsopoulou et al., 2005) and has beparted to enhance the overall acidity of
wine due to the high production of L-lactic aciddM et al., 1990; Gobbi et al., 2013). This
characteristic may be desirable for wine with a bidity (Balikci et al., 2016). Moreovel,
thermotolerands able to increase the concentration of intemgséiromatic molecules in co-
fermentation withS. cerevisiaethan whenS. cerevisiags used alone. These molecules
include ethyl esters and terpenes (Benito et @lL52Balikci et al., 2016; Benito et al., 2016),
as well as glycerol (Kapsopoulou et al., 2006). Tietechnological interest of co-
fermentation with norsaccharomyceandsS. cerevisiaén wine making is now clear (Garcia
et al., 2016), but co-fermentation is not well cohéd. Indeed, the presence of non-
Saccharomycegeasts withS. cerevisiaeduring alcoholic fermentation leads to interacsion
between these different species (Ciani et al., p@dtich are highly dependent on the species
and strains used (Wang et al., 2016). Among suehnaations, competition for nutrients, such
as nitrogen and oxygen, can be among the earliest dccur during co-fermentation,
especially in sequential fermentations (inoculatioth S. cerevisia@ minimum of 24 h after
inoculation with the norsaccharomycegeast). Indeed, the nddaccharomycegsonsume
nutrients beforeS. cerevisiaeinoculation, leading sometimes to sluggish ferratoh
(Sablayrolles et al., 1996; Alexandre and Charpenti998; Taillandier et al., 2007). Among
these nutrients, phytosterols may be good candidatstudy these interactions. Indeed, under

conditions of aerobiosis, yeast are able to syitbamsaturated fatty acids (UFA) and sterols
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for membrane integrity and energy production, withsuccession of reactions involving
oxygen-dependent enzymes (Tehlivets et al., 20@3\ever, in the absence of oxygen, these
enzymes are not active and yeast use the fattg arid sterols present in the must (Salmon,
2006). It is important to know the proportion ofetlphytosterols consumed by non-
Saccharomycesbefore inoculation with S. cerevisiae when performing sequential

fermentation.

Competition for nutrients is not the only interactithat occurs during alcoholic fermentation,
because direct physical contact between 8aoceharomyceandS. cerevisiaeells could lead
to cell-cell interactions. Indeed, several studiase shown early growth arrestladichancea
thermotoleransn co-fermentations witls. cerevisiaeThey concluded that this is due to a
cell-cell contact mechanism (Nissen and Arneborf@)32 Nissen et al., 2003), whereas
Albergariaet al. (2009) and Brancet al. (2014) showed that antimicrobial peptide secretion
is responsible for the early death of this r®accharomycegeast. Several other molecules
are involved in yeast-yeast interactions and aftbet growth of yeast, such as tyrosol,
tryptophol, and phenylethanol, which aggiorum sensingmolecules, especially under
nitrogen-limiting conditions (Zupan et al., 2013prizélez et al., 2018; Valera et al., 2019).
Additional interaction mechanisms have been repogrd reviewed recently (Liu et al.,
2015). Although cell-cell contact may explain somiractions between yeast, the effect of
cell-cell contact on yeast metabolism relative toew the different species are physically

separated has never been investigated.

Here, we exhaustively studied the interactions bet.. thermotolerangandS. cerevisiady
comparing pure fermentations of each species witjuasntial fermentation, with and without
their physical separation. The competition for yeassimilable nitrogen (YAN), oxygen, and,
for the first time, phytosterols was also studi®de analyzed the consequences of such

interactions on volatile compound profiles and rgpbeir impact on the exo-metabolome.

. Materials and methods
1. Yeast strains
A modified S. cerevisiaestrain supplied by INRA/SupAgro Montpellier wasedsin this
study: S. cerevisiadb9A-GFP MATa hoAMNL:TEF2Pr-GFP-ADH1-NATMX4, a haploid
derivative of the commercial wine strain EC1118 dified to strongly express eGFP(S65T)
(Marsit et al., 2015).
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L. thermotoleransBBMCZ7-FA20 (previously isolated and identifie¢y 5adoudi et al.
(2012)) was used as the nBaccharomycegeast strain.

2. Growth conditions

All yeast strains were grown at 28°C in modified Yfhedium (20 g.L* glucose, 10 gt
peptone, and 5 gl yeast extract with 18 gl of agar for Petri dish cultivation),
supplemented with 0.1 gLchloramphenicol. For fermentation inoculation, stsavere pre-
cultured in 250-mL sterile Erlenmeyer flasks, cthsédth dense cotton plugs, containing 150
mL modified YPD medium and incubated with agitat{@00 rpm) at 28°C for 24 or 48 h.

3. Fermentation conditions

Fermentations were carried out in triplicate in t@himust containing 212.1 + 4.81 L
glucoseffructose, pH 3.41 + 0.02, as well as 2312D.5 mg.L* total assimilable nitrogen.
The must was centrifuged at 7,000 x g for 7 mid°& before use. Sugar concentration and
ethanol production were monitored by Fourier transked infra-red spectroscopy (FTIR,
OenoFOSS™, FOSS, Hilleroed, Denmark). The detectielh was filled with 200 pL
centrifuged (12,000 g for 5 min at 4°C) supernafeorn cultures and the analysis run using

FOSS User Interface software.

3.1. Pure fermentations

Pure fermentations were carried out in 1-L testsubontaining 800 mL white must and
closed with specific silicon caps. Each test tulzs inoculated with focells.mL* from a
YPD-medium pre-culture db. cerevisia®r L. thermotoleransnd incubated at 20°C without
agitation.

3.2. Sequential fermentations in flasks

Sequential fermentations were carried out in 2-&t@arized (2 h at 70°C) test tubes, closed
with specific silicon caps. Two different fermemdait conditions were tested: without (i) and
with (ii) cell-cell contact.

I.  Three test tubes were filled with 1.2 L white muastd a dialysis membrane
(Spectra/por, Spectrum Labs, MWCO 12-14 kDa, diam&8 mm, length 60 cm)
containing 600 mL white must was added to eachttds& (total must volume 1.8
L). The dialysis membranes were inoculated with déis.mL* L. thermotolerans
from YPD pre-cultures, and the test tubes (extemmadlium) inoculated 24 h later

with 10° cells.mL™* of S. cerevisiadrom a YPD pre-culture.



130 ii. Three test tubes were filled with 1.8 L white mysb dialysis membrane),
131 inoculated with 10 cells.mL* L. thermotoleransand then 24 h later with 10
132 cells.mL* S. cerevisiaehoth from YPD pre-cultures.

133 All test tubes were incubated at 20°C without dmita
134

135 4. Flow cytometric analysis

136 4.1. Yeast viability

137 All fluorescent dyes used in this study were puselhfrom ThermoFisher Scientific,

138 Invitrogen.

139 Yeast viability was monitored during fermentatiorthapropidium iodide (PI) dye (maximum
140 excitation/emission wavelengths 538/617 nm), whitctds to DNA when the cell membrane
141 is compromised, triggering its fluorescence. Fertmgnyeast ( 1 mL) was centrifuged at
142 12,000 x g for 5 min at 4°C. The pellet was resodpd in 1 mL PBS buffer (137 mM NacCl,
143 2.7 mM KCI, and 11.9 mM Phosphate, pH 7.2) (Fisheentific, Illkirch, France) and serial
144 dilutions prepared. PI (1 pL at 0.1 mg.thin water) was added to a 100 pL aliquot. Samples
145 were incubated 10 min in the dark and analyzeddw €ytometry.

146

147 4.2. Flow cytometer settings

148 Flow cytometry was performed with a BD Accuri C6vil cytometer and the data analyzed
149 using BD Accuri C6 software. For each run, 20 ulsample was analyzed at 34 pL.thin
150 with a FSC threshold of 80,000, and SSC-H/FSC-Hspdmalyzed using logarithmic axes. A
151 488-nm wavelength argon laser was used to exatecéfis (autofluorescence) and dye. An
152 FL3-H long-pass filter (675 nm) was used for Pbfiescence.

153

154 5. Amino-acid and oxygen guantification

155 Oxygen consumption during alcoholic fermentationswaonitored using Pst3 sensors
156  (Nomacor€) placed at the inner face at the top of the telses. The oxygen concentration
157 was read using a NomaSense™ 02 P300 device (Noo@dollowing the manufacturer’s
158 instructions. The oxygen concentration was measurédplicate before stirring the media in
159 the test tubes.

160 Amino acids and ammonium were quantified by HPL@escribed previously (Gobert et al.,
161 2017).
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6. Phytosterol quantification by gas chromatographgsrepectrometry (GC-MS)

Must samples (50 mL) were taken at TO and T24 hresponding to the must without yeast
and 24 h of fermentation Hy. thermotoleransrespectively. Prior to extraction, 250 puL of
cholesterol (Sigma-Aldrich, Merck, Germany) at I@y.mL* in ethyl acetate (Sigma-
Aldrich, Merck, Germany) was added in must samplégst samples were transferred to a
separatory funnel, 25 mL of chloroform (Biosolveile, France) added, the samples well
agitated, and the organic lower phase collecteids $tep was repeated three times and the
organic phases were combined. To eliminate remgimmater, anhydrous sodium sulfate
(N&SO, powder, Sigma-Aldrich, Merck, Germany) was addgamples were transferred to
250 mL glass balloons and the solvent evaporatéu aviotary vacuum evaporator to reduce
the volume to approximately 1 mL. This volume wamnsferred to 1-mL brown-glass vials
and completely evaporate under anflNx. A cold saponification was done by adding 900

of absolute ethanol (Carlo Erba, France) and 250ofila saturated potassium hydroxide
(KOH, Merck Darmstadt, Germany) agueous solutido each vial. Samples were purged
with nitrogen, and was put into a rotary shakernfddd Buhler, Johanna Otta GmbH,
Hechingen, Germany) at ambient temperature in &k dvernight (15 h). The solution was
transferred in a 100 mL separation funnel and 10 ohldistilled water were added. The
unsaponifiable fraction was extracted three tim#\2i mL of diethyl ether (Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany). The combined oiga&xtracts were removed with a
rotary vacuum evaporator and the residue was dnnetkr nitrogen flow. After additional 2
mL of diethyl ether, the unsaponifiable residue warefully transferred to a 2 mL glass test
tube and then evaporated to dry matter under mtratpw. Then the sterol residue was
converted to trimethylsilyl (TMS, Sigma-Aldrich, W&k, Germany) ethers with 100 pL of
pyridine and 100 puL of N,O-Bis(trimethylsily)triforoacetamide (BSTFA, Sigma-Aldrich,
Merck, Germany) at room temperature in the darkmgat and then, diluted with 800 uL of
isooctane (Sigma-Aldrich, Merck, Germany). One wliter of each sample was injected into
the GC-MS system. Phytosterol analyses were peeiian a GC-MS device, composed of a
Varian STAR 3400 GC instrument equipped with an-totumn” injector coupled to a mass
spectrometer (Saturn 2000, Varian, France) witlctEdaic Impact as an ionization source
(El, ionization energy of 70 eV), working with a ssarange from 40 to 600 m/z. Data
acquisition and processing were performed with Marbaturn Work Station 5.11 software
using the NIST mass spectral database for compaerdification. The separation of each

compound was performed with a capillary column &aEbur VF-5ms (stationary phase: 5%
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phenyl-95% dimethylpolysiloxane, thickness of 0.1 80 m x 0.25 mm, Varian, France).
Initial temperature of the column was 50°C (maiméa for 2 min). The column temperature
was programmed to reach 105°C at a rate of 7°C.rfiimaintained for 2 min), then 170°C at
a rate of 10°C.mih (maintained for 2 min), and finally 320°C at aeraf 7°C.mif
(maintained for 15 min). The injector temperaturasveet to 50°C and programed to reach
300°C at a rate of 100°C.mirand kept at this temperature until the end of yamigl The
injected volume was set to 1 pL and was under tmtral of an automatic injector (8500,
Varian, France). The carrier gaz was Helium (995989Air liquid, France) and was set to a

flow rate of 1 mL.mift. Sterols were quantified against cholesterol asi@nnal standard.

7. Volatile compound quantification

Volatile compounds were quantified by HeadSpacedSéthase MicroExtraction-Gas
Chromatography/Mass Spectrometry as reported prshiqGobert et al., 2017). Briefly, 2
mL of wine was placed in a 10-mL vial fitted with sslicone septum, which was then
transferred to a silicon oil bath at 40°C and tampgle incubated for 10 min with magnetic
stirring (700 rpm). A divinylbenzene/carboxen/patyéthylsiloxane (DVB/CAR/PDMS)
fiber (Supelco, Bellefonte, PA, USA) was exposedhi® sample headspace for 30 min and
then subjected to immediate desorption in the dasnsatograph injector set at 260°C.
Volatile compounds were analyzed by gas chromaptyraoupled to a quadrupolar mass-
selective spectrometer. GC—MS analysis was perfdrimeomplete scanning mode (SCAN)
in the 30—300 mass unit range. Compounds wereifg@hby comparing their mass spectra
and retention times with those of standard compswrdvith those available in the Wiley 6

mass spectrum library or reported in previous alibns.

8. Metabolomics: Fourier Transform-lon Cyclotron Remore-Mass Spectrometry
(FT-ICR-MS)

8.1. FT-ICR-MS metabolome profiling

Direct-infusion FT-ICR mass spectra were acquirdgith & 12 Tesla Bruker Solarix FT-ICR

mass spectrometer (Bruker Daltonics, Bremen, Geyjnadrhe samples were diluted 2:100
(v/v) in methanol (LC-MS grade, Fluka, Germany). afjy control (QC) samples were

prepared by pooling equal amounts of all sample€. famples were analyzed at the
beginning and after every 10 samples to monitorgipeoducibility of the measurements. QC
spectra showed good repeatability and reprodutsitmli the method (spectrum profiles were

very similar between each QC) with a very low coéfht of variation (supp fig. 1). The
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diluted samples and QC samples were infused irdeelbctrospray ion source at a flow rate
of 2 pL.min'. Settings for the ion source were: drying gas &majpre, 180°C; drying gas
flow, 4.0 L.min*; capillary voltage, 3600 V. The spectra were aeglivith a time-domain of

4 megawords and 300 scans were accumulated withirass range of 92 to 1000 m/z. A
resolving power of 400,000 at 300 m/z was achie¥edorted features were assigned to
elemental formulae and represented using an ¥WGQO/C van Krevelen diagram, which
highlights family compounds, such as carbohydrétg€ 1.5-2; O/C 0.8-1), fatty acids (H/C
1.9-2.1; O/C 0-0.25), amino acids (H/C 1-2; O/C-0.2), nucleic acids (H/C 1.1-1.4; O/C
0.3-1), and anthocyanins (/C 0.5-1; O/C 0.4-0.®). (f). The metabolite formulae can then be
entered into data bases, such as KEGG, LipidmapDBMVetlin, or an in-house developed
plant and wine database, to annotate them andfiylentresponding metabolic pathways.

8.2. Statistical analysis

The MS was first calibrated using arginine ion téus (57 nmol.mL in methanol). Next, raw
spectra were further internally calibrated usingfarence list, including known wine markers
and ubiquitous fatty acids, to achieve the bessiptes mass accuracy and precision among
the samples. Raw spectra were post-processed @ingpass DataAnalysis 4.2 (Bruker
Daltonics, Bremen, Germany) and peaks with a sigmabise ratio (S/N) of at least six were
exported to mass lists. All exported features vedigned in a matrix containing averaged m/z
values (maximum peak alignment window width: £ 1nppand corresponding peak
intensities of all analyzed samples. Only m/z feeguof monoisotopic candidates and those

with feasible mass defects were retained in theirat

All further data processing was performed using rbsoft Excel 2010 and R Statistical
Language (version 3.4.1). Only molecular featuretected in at least two of the three
replicates (S/N> 6) of one sample group were considered for furttheta analysis and
interpretation. Remaining m/z values were assigodteir unambiguous molecular formulae

as already described.

Principal component analysis (PCA), hierarchicalstdr analysis (HCA), and analysis of
variance (ANOVA) were performed using Perseus 165.(Max Planck Institute of
Biochemistry, Germany). For HCA, the Euclidean aliste and average linkage were chosen
and for ANOVA, a thresholg-valueof 0.05.
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[1. Results and discussion

1. Fermentation kinetics and yeast viability

We carried out sequential fermentations to obtalmetter understanding of the interaction
between S. cerevisiaeand L. thermotolerans Must was first inoculated withL.
thermotoleransand 24 h later withS. cerevisiaeto allow the growth of the non-
Saccharomycegeast species before the additiorBoterevisiadGobbi et al., 2013; Sadoudi,
2014, Balikci et al., 2016). Sequential fermentasiovere carried out with or without physical
contact to study the consequences of cell-celrasteons. Indeed, such a strategy has been
used previously to successfully investigate thigetyf interaction (Nissen and Arneborg,
2003; Nissen et al., 2003; Renault et al., 2013jl&os et al., 2019).

1.1. Fermentation kinetics

The kinetics of sugar consumption and ethanol prbolia for each fermentation are presented
in fig. 2. Pure fermentation witls. cerevisiae(SC) resulted in complete alcoholic

fermentation in 10 days, reaching 13.3% (v/v) ethawmith no remaining sugars. Pure

fermentation withL. thermotolerangLT) was slower, the percentage of ethanol reagchin
12.2% (v/v), but fermentation was not complete neafter 21 days, with remaining sugar at a
concentration of approximately 5.7 ¢.LSequential fermentations with (SF+) or withoug{S

) physical contact (fig. 2) were both complete & days, with approximately 13.2% (v/v)

ethanol and no remaining sugars. These slower ikmetelative to those with SC, are a
reflection of negative interactions. Thus, yeashbility was monitored to explain this

behavior.

1.2. Yeast viability

We used a modifieds. cerevisiaestrain expressing green fluorescent protein (GtP)
separate th&. cerevisiadrom the nonSaccharomycepopulation, allowing the use of flow
cytometry to follow cell viability during pure arggquential fermentations.

Cell viability was determined by PI staining (Dedblet al., 2012) and Pl-negative cells were
considered to be viabld.. thermotoleranscells in LT and both SFs (fig. 3A) showed a
maximum viable population of approximately 1.50 & tells.mL* after 24 h of alcoholic
fermentation, which remained stable until day Sthwio significant difference between the
three conditions (t-testp < 0.05). However, there was a rapid decrease efvihble
population in both SFs when the percentage of elheeached approximately 10% (v/v),
whereas no decrease occurred in LT. This result/shioatS. cerevisiadad no impact on the

growth ofL. thermotolerandut suggests that thermotoleran$as difficulties in adapting to
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the faster fermentation kinetics imposed $ycerevisiaen SF, confirming previous results
(Nissen et al., 2003; Kapsopoulou et al., 2006c(azat al., 2017).

We observed the largest viable population (1.42%cglls.mL?) for S. cerevisiaeells in SC
(fig. 3B), whereas the lowest was found for the ®s: 6.57 x 10cells.mL* for SF- and
only 9.37 x 16 cells.mL* for SF+, representing a decrease of 54.0 and 98##te viable
population, respectively. These results confirmribgative impact of. thermotoleran®n S.
cerevisiaein both SFs, with a lower population $f cerevisiaeThis decrease was greater in
SF+ than SF-, reflecting a cell-cell contact-demgmidmechanism, confirming previous
reports (Nissen et al., 2003; Renault et al., 2Qtpez et al., 2014; Rossouw et al., 2018).
However, despite the difference in viable populaibetween the two SFs, the fermentation
kinetics were exactly the same (fig. 2). The loiementation activity in SF- could be
explained by higher competition for nutrients, sire higher biomass was present than in
SF+. Nutrient depletion could explain the reducedmientation activity, as previously
described (Bely et al., 1990; Carrau et al., 2@8rajon et al., 2011).

2. Competition for nutrients

Yeast under fermentation conditions are subjectedery low concentration of dissolved
oxygen, which could affect their growth rate beeatey require it for unsaturated fatty-acid
(UFA) and sterol synthesis, in particular ergodietmth involved in yeast membrane
formation (Salmon et al., 1998; Deytieux et al.Q20 Indeed, under conditions of aerobiosis,
yeast are able to synthesize UFA and sterols wéiicaession of reactions involving oxygen-
dependent enzymes (Tehlivets et al., 2007). Howdabhesse enzymes are not active in the
absence of oxygen. Under such conditions, yeastfaise acids and sterols present in the
medium, i.e. fatty acids and phytosterols present in the msbur case. The impact of
dissolved oxygen on noBaccharomycéS. cerevisiae interactions is only poorly
documented (Hansen et al., 2001; Englezos et @L8)2 These authors showed that the
addition of oxygen to co-fermentations 8f bacillaris and S. cerevisiaepromoted the
persistence 08. bacillaris Based on these results, the competition for oxygmuld, in part,
explain the observed interaction. Thus, we monatdiee consumption of dissolved oxygen
during both SFs and quantified phytosterols inrthest before inoculation witB. cerevisiae
(24 h of fermentation by. thermotoleransalone) to determine whethér thermotolerans
consumes these nutrients bef@e cerevisiagnoculation. We measured dissolved-oxygen

levels 3 h (time 0.125 days) after thermotolerangnoculation and every day thereatfter,
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before the other analyses, to determine the kimetialissolved-oxygen consumption (figure
4). The consumption of dissolved oxygen lhythermotoleranavas very rapid, with a drop
from 4.1 mg.L* at TO to 0.21 mg.t after 3 h and down to 0 mg'ifor all fermentations until
day 18, with an increase for SF- by day 21. Theselts highlight the absence of dissolved
oxygen in both SFs. The very low concentrationafgen present when the fermentation was
inoculated withS. cerevisiaeould explain the lower biomass observed undec@féitions.
Indeed, oxygen availability has been shown to affccerevisiadbiomass production and
viability during alcoholic fermentation (Blateyroand Sablayrolles, 2001; Fornairon-
Bonnefond and Salmon, 2003). Moreover, it has bestently reported that oxygen
availability strongly influences the viability ofon-Saccharomycespecies (Varela et al.,
2012; Shekhawat et al., 2017; Englezos et al., R00l&us, early consumption of oxygen by
L. thermotoleranscould partially explain the decreased biomass aadility of the yeast
during both SFs.

We also monitored phytosterol uptake bythermotoleransduring the first 24 h, before
inoculation with S. cerevisiagin parallel to oxygen consumption. The major piserol
present in the must wdssitosterol (Table 1)as reported in the literature (Luparia et al.,
2004; Rollero et al., 2016), at a concentratioamfroximately 29 mg.t, with the two other
phytosterols present at lower concentrations, agpmately 1.9 mg.[* for campesterol and
1.6 mg.L* for stigmasterol.L. thermotoleransconsumed approximately 68% of tifie
sitosterol, 14% of the stigmasterol, and all theapasterol in only 24 h of fermentation. Thus,
only a low concentration of the remaining phytosiewere available fo. cerevisiagrowth
under anaerobiosis. Both oxygen and phytosterakgpbyL. thermotoleransnay explain, in
part, the negative observed interaction, whichtte decrease in biomass, viability, and
consequently fermentative capacity. Indeed, thesstencountered . cerevisiagnay be
explained, in part, by the direct anaerobiosishat ttme of inoculation, blocking ergosterol
and UFA synthesis, as well as the absence of pieytds available to replace ergosterol in
the membrane, which can affect growth and fermmemetaictivity, as shown by Luparit al.
(2004), Deytieuxet al. (2005) and Salmon, 2006. This is the first timat tbompetition for
oxygen and phytosterol has been reported in a yeast interaction study. Hansenh al
(2001) and Englezost al. (2018) previously showed that low oxygen level&etf non-
Saccharomycespecies and phytosterol uptake has only beenestudiS. cerevisiaestrains
(Luparia et al., 2004; Rollero et al., 2016).
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3. Quantification of YAN and volatile compounds durialgoholic fermentations
3.1. YAN quantification

The nitrogen content of grape must is a key fafogyeast growth and a sufficient quantity is
required to avoid stuck/sluggish fermentatio (Watal., 2003; Bell and Henschke, 2005;
Gobert et al., 2017). An important part of YAN carfeom ammonium, which must be in
sufficient amounts for the growth of n&@accharomyceandS. cerevisiaeCertain amino
acids can be used as YAN sources and aromatic aagitts are precursors for volatile
compound production, increasing wine complexityriisawasd et al., 2015; Gonzélez et al.,
2018). Thus, we analyzed the consumption of YANreses during the first day of
fermentation byL. thermotolerango assess the remaining YAN sources at the tim8. of
cerevisiaeinoculation (Table 2). There was considerable keptaf the various nitrogen
sources by. thermotoleransAmong them, Arg, Asn, GIn, lle, and Ser have bsgleown to
be preferred nitrogen sources farcerevisiadGodard et al., 2007; Kemsawasd et al., 2015),
meaning that under our conditions, only non-prefea¢ or intermediate sources were
available at the time o0%. cerevisiaeinoculation. Thus, consumption of the preferential
nitrogen sources bly. thermotolerang> 79%) could explain, in part, the lower biomassd a
viability of S. cerevisiaainder both SF conditions than that of pure fereugm, for which

all nitrogen sources are available.

Indeed, there must be a synergistic effect betweggen, phytosterol, and YAN uptake by
thermotoleranghat negatively affects the growth 8f cerevisiaelt is highly likely that the
lower biomass 08. cerevisia@inder SF conditions is triggered by limited nuttiavailability

(oxygen, phytosterols, and nitrogen sources).

Aside from the effect on yeast biomass and yeastilty, oxygen, phytosterol, and YAN
influence the volatile composition of wine (HirstdaRichter, 2016). Consumption of these
nutrients byL. thermotolerangsould thus affect the volatile composition of wine

3.2. Volatile-compound quantification

We quantified volatile compounds by HS-SPME-GC/ME 4l fermentations to assess the
impact ofL. thermotoleranson SF. This method identified 40 volatile compasind our
fermentations (Table 3). We thus performed PCA sl based on these 40 volatile
compounds. PCA analysis clearly distinguished three different modalities (fig. 5). Wine
produced by SC could be separated from that pradbgd.T on the basis of higher alcohol

content. Wines produced by both yeast species farmistinct group, but there were
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observable differences between the SF+ and SF- liieslawhich reflect the impact of cell-
cell contact on volatile compound production. Tisighe first time that volatile compounds
have been analyzed under SF conditions, with onowit cell-cell contact, although several
other studies of co-fermentation with. thermotoleransand S. cerevisiachave been

performed, but not with physical separation, asudised above.

A detailed examination of volatile compound compiosi(Table 3) shows that LT resulted in
the highest concentration of total alcohols, wiiprmximately 622.7 mg.L versus 475.7,
455.2, and 494.3 mglfor SC, SF+, and SF-, respectively. Thus, the gmes of S.
cerevisiaelimits the production of higher alcohols hy thermotoleransThese results could
reflect a decrease in the viability thermotoleransafter eight days of SF, leading to lower
concentrations of higher alcohols than with LT. dontrast, the total concentration of
medium-chain fatty acids for LT was approximatel$ 3ng.L*, lower than for SC (12.2
mg.L"). Each SF condition resulted in a specific conegiun of these compounds, 7.03
mg.L* for SF+, representing an intermediate concentratietween that of LT and SC, and
14.3 mg. for SF- . Our results show that the cell-cell cohtamodulates the production of
medium-chain fatty acids, with an almost two-fatsver concentration for SF+ than SC. Our
results contradict those of previous studies, whichnot find any differences in medium-
chain fatty acid production between co-fermentatb8. cerevisia@andL. thermtoleransand

S. cerevisia@ure fermentation (Benito et al., 2015, 2016; Balet al., 2016). There were no
differences in aldehyde, ketone, or lactone lebelisveen LT, SC, and SF+ but they were
slightly lower for SF- than SC and SF+. There was® no significant differences for terpene
compounds between conditions. The last compoundyfdhat we analyzed was esters. The
total concentration of these compounds in LT wa8 B§.L*, the lowest for all conditions.
Indeed, the total concentration was similar for &@ SF-, 1,725.0 and 1,873.1 pg.L
respectively, whereas SF+ showed an intermediateettration of 1401.8 pg:L Globally,
the presence df. thermotoleransppears to decrease the concentration of somes estee

in SF+ than SF-, which was also observed in thalystonducted by Baliket al. (2016) in a
24-h sequential fermentation. These results demaiesta negative impact ot.
thermotoleranon S. cerevisiador the production of most esters, showing ancefté cell-
cell contact on ester production, whereas thesepoands are desirable in wine because of
their sweet, floral, or fruity aromas (Beckner Vémiér et al., 2015). Studies conducted by
Gobbi et al. (2013) and Benitoet al. (2015) on volatile compounds in SF with
thermotoleransandS. cerevisiadave shown an increase of ethyl lactate, ethyhheate, and
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isoamyl acetate concentrations, with a decreagbasle of ethyl octanoate and phenylethyl

acetate, as found in our study.

Several studies on nitrogen sources and volatilepounds have attempted to elucidate the
relation between amino acids and volatile compounae important families for yeast in
enological conditions. Indeed, amino-acid precurand volatile-compound synthesis are
linked by regulation of the Ehrlich pathway, whieRplains the conversion of some amino
acids to aromatic volatile compounds (Hazelwoodakt 2008). Thus, the decrease in
phenylethyl acetate concentrations, which givesevarfloral aroma, under both conditions of
SF can be easily explained by the depletion of platéamine byL. thermotoleranshefore
inoculation withS. cerevisiaeHowever, recent studies conducted by Cré&pial. (2017) and
Rolleroet al.(2017) show that the link between amino acids asidtfve compounds is not so
simple, even if the influence of YAN on volatilerapound production has been confirmed,
although it is not fully understood. Their resudtsow that even if phenylalanine is absent for
phenylethyl acetate production, the intermediatengtethyl alcohol is present at the same
concentration in all fermentations, meaning thaeometabolic pathways may be involved in
phenylethyl acetate production. We made a simiteeovation for isoamyl acetate (banana
aroma), which increased under both SF conditiorgereas its precursor, leucine, was also
depleted by.. thermotolerans

4. Metabolomic analysis by FT-ICR-MS
We analysed the exo-metabolome at the end of dlicoleomentation for each fermentation

to better understand the nature of the interactietween yeast species, since it has been
shown previously that this approach can succegsfuliavel interaction mechanisms (Liu et
al., 2016).

FT-ICR-MS analyses of SC, LT, SF+, and SF- werdopered at the end of alcoholic
fermentation. We performed a PCA that included@iinentation conditions (fig. 6A). PCA
showed that SC, LT, and SF- present different ertabolomes, with good separation
between SFversusSC, LT, and SF+, according to axis 1 (36.8% of whaability) and a
separation between LJersusSF-, SC, and SF+, according to axis 2 (20.8% efvdriability)

(fig. 6A). Based on PCA, SC and SF+ appear to taweore similar exo-metabolome than
that of SCversusLT or SF-. These results show that a must fernterdg a non-
Saccharomycegeast, herd.. thermotoleranshas an exo-metabolome distinct from that of
the same must fermented I3y cerevisiaeNevertheless, the association of the two yeast
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species by physical contact (SF+) shows the dommanf S. cerevisiaeover L.
thermotolerans whereas physical separation (SF-) led to the fiwadion of both exo-
metabolomes, resulting in a new exo-metabolomewdifft from that of SC or LT. We then
analyzed the metabolite composition of each feratert. A Venn diagram (fig. 6B)
highlights the difference in composition between, T, SF+ and SF-. First, there were
gualitative differences. For example, only two negswere unique to SC, four to SF+, 28 to
SF-, and 24 to LT, whereas 15 masses were unigq8&toand SC, as well as 91 to SC, SF+
and SF-. Each yeast species clearly produced unitptabolites in pure fermentation not
found in the others. Moreover, the presence of Z§ue metabolites in SF- show that cell-
cell contact modifies the metabolism $f cerevisiaer L. thermotoleransas 28 metabolites
were unique to SF- and only four to SF+. This daagrlso shows that 1,247 masses (66.8%
of the total composition) were common to all fertagions, but the concentrations varied,
depending on the conditions of fermentation (SC, BEF+ and SF-). We performed an
ANOVA (threshold p-value < 0.05) to find markers that can discriminate lesw
fermentations. Specific markers are representetd hierarchical cluster analysis (HCA) and
in Van Krevelen diagrams, highlighting compound ilees, coupled to histograms of
elemental formula composition (fig 7). HCA (fig. YBonfirmed the four groups found above
by PCA, with a greater distance between LT andother conditions, as well as a very high
similarity between SC and SF+ conditions. Thus,eample, SC markers (fig. 7B, SC) are
composed of CHO (blue), CHOS (green), and CHONn@e in similar quantities (between
10 and 15), but CHNOS (red) compounds are preseahly low quantities (approximately
5). These compounds can be associated mostly waithobydrate, anthocyanin, and amino-
acid families. Each fermentation gave a speciffif@ in which carbohydrate, amino-acid,
nucleic-acid, and anthocyanin families were foumdli (fig. 7B). However, the intensity of
the compounds in each family differed greatly, daeldeg on the fermentation condition,
showing that each yeast species has a differenaboiedm. This metabolism is modified
when both yeast species are put together, witlfifereint response, depending on whether the
cells are physically separated or not. Moreover,gdhantity of compounds was greater for LT
and SF-, with approximately 170 for LT (mostly CH@d CHON compounds) and 320 for
SF- (mostly CHO and CHON compounds), than for S@piaximately 50) and SF+
(approximately 105), meaning that a higher divgrsftcompounds was found in LT and SF-.
Each yeast clearly has its own impact on SF+ andrSterms of chemical composition and

these results show that interactions between aSamcharomyceyeast andS. cerevisiae
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affect not only the volatile compound profile busathe metabolite profile, with specific

exo-metabolomes for SC, LT, SF+, and SF- fermeamiati

We carried the analysis further by making pairvdsmparisons for all conditionse. LT/SC,
LT/SF+, SC/SF+, LT/SF-, and SC/SF-, to highlightrkeas for each pair (fig. 8). First, PCAs
were performed for each pair to assess the separatieach fermentation according to axis
1, representing 86.2% of the variability for LT/S89.7% for LT/SF-, 61.6% for SF+/SF-,
46.9% for LT/SF+, and 38.1% for SC/SF+, again hgjtiing the difference between LT and
both SF conditions, as well as the similarity beawéhe SC and SF+ conditions (fig. 8, left).
Second, we used ANOVA (threshofmtvalue < 0.05), to find markers for each pair of
conditions, represented in H/@. O/C van Krevelen diagrams coupled to histograms of
elemental formula composition (fig. 8, middle amght). Carbohydrate, amino-acid, nucleic-
acid, and anthocyanin families were mostly represkmn all comparisons. The next step
consisted of annotating these biomarkers and etimgl them with the metabolic pathways
involved. We sought biomarkers in several datab8sESG, Lipidmap, YMDB, Metlin and
an in-house plant and wine database) and genesaSshrch and color KEGG visualization
(supp. fig. 2) (Kanehisa and Goto, 2000; Kanehisal.e 2012). Based on the 76 identified
metabolic pathways, most LT and SF- biomarkers iavelved in carbohydrate, carbon
fixation, and amino-acid metabolism. We were unablalentify any biomarkers for SC and
only two for SF+, which are involved in carbohydraind nucleotide metabolism (supp. fig.
2). This highlights the complex metabolite comgositof wine, which is still poorly
understood, as reported previously by studies USIHICR-MS on wine (Roullier-Gall et al.,
2014a, 2014b; Roullier-Gall et al., 2015).

These results show that metabolites produced bsgt yeader our different conditions result
mainly from sugar and nitrogen source metabolistso(@hown in supp. fig. 3), which
represents 20 of the 76 identified metabolic pagswvdhis is not surprising because of the

lack of these nutrients at the end of alcoholiofentation.

These results provide new insights for the furtlardy of interactions between non-
Saccharomyces&nd S. cerevisiaeby comparing specific exo-metabolomes (composed of
specific markers) of each fermentation, which maflect the impact of interactions on

metabolite production.
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Thus, the biomarkers found in our fermentations rhayuseful given the high intensity of
metabolites specific for fermentations performedhvii. thermotoleransS. cerevisiagand
SF of both species, with or without cell-cell carita

5. Conclusion

Here, we aimed to investigate the interactions thatur betweerS. cerevisiaeand L.
thermotoleransduring alcoholic fermentation of grape must. Tkeults obtained from all
analyses performed in this study highlight a negatinteraction between the two species to
the detriment ofS. cerevisiaedue to a cell-cell contact mechanism (SF+ fereuem) and
the consumption of essential nutrients by thermotoleransduring both SF conditions.
However, L. thermotoleransvas also negatively affected by the presenc&.oferevisiae
under both SF conditions, even if the quantifiaated volatile compounds showed tHat
thermotoleranss able to modulate aroma complexity without difeces between the two SF
conditions. Moreover, this study provides, a congwer of the exo-metabolomes &f
thermotoleransandS. cerevisiagure fermentations, as well as SF with both sjgeeigth or
without cell-cell contact. This comparison showéattinteractions also affect metabolite
production byL. thermotoleranandS. cerevisiagluring alcoholic fermentation in a different

manner as a function of the condition.

In conclusion, this study provides new insights aaning the interaction of L.
thermotoleransandS. cerevisiaaluring the alcoholic fermentation of grape musbwdver,
further study of the cell-cell contact mechanisnd &mrther identification of the metabolites
needs to be carried out to better understand tleeactions between these two yeast species

and to investigate if these interactions betweenwo species are strain dependent.
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Figure 1: (Left) H/C vs. O/C van Krevelen diagrahtommon masses found in all fermentations (LT,
SC, SF+ and SF-) with the region where metabdditeilies are represented and (right) histograms
representing the abundance of metabolites compeiteCHO, CHOS, CHON or CHONS atoms.

Figure 2: Fermentation kinetics with sugar consuomgst (glucose and fructose) and ethanol
production by yeasts in pure and sequential feratems with and without dialysis membrane in
white must at 20°C:- A - - Glucose/fructose andh - % Ethanol v/\S. cerevisiae pure fermentation
(SC); - ‘m- - Glucose/fructose ana- % Ethanol vAL. thermotolerans pure fermentation (LT);-¢- -
Glucose/Fructose and- % Ethanol v/v sequential fermentation without coh{&F-); -o- -
Glucose/fructose an@- % Ethanol v/v sequential fermentation with cob{&F+). Error bars
represent the standard deviation of the results.

Figure 3: Curves representing the concentratidpl afegative cells (viable cells, log representgtio
in pure and sequential fermentations in white nati0°C:

(A) o L. thermotolerans pure fermentation (LT): — o — — L. thermotolerans SF+;--0- - L.

thermotol erans SF-.

(B) A S cerevisiae pure fermentation (SCy; — A— — S cerevisiae SF+;--A - - S cerevisiae SF-.
Error bars represent the standard deviation ofdhaelts.

Figure 4: Consumption of dissolve oxygen duringhédic fermentation of both sequential
fermentations with (SF+) or without (SF-) contaet: SF+;-m- SF-.

* significative difference (T-tesp-value < 0.05) between both fermentations and error tegmesent
the standard deviation of the results.

Figure 5: Biplot of the principal component anady@?C1 vs. PC2) for volatile compounds found in
each fermentations. Ellipses represent clusteesrdd from HCA.

SF+: sequential fermentation with contact

SF-: sequential fermentation without contact (mmimpartments)

SC:S cerevisiae pure fermentation

LT: L. thermotolerans pure fermentation

Figure 6: (A) Principal component analysis (PC1RG2) of metabolite profiles for each fermentation
condition. (B) Venn diagram representing metabslitaind exclusively in each fermentation as well
as those found in two or more fermentations, wihh7lmetabolites that are common to all
fermentations.

Figure 7: (A) Hierarchical cluster analysis (HCAjtained after ANOVA (thresholg-value < 0.05).

(B) H/C vs. O/C Van Krevelen diagrams representmagses from the 1247 common masses with a
higher intensity in SC, LT, SF+ or SF- after ANO\(gxvalue < 0.05) with histograms representing
their composition and number of elemental form@a @, CHOS, CHON or CHONS compounds).
Bubble sizes indicate relative intensities of cepanding peaks in the spectra.

Figure 8: (A, B, C, D and E, left) Principal comgmih analysis (PCis. PC2) of both fermentations
for each couple of conditions and (A, B, C, D andriitidle and right) H/@s. O/C Van Krevelen
diagrams representing specific metabolites fourubii fermentations of each couple described as



markers coupled to histograms of elemental forrosalaposition. Bubble sizes indicate relative
intensities of corresponding peaks in the spectra.

Table 1: Concentration of phytosterols (mig.in the must and after 24 h of alcoholic fermeintaby
L. thermotolerans beforeS cerevisiae inoculation.
nd, non determined.

-1
Sterol concentration (mg.L )

Must (TO) T24 h before % of
S. cerevisiaeinoculation  decrease
ergosterol nd nd nd
campesterol 19+0.1 nd nd
stigmasterol 16+0.3 1.4 +£0.04 14.0+£12.0

pB-sitosterol 288+1.2 92+14 68.0 £ 3.8




Table 2: Concentration of amino acids and ammor{immof N.L?) in the must and after the first 24
hours of fermentation with. thermotoleransin LT, as well as the percentage of decrease reptieg

the consumption of each compound.

* Indicates aromatic amino acids.

-1
Concentration (mg N.D

YAN
Alanine
Arginine

Asparagine
Aspartic acid
Cysteine
GABA
Glutamic acid
Glutamine
Glycine
Histidine*
Isoleucine
Leucine
Lysine
Methionine
NH4+
Phenylalanine*
Proline
Serine
Threonine
Tyrosine*
Valine

Must (TO) T24h
2278 +0.44 11.36 +3.18
315.03 £2.38 39.08 +34.28

2.70+£0.12  0.05+0.40

3.99+0.12  0.54 +0.52
0.47+0.41  0.02+0.19
453+0.09  4.41+0.18
571+0.12  1.93+0.94
41.35+0.89 3.44 +4.01
1.96+0.11  0.90+0.13
1352+0.37 0.01+1.75
1.62+0.14  0.11%0.25
2.33+0.03 0.16+0.17
0.04+0.07  0.04+0.22
0.96+0.24  0.21+0.12
242 + 2 163 + 18
10.15+0.06  0.03 +0.92
83.86+1.33 83.66 % 7.13
19.23+0.24 2.76 +2.51
15.81+0.65 0.80 + 1.55
3.87+0.01  0.57+0.43
3.83+0.08  0.80 +0.44

% of decrease

50.2+5.0
87.6+15
98.2+3.2
86.4+0.6
87.3+18.3
26+6.8
66.2+3.4
91.7+1.1
54.0+8.4
99.9+0.2
93.0+3.4
929+7.0
/
754 +20.6
326 +9.1
99.7+0.2
0.11+13.0
85.7+2.7
949+1.1
85.2+3.3
79.2+3.1




Table 3: Concentration of volatile compounds atehe of AF for each fermentation (SC, LT, SF+ and) S¥Falues with the
same letters a, b, ¢ or d were not significantffedent in Tukey's test (95%); nd stands for notedained. Aroma
descriptors inspired by Beckner Whitener et al. ©01

Volatile compounds (ug.L') Aroma descriptors LT sc SF+ SF-
Alcohols
1-PROPANOL weak fusel 2636.9 + 609.1 2619.5 + 552.5 2938.3 + 680.9 1989.4 £ 600.6
ISOBUTYL ALCOHOL 14957.5 + 15469 13593.4 + 34442 16923.5 + 20003 15962.0 + 2956.7
1-BUTANOL 1595.1 + 588.0 407.4 £ 357.1 287.4 % 173.0 422.8 +216.6
3-METHYLBUTANOL 64147.9+104204  36481.7 83375 37475.9 + 61781 41503.1 + 5689.8
2-METHYLBUTANOL 351686.0 = 27545.4  289206.6 + 417993 2721225 + 27895.6  295422.7 + 30539.1
1-HEXANOL green 3556.6 + 633.8 4412.8 + 4994 4119.5 + 1006.1 2932.8 + 4615
1-OCTEN-3-OL mushroom 46.0+10.4 56.6+12.7 41.7+11.6 35.0+10.7
1-HEPTANOL leafy 146.6 + 35.3 4935+ 58.6 555.9 + 284.4 502.9 +278.2
1-OCTANOL waxy 109.0 + 26.8 244.4 + 154 99.3 +20.4 228.9+435
NONANOL fruity 227.2+435 217.5 + 46.4 304.1+61.7 295.7 + 88.0
BENZYL ALCOHOL fruity 1010 09+0.6 1011 72459
PHENYLETHYL ALCOHOL rose 183182.9+ 182561 1275962+ 998171  119724.4+17352.4  134448.6 + 81108
PHENOL 305.9 + 134.2 384.8 + 220.5 580.1 + 257.1 486.4 £ 97.6
Total 622687.6 + 418310  475715.5+54330.3  455182.5 + 48966.9  494327.2 + 24460.0
Medium chain fatty acids
HEXANOIC ACID sour 1050.2 + 93.1 4051.7 £217.7 2109.2 £ 300.2 3938.8 + 406.4
OCTANOIC ACID rancid 1739.9 + 188.8 7605.2 + 824.2 3984.0 + 3355 8679.0 + 573.7
DECANOIC ACID unpleasant 785.1+116.9 531.2 + 73.4 941.0 +142.3 1651.6 + 207.4
Total 3575.1 + 367.3 12188.2 + 965.3 7034.2 +719.8 14260.4 + 896.3
Aldehydes, ketones and lactones
BENZALDEHYDE almond 4012.7 + 376.1 4469.8 + 362.2 4396.9 + 635.7 2850.2 + 889.8
ACETOPHENONE almond, sweet, floral 103.6+12.5 89.0+13.3 249.1+67.6 332.1+188.7
2,3-BUTANEDIONE 520.8 + 326.4 608.1 + 232.7 568.9 + 296.5 723.1+247.9
GAMMA-BUTYROLACTONE 0.3+ 0.05 0.3+0.09 0.3+0.05 0.3+0.07
Total 4646.4 + 4155 5167.3 +520.1 5215.3 + 639.4 3905.6 + 456.4
Terpenes
TERPINENE-4-OL spicy, mentol 07+05 53:65 05+0.2 23:28
TRANS-BETA-DAMASCENONE rose 05+03 05+0.1 0.6+02 0.6+0.2
Total 1.2+0.6 5.8+6.5 1.0+03 2.8+23
Esters
ETHYL ACETATE fruity or ascescent 102.5+14.3 35.9+83 102.0 £10.3 91.1+181
ETHYL ISOBUTYRATE 2.0+05 17410 23+10 17407
ETHYL BUTYRATE fruity 15410 13402 16408 25407
ETngb\\/,ﬁLLEEﬂE OR fruity 0.2 +0.03 024004 0.2+0.04 0.20+0.04
ISOAMYL ACETATE banana 19.0 3.0 23.7+2.7 52.5+21.8 65.2 + 8.8a
ETHYL 2-BUTENOATE nd 0.2+0.1 0.1+0.08 0.2+0.1
ETHYL HEXANOATE fruity 324.6 £50.3 996.4 + 78.0 719.6 + 84.1 1126.0 + 134.4
HEXYL ACETATE banana 17402 26.9+3.1 13.8+10.5 162423
ETHYL LACTATE 466+73 nd 194.9 +57.1 46.4+15.1
ETHYL OCTANOATE apricot 455+8.4 576.8 +58.2 272.6 + 40. 479.5+89.3
ETHYL NONANOATE 40+05 35+0.4 3610 28+06
ETHYL DECANOATE sweet 52+04 12513 209+35 186+ 16
ISOAMYL OCTANOATE sweet 0.2 +0.05 0.6+0.1 0.3+0.06 0.6 +0.05
DIETHYL SUCCINATE fruity 0.8+0.6 0.8+0.3 0.8+0.2 0.6+0.1
PHENYL ETHYL ACETATE floral 2102 342+17 8.0+34 151+15
ETHYL LAURATE 08+0.3 14404 14403 12403
ETHYL MYRISTATE 13+04 53+0.7 40+11 36409
ETHYL PALMITATE 1.1+02 3.7+10 33+13 19406

Total

559.0 + 78.6

1725.0 + 125.0

1401.8 £ 2185

1873.1+ 167.8





