Aymen Braghtha 
  
DARBOUX SYSTEMS WITH A CUSP POINT AND PSEUDO-ABELIAN INTEGRALS

Keywords: Mathematics Subject Classification (2010). 34C07, 34C08 Pseudo-abelian integrals, First integral, Limit cycles, Darboux integrability. k

 

Introduction and main result

The second part of Hilbert's 16th problem, asking for the maximum of the numbers of limit cycles and their relative positions for all planar polynomial differential systems of degree n. A weak version of this problem, proposed by Arnold, asking for the maximum of the numbers of isolated zeros of abelian integrals of all polynomial one-forms ω of degree n over algebraic ovals γ(t) ∈ H 1 (P -1 (t)), where P ∈ C[x, y] of degree m. In [START_REF] Varchenko | Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles[END_REF][START_REF] Khovanskii | Real analytic manifolds with property of finitness, and complex abelian integrals[END_REF], Varchenko and Khovanskii prove the following result Theorem 1.1. There exist a uniform bound, depending only n and m, for the number of real zeros of abelian integrals.

Varchenko and Khovanskii showed the existence of a uniform local bound on the number of zeros of abelian integrals when deforming the polynomial P and the polynomial form ω in their respective spaces. Next, the result is obtained using the fact that the space of parameters can be considered as being compact.

General explicit double exponential upper bound was achieved only in [START_REF] Binyamini | On the number of zeros of Abelian integrals A constructive solution of the infinitesimal Hilbert sixteenth problem[END_REF] by completely different methods. Exact upper bounds are still absent.

Arnold posed with insistence the analogous problem for more general polynomial deformations of integrable systems, in particular for deformations of system having a Darboux first integral. Then, instead of abelian integrals, one encouters pseudo-abelian integrals.

Pseudo-abelian integrals are integrals

I(t) = γ(t)
η M of rational one-forms along cycles γ(t) ⊂ {H = t}, where

H = k i=1 P a i i , M =
and M is an integrating factor. These integrals appear as principal part of the Poincaré displacement function of the deformation θ + εη along γ(t), where

θ = M dH H , η = Rdx + Sdy, R, S ∈ R[x, y].
In [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF][START_REF] Novikov | On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems[END_REF], Bobieński, Mardešić and Novikov prove the following result Theorem 1.2. Let H, M, η be as above. Under some genericity hypothesis, there exists a uniform bound for number of zeros of pseudo-abelian integrals associated to Darboux integrable systems close to θ.

Here we prove an analogous result in one of non-generic cases. Another non-generic cases was studied in [START_REF] Bobieński | Marcin Pseudo-Abelian integrals along Darboux cycles a codimension one case[END_REF], [START_REF] Bobieński | Dmitry Pseudo-Abelian integrals: unfolding generic exponential[END_REF] and [START_REF] Bobieński | Dmitry Pseudo-Abelian integrals on slow-fast Darboux systems[END_REF].

Consider Darboux integrable system ω 0 = M dH H , M is an integrating factor, where (1.1)

H = P a 0 k i=1 P a i i , M = P 0 k i=1 P i , P 0 = y 2 -x 3 , P i ∈ R[x, y], a, a i > 0,
where

P i (0, 0) = 0 for i = 1, . . . , k. Let ω ε = M ε dHε
Hε be an unfolding of the form ω 0 , where ω ε are one-forms with the Darboux first integral (1.2)

H ε = P a ε k i=1 P a i i , M ε = P ε k i=1 P i , P ε (x, y) = y 2 -x 3 -εx 2 .
Assume that the system ω ε = M ε dHε Hε = 0 has a family {γ ε (h) ⊂ H -1 ε (h)} of cycles. Consider the polynomial deformation of the system ω ε .

(1.3) θ ε,ε 1 = ω ε + ε 1 η, ε 1 > 0, η = Rdx + Sdy, R, S ∈ R[x, y].
The linear part in deformation parameter ε 1 of Poincaré first return map is given by the pseudo-abelian integrals

(1.4) I ε (h) = γε(h) η M ε .
Assume that the levels curves P ε = 0 and P i = 0 intersect transversally and all level curves P i = 0, i = 1, . . . , k are smooth and together with the line at infinity intersect two by two transversally and no three of them intersect in the same point.

The Darboux first integral H ε has two critical points, one near the critical point p ε = ( -2ε 3 , 0) of P 0 , which will be denoted p e and is a center, and a saddle point p = (0, 0) for ε = 0, coincide with the cusp point p 0 = (0, 0) for ε = 0. Then, for ε = 0, two singular points p ε and p bifurcate from p 0 .

For ε = 0, we choose a compact region D which is bounded by P ε = 0 and some separatrices

P i = 0, i = 1 • • • , k such that the center p ε is outside of D. Assume that the cycles γ ε (h) ⊂ H -1
ε (h) filling D, see Figure 1.
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The real phase portrait of H ε for ε = 0.

Theorem 1.3. Let I ε (h) be the family of pseudo-abelian integrals as defined above. Then there exists an upper bound for the number of isolated zeros of the pseudo-abelian integrals I ε (h), for h ∈ (0, h 0 ). The bound is locally uniform with respect to all parameters, i.e. the parameters of η, the coefficients of the polynomials P i , the exponents a, a i and the parameter ε.

The Darboux systems ω ε = M ε dHε Hε have a family of cycles in the basin of the center p ε bifurcating from p 0 = (0, 0). To give a ε-uniform estimate for the number of zeros of the pseudo-abelian integrals we make the blowing-up of the cusp point of the family in the product space (x, y, ε) of phase and parameter spaces. The family blowing-ups were introduced by Denkowska and Roussarie in [START_REF] Denkowska | A method of desingularization for analytic twodimensional vector field families[END_REF].

Blowing-up the cusp point

Let C 3 be equipped with system of coordinates (x, y, ε). Denote F the one-dimensional foliation on C 3 which is given by the 2-form ω ε ∧ dε, ω ε ∈ Ω 1 (C 3 ). This foliation has a cuspidal singularity at the origin. We want our blow-up to simplify this singularity. This requirements leads to the quasi-homogeneous blow-up with weights (2, 3, 2).

Recall the construction of the quasi-homogeneous blow-up. We define the corresponding action A of C * on C 3 \ {0} by r.(x, y, z) = (r 2 x, r 3 y, r 2 z). We use this action to define weighted projective space CP 2 2:3:2 as the quotient C 3 \ {0}/A. The quasi-homogeneous blow-up of C 3 at the origin is defined as the incidence three dimensional manifold. The precise definition is the following. Let q = (x, y, ε

) ∈ C 3 , [(X, Y, E)] ∈ CP 2 2:3:2 . Then W = {(p, q) ∈ CP 2 2:3:2 × C 3 : ∃r ∈ C : (x, y, ε) = (r 2 X, r 3 Y, r 2 
E)} which means that the point q belongs to the closure of the equivalence class defined by p ∈ CP 2 2:3:2 . The projective space CP 2 2:3:2 is covered by three affine charts:

W 1 = {x = 0} with coordinates (Y 1 , E 1 ), W 2 = {y = 0} with coordinates (X 2 , E 2 ) and W 3 = {ε = 0} with coordinates (X 3 , Y 3 ).
The space CP 2 2:3:2 is an orbifold. More to the point, the affine chart

Ψ 2 : W 2 → CP 2 2:3:2 is three-to-one: we have Ψ 2 (X 2 , E 2 ) = Ψ 2 (r 2 X 2 , r 2 E 2 ) = Ψ 2 (rX 2 , rE 2 ) for r = e 2 3
πi , so Ψ 2 branches at the point (0, 0). The affine chart Ψ 1 :

W 1 → CP 2 2:3:2 is two-to-one, as Ψ 1 (Y 1 , E 1 ) = Ψ 1 (-Y 1 , E 1 )
, and the same holds for Ψ 3 : W 3 → CP 2 2:3:2 . In particular, they have branch at lines Y 1 = 0 and Y 3 = 0 correspondingly. The branching means that while the blow-up σ : W → C 3 is biholomorphism away from σ -1 (0), an attempt to lift F to above charts on W will be complicated.

For future applications we will need explicit formula for the blow-up in the standard affine charts of W .

These affine charts define affine charts on W , with coordinates (Y 1 , E 1 , r 1 ), (X 2 , E 2 , r 2 ) and (X 3 , Y 3 , r 3 ). The blow-up σ is written as

σ 1 : x = r 2 1 , y = r 3 1 Y 1 , ε = r 2 1 E 1 (2.1)
σ 2 : x = r 2 2 X 2 , y = r 3 2 , ε = r 2 2 E 2 (2.2)
σ 3 : x = r 2 3 X 3 , y = r 3 3 Y 3 , ε = r 2 3 . (2.3)
We apply this blow-up σ to the one-dimensional foliation F on C 3 given by the intersection of dε = 0 and ω ε = 0. This foliation has a cuspidal singularity at the origin. Denote by σ -1 F the lifting of the foliation F to the complement of the exceptional divisor σ -1 (0). This foliation is regular outside of the preimage of {P ε = 0, ε = 0}.

Proposition 2.1. The foliation σ -1 F can be extended analytically to the exceptional divisor σ -1 (0). The resulting foliation σ * F is regular outside of the strict transform of {P ε = 0, ε = 0}.

Proposition 2.2. The singularities of the resulting foliation σ * F on σ -1 (0) are located at the points p 1 = (0, 1, 0), p 2 = (0, -1, 0), p 3 = (0, 0, - 3 2 ) and p c = ( -2 3 , 0, 0). Proof. The quasi-homogeneous blow-up σ : W → C 3 is a biholomorphism outside the exceptional divisor σ -1 (0), all singularties of the foliation σ * F outside σ -1 (0) correspond to singularities of F.

Let σ * 1 F be the restriction of σ * F to the chart W 1 . On the exceptional divisor, the foliation σ * 1 F has a first integral

F 1 = E -3 (Y 2 -E -1) = t.

The corresponding logarithmic form is given by

E(Y 2 -E -1) dF 1 F 1 = -3(Y 2 -E -1)dE + Ed(Y 2 -E) = (-3Y 2 + 2E + 3)dE + 2EY dY,
and the singular points of the foliation are (r = 0, Y = ±1, E = 0) and (0, 0, -3 2 ). Note that the first two correspond to the same point on CP 2 2:3:2 . The second one corresponds to p c = (-2 3 , 0, 0) in the chart W 3 (see Figure 2). ptional divisor are the line of centers (X 3 = -2 3 , Y 3 = 0). Remark 2.3. Strictly speaking, the point p 1 is not a saddle of σ * F as it is not an isolated singularity: on each leaf {ε = Const} there is a saddle converging to p 1 , so the lifting σ * F has a whole line of singular points (0, 0, r) transversal to σ -1 (0) and intersecting it at p 1 . However, each point (0, 0, r) is a saddle on its leaf {ε = Const}.

Proof of Theorem 1.3

In this section we first take benefit from the blowing-up in the family performed in the previous section to prove Theorem 1.3.

Let F be the one-dimensional foliation on C 3 introduced in the previous section and singF = {p 4 , . . . , p k } be the set of its saddles points.

Polycycles. Let t := ε 3

h and G := (σ * ε) 3 σ * H(ε,x,y) . The phase portait of the resulting foliation σ * 1 F on exceptional divisor is given by the levels curves {G = t}. After the making of the blowing-up we obtain, on each leaf {ε = Const}, a hyperbolic polycycle (i.e. each intersection of consecutive edges we have a saddle point) where δ 3 ⊂ {G = t} R and {. . .} R denotes the real part of a complex analytic set, see Figure 3. Let singσ * F = {p 1 , . . . , p k } be the set of singular points of the resulting foliation σ * F. Let us fix a polycycle δ of family (3.1) and denote δ(ε, h) its corresponding cycle, see Figure 3. We define

(3.1) δ =      δ 0 ∪ δ 4 ∪ . . . ∪ δ k , δ 1 ∪ δ 2 ∪ δ 4 ∪ . . . ∪ δ k , δ 3 ∪ δ 4 ∪ . . . ∪ δ k , 𝑝1 𝑝3 𝑝c 𝑝2 Exceptional divisor {𝐆 = 𝐭}
(3.2) J(ε, h) = δ(ε,h) σ * η M ε .
3.2. Variation relations. Define the variation operator V ar as the difference between counterclockwise and clockwise continuation of

F V ar (h,β) F (h) = F (he iβπ ) -F (he -iβπ ).
The integral J admits analytic continuation to a universal cover of a product D 0,ε × D 0,h of two small punctured discs.

Proposition 3.1. The integral J(ε, h) satisfies the following iterated variations equation Proof. The globally multivalued Darboux first integral is in fact analytic in the neighborhood of the origin, so the results of [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF] are applicable. Concretely, let us fix a leaf {ε = Const} and some hyperbolic polycycle δ = i δ i of family (3.1). Using a partition of unity multiplying the form σ * η Mε we can consider semilocal problem with a relative cycle close to one separatrix of the polycycle. Precisely, let δ i be a some separatrix (connecting saddles p j and p k ) of the polycycle δ with exponent α i and two saddles points p j = δ i ∩ δ j , p k = δ i ∩ δ k , where δ j , δ k two separatrices of δ with exponents α j and α k , respectively. Let δ i (ε, h) be its corresponding relative cycle. The respective iterated variations of the relative cycle δ i (ε, h) is a closed loop which is either the commutator loop if α j = α k or the figure eight loop if α j = α k .

(3.3) V ar (h,α 1 ) • • • • • V ar (h,α k+1 ) J(ε, h) = 0, α i ∈ R[a, a 1 , . . . , a k ].
Finally, using the commutativity of the variation operator V ar and the univaluedness of the blown-up form σ * 1 η Mε , we obtain

V ar (h,α 1 ) • • • • • V ar (h,α k+1 ) J(ε, h) = 0.
Proposition 3.2. The variation of the integral J with respect to ε is an integral of the blown-up form σ * η Mε along the figure eight cycle

(3.4) V ar (ε,1) J(ε, h) = eight figure σ * η M ε
Proof. In the chart W 1 , let (Y, E, r) be a suitable coordinate system near the edge δ 0 (Figure 3) such that the blown-up foliation σ * 1 F is given by two first integrals ε = r 2 E and h = r 6 (Y -1)(Y + 1). Near 

* 1 F on Σ 1 (respectively Σ 2 ) is given by two first integrals ε = E, h = Z. Let (Z 1 , E 1 ) = (h, ε) = δ(ε, h) ∩ Σ 1 be the starting point and (Z 2 , E 2 ) = (h, ε) = δ(ε, h) ∩ Σ 2 be
the end point, see Figure 3. So, as ε makes a full turn around ε = 0 in the (ε, h)-space with h fixed, each point (Z i , E i ) i=1,2 makes a full turn around E = 0 in Σ i with Z remains fixed, geometrically means that a eight figure produced near the edge δ 0 e.g V ar (ε,1) δ(ε, h) = eight figure. On the other hand, for a finite distance to the exceptional divisor {r 1 = 0} and near a each edge δ i , i = 4, . . . , k, the foliation σ * 1 F is analytic in variable E 1 and consequently we have V ar (ε,1) δ(ε, h) = 0. Using the partition of unity, conclude that have Proof. Let µ > 0 be sufficiently small and α i ∈ {α 1 , . . . , α k+1 }. In order to apply the argument principle to J(ε, h), we define Γ i a simply connected region with boundary 

∂Γ i = C α i R ∪ C α i µ ∪ C α i ± where C α i R = {|h| = R,
#{h ∈ Γ i : J(ε, h) = 0} ≤ 1 2π ∆ arg ∂Γ i J(ε, h) = 1 2π ∆ arg C α i R J(ε, h) + 1 2π ∆ arg C α i ± J(ε, h) + 1 2π ∆ arg C α i µ J(ε, h),

Figure 2 .

 2 Figure 2. The levels curves {G = t}.

Figure 3 .

 3 Figure 3. Real phase portrait of the foliation σ * F.

  p 1 (respectively p 2 ), let fix a transversal Σ 1 = {r = 1} (resp Σ 2 = {r = 1}) to the edge {E = Y -1 = 0} (respectively {E = Y + 1 = 0}), and introduce a new local coordinate Z = (Y + 1)(Y -1) , so E, Z are local coordinates. The restriction of the foliation σ

V 3 . 3 . 3 . 3 .

 3333 ar (ε,1) J(ε, h) = V ar (ε,1) Proof of Theorem 1.3. The integral J(ε, h) can be viewed as the pull-back of the pseudo-abelian integrals I ε (h) := I(ε, h) by the blowing-up map σ. The proof of Theorem 1.3 is now reduced to the proof of Theorem The number #{h ∈ (0, h 0 ) : J(ε, h) = 0} is uniformly bounded in ε.

  | arg(h)| ≤ α i π} (big arc), C α i µ = {|h| = µ, | arg(h)| ≤ α i π} (small arc) and C α i ± = {µ < |h| < R, | arg(h)| = ±α i π} (segments).The argument principle says that:
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where the circular arcs and the segments are taken with a suitable parameterization.

(1) The estimation of the increment of argument ∆ arg

R is again due to Gabrielov's theorem [START_REF] Gabrièlov | M Projections of semianalytic sets[END_REF]. [START_REF] Binyamini | On the number of zeros of Abelian integrals A constructive solution of the infinitesimal Hilbert sixteenth problem[END_REF] The estimation of the increment of argument ∆ arg

+ and C α i -reduces to estimating zeros of V ar (h,α i ) J(ε, h) which is again a pseudo-abelian integral over different cycle, but now satisfying iterated variation equation of smaller lenght. As in [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF][START_REF] Novikov | On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems[END_REF], by induction on this lenght, it has uniformly bounded number of zeros.

(3) As a consequence of equation (3.3) the function admits, near h = 0, the following asymptotic expansion

Existence of this asymptotic expansion implies that for sufficiently small µ the increment ∆ arg C α i µ J(ε, h) is at most 2α i M (ε) + 1, i.e. is bounded by the rate of growth of J(ε, h) as h → 0. The latter can be easily bounded from above, uniformly in ε, as in [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF][START_REF] Novikov | On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems[END_REF].

All the above constructions depend analytically on parameters like coefficients of the polynomials P i , exponents a, a i and coefficients of the form η.