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ABSTRACT
Analyzing videos of human actions involves understanding the
spatial and temporal context of the scenes. State-of-the-art action
detection approaches have demonstrated impressive results using
Convolutional Neural Networks (CNNs) within a two-stream frame-
work. However, most of them operate in a non-real-time, offline
fashion, thus are not well-equipped in many emerging real-world
scenarios such as autonomous driving and public surveillance. In
addition, they are computationally demanding to be deployed on
devices with limited power resources (e.g., embedded systems).
To address the above challenges, we propose an efficient single-
stream action detection framework by exploiting temporal coher-
ence between successive video frames. This allows CNN appearance
features to be cheaply propagated by motions rather than being
extracted from every frame. Furthermore, we utilize an implicit
motion representation to amplify appearance features. Our method
based on motion-guided and motion-aware appearance features is
evaluated on the UCF-101-24 dataset. Experiments indicate that the
proposed method can achieve real-time action detection up to 32
fps with a comparable accuracy as the two-stream approach.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing.

KEYWORDS
action detection, video analytics, convolutional neural network,
embedded system
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1 INTRODUCTION
Human action detection is a key element to video understanding.
It has been an active area of research driven by a host of applica-
tions such as assistive robots, autonomous driving, and unmanned

surveillance, etc. As it requires simultaneously localizing actors
and classifying each of their action, action detection is a challeng-
ing problem where only a few of the current approaches permit
real-time performance. Nevertheless, in many real-life scenarios
not only robust recognition of actions is required, but also on-site
and real-time operation. In addition, for ease of mobility and / or
economical design, detection systems need to be integrated into
embedded devices in applications such as mobile robotics and dis-
tributed surveillance. Factoring in limited power and computational
resources further raises difficulty of the detection problem.

With the recently rising deep Convolutional Neural Network
(CNN), vision-based tasks such as image classification and object
detection have progressed significantly. Following the success of
CNN, researchers also adopt CNN object detectors for the task of ac-
tion detection. Methods relying on these detectors typically extract
appearance features individually for each video frame to achieve
frame-based action detection [21][17], or stack multiple features
over a short period of time to predict action tubes [12][23]. Many
efforts modeling actions’ motion cues have also been made, such
as exploiting a two-stream architecture to complement appearance
and motion features.

When limited power and computational resources are consid-
ered, the above approaches are sub-optimal in two folds. Firstly, as
consecutive video frames exhibit high content similarity, extract-
ing features from all of them is redundant and costly. Moreover,
the increased system complexity associated with adopting a two-
stream architecture is not proportionally reflected in the detection
accuracy. For instance, Singh et al.[24] demonstrate a detection im-
provement by nearly 15% when incorporating an accurate optical
flow stream to aid the appearance stream, however at the cost of
real-time performance and doubling CNN parameters. In contrast,
we believe that exploiting the temporal continuity of video frames
enables efficient action video processing. This concept in fact has
been applied in a number of vision-based tasks but action detection.
In addition, we hypothesize that a simple implicit motion represen-
tation can be used to facilitate detection in a more direct manner
than the two-stream approach.

In this paper, we investigate efficient and accurate action detec-
tion with real-time performance, which is potentially well-suited
for embedded systems. We make the following contributions:

• Integrate a feature propagation framework originally de-
signed for video object detection [27]. Guiding appearance
features by motion permits real-time action detection.

• Employ motion-aware features by amplifying appearance
features with implicit motion information. This serves to
replace the heavy two-stream architecture.

https://doi.org/10.1145/3349801.3349821
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We evaluate the proposed framework on the UCF-101-24 dataset.
Experimental results show that our motion-guided and motion-
aware features enable real-time detection without compromising
accuracy.

2 RELATEDWORK
Recently, deep CNNs’ remarkable results have made them the pri-
mary choice for computer vision tasks such as image classification
and object detection. They also demonstrate leading performance
in action recognition, an area of research closely related to action
detection. Inspired by these advances, many efforts are made to
address action detection by incorporating CNN image object detec-
tors within an action recognition framework. In this section, areas
of research relevant to our action detection problem are reviewed.

Image object detection. Modern CNN object detectors can be
grouped into two families. The first one consists of a two-stage
framework popularized by R-CNN [8]. This branch of method first
extracts potential object regions from images, on which it then per-
forms object classification and bounding box regression. State-of-
the-art two-stage detectors (such as Faster R-CNN [19] and R-FCN
[2]) incorporate the fast and simple Region Proposal Network (RPN)
in the first stage, pushing towards near real-time performance. Al-
ternative to the two-stage method, object detectors such as YOLO
[18] and SSD [15] directly predict both the regressed bounding
boxes and their associated classes in a single pass without the inter-
mediate region proposal. In exchange for minor drops in accuracy,
these single-stage methods can achieve real-time detection.

Video object detection. Following the introduction of the VID
challenge [20], a number of researchers explores improving single-
image detection by exploiting detection results from multiple video
frames. For instance in Seq-NMS, Han et al. [9] associate high-
confidence bounding boxes from consecutive frames by their spa-
tial overlap, followed by rescoring of each box to boost weaker
detection. Kang et al. [13] map detection results to adjacent frames
by motion and apply tracking algorithms to enforce long-term tem-
poral consistency. More recently, there have been studies on CNN
architectures which simultaneously handle frame-based detection
and tracking regression across frames [6].

The above approaches typically do not concern efficient process-
ing. On the other hand, other works specifically target efficient
detection by exploiting temporal redundancy within video frames.
For example, Zhu et al. [27] propagate deep feature maps from key
frames to their successive frames via flow fields. This accelerates
video object detection as features can be obtained by feeding only a
sparse set of key frames to the time-consuming deep feature extrac-
tor. In a similar spirit, Liu et al. [14] propagate frame-level infor-
mation across frames using their proposed recurrent-convolutional
architecture. Feature warping has also been applied in other video-
based tasks other than object detection [7].

Action recognition is typically approached as a classification
problem for trimmed videos. Among the many techniques used to
solve action recognition, the two-stream network [22] introduced
by Simonyan et al. demonstrates state-of-art performance. Under
this framework, two CNNs, one for the spatial stream (e.g., RGB
images) and the other one for the temporal stream (typically optical
flows), run separately followed by a fusion step. A number of ways

to fuse the appearance and motion features for a complementary
action representation have been investigated [16][5]. Various forms
of motion cues other than optical flows have also been looked into,
such as feature difference [26] and motion history image [1].

Action detection further addresses simultaneous action local-
ization and classification. A number of efforts have been made to
extend from object detectors. The extensions mainly include adopt-
ing the two-stream framework to obtain frame-level detection from
each stream, followed by a fusion technique to exploit information
from both streams. For instance of a late fusion, Saha et al. [21]
boost the overall detection confidence by how much the detection
results from both streams agree with each other. Similarly, Peng et
al.[17] apply all the region proposals from both streams to recall
as many potential actions as possible. Both of the above works
involve the use of two-stage object detectors and computationally
expensive optical flow, which prohibit real-time deployment.

Targeting real-world scenarios, Singh et al. [24] propose an on-
line and real-time action detection framework by combining the
two-stream networks, SSD object detector, fast optical flow esti-
mator and an online linking algorithm. To further leverage video
temporal information, methods based on detection at the clip-level
(rather than frame-level) are proposed. For example, Kalogeiton
et al. [12] predict classified and regressed action tubes on stacked
features extracted from a short sequence of input frames. Although
these methods have achieved promising results, temporal conti-
nuity of videos is not explicitly exploited as detection or feature
extraction is still performed on each frame independently. They also
employ a two-stream architecture which increases the complexity
of their detection pipeline.

3 METHOD DESCRIPTION
In this section, we present our single-stream action detection frame-
work with motion-guided and motion-aware features. Figure 1 pro-
vides a summary of the method. We follow the deep feature flow
framework [27] which treats a sparse set of RGB images as key
frames, and the rest as non-key frames. When a key frame is in-
putted, its CNN feature is extracted and directly used for detecting
actions. For a non-key frame, a flow field between this frame and
its preceding key frame is first estimated and fine-tuned. Using
the transformed flow field, we propagate (or spatially warp) the
appearance feature of the preceding key frame. Finally the warped
appearance feature is amplified with motion information and used
to predict regressed boxes and their associated action classes. The
entire network is end-to-end trainable. Each building block is ex-
plained in detail in the following sections.

3.1 Motion-guided appearance feature
In videos, image content varies slowly over consecutive frames. This
is more so reflected in CNN deep feature maps which encode high-
level semantics. Hence, applying the bottom-up feature extraction
for every video frame is redundant and costly. To exploit the inter-
frame redundancy for efficient video processing, we adopt the work
of deep feature flow, guiding feature maps from key frames to their
subsequent frames by relative motions.
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Figure 1: Illustration of ourmotion-guided action detection framework withmotion-aware appearance features. (a) Two types
of input frames. (b) For a key frame, appearance feature is obtained from the CNN feature extraction sub-network. (c) For a
non-key frame, the flow sub-network estimates a flow field between the non-key frame and its preceding key frame. The
resulted flow is first transformed and then used to propagate appearance feature. (d) An implicit motion cue (difference in
features) amplifies the appearance feature. Blue and orange arrows are carried out at a key and non-key frame respectively.

Figure 2 illustrates how feature propagation functions in our
framework. During inference the heavy and expensive feature ex-
traction sub-network is only applied on a sparse set of key frames.
The feature maps of successive non-key frames are then obtained
by propagating the features from their preceding key frames via
two-channel flow fields, followed by the detection sub-network. By
applying feature propagation on a dense set of non-key frames, com-
putation is greatly reduced as propagation is a fast and inexpensive
operation compared to CNN deep feature extraction. Specifically,
propagation is carried out by a spatial warping function based on
bilinear sampling [11] for all locations and channels in the feature
maps, where a flow field is resized to have the same spatial reso-
lution as a feature map. More details about the warping operation
can be referred from [27].

A flow field is estimated between a non-key frame and its preced-
ing key frame. Previous works for solving action detection typically
compute flow fields independently from their detection model (e.g.,
using third-party optical flow algorithms). This inherently incurs
high consumption of time or requires preparation of flow results
in advance, prohibiting real-time and online operation. In contrast,
our framework integrates a fast flow estimation sub-network with
low complexity. This gets rid of the need for having an external
flow estimator. In additional, it allows joint training with all other
sub-networks specific to the task of action detection.

Finally, because the fast flow sub-network might be less accurate,
we apply a 4-layer convolutional sub-network to fine-tune its flow
field. The layer design follows the work of [7], which is loosely
inspired by residual blocks. The input to this transformation sub-
network is the raw flow field estimated by the flow sub-network; the
outputted flow after transformation is used to propagate appearance
feature. All sub-networks (feature extraction, optical flow, flow

transformation and action detection) are jointly trained to minimize
loss incurred by detection results; no groundtruth flow is required.

Figure 2: Illustration of the motion-guided action detection
based on [27].
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3.2 Motion-aware appearance feature
Our proposed method embeds motion information directly into
the appearance feature for efficiency gains. We hypothesize that
such two-in-one approach can have a comparable improvement
for action detection without requiring a separate motion network
which doubles the parameters and computation.

We choose to model the motion between two frames implicitly
by the difference between their CNN features. The intuition be-
hind is that negative and positive values in the feature difference
encode locations where the body parts disappear and appear re-
spectively, thus implicitly capturing specific motion patterns. Such
a simple technique has been utilized in [26]. In our framework, the
element-wise difference between the feature map of a key frame
and its successive non-key frame is first computed. We then use
this motion representation to amplify the appearance feature of
the non-key frame via element-wise addition. Finally, the ampli-
fied appearance with motion awareness is fed to the detection
sub-network. Currently we only amplify appearance features for
non-key frames.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We evaluate the proposed framework on the UCF-101-24
[25] dataset. It is a subset of UCF-101 which is composed of realistic
action videos across 101 action classes from YouTube. The UCF-101-
24 consists of 24 classes in 3207 videos with frame-level localization
annotations. We follow the work of Singh et al.[24], using 2290 of
these videos for training and the remaining ones for testing. For
the moment, we trim the testing set and evaluate detection results
only on video frames with action labels.

Evaluation metrices. The frame-level mean average precision
(mAP) and frame-per-second (fps) are used to evaluate detection
performance. The IoU threshold which determines whether a pre-
dicted box matches the groundtruth is fixed at 0.5 throughout our
experiments.

Implementation details. We employ ResNet-101 [10], mod-
ified R-FCN [2] and reduced FlowNet [3] models for feature ex-
traction, action detection and flow estimation respectively. The
flow transformation sub-network consists of four convolution lay-
ers. The input to this sub-network is a 11-channel tensor obtained
from the concatenation of the original flow field (2), RGB image of
the non-key frame (3) and key frame (3), and their channel-wise
difference (3). In the first three layers, 3x3 kernels are used and in-
terleaved with ReLU non-linearity. The number of output channels
is 16, 32, and 2 respectively, The output of the third layer is then
concatenated with the original 2-channel flow, followed by a 1x1
convolution to output the transformed two-channel flow.

The entire system consisting of the above sub-networks is trained
end-to-end. During training, from each mini-batch a pair of nearby
video frames (Ir and Ii ) is randomly sampled, one being the ref-
erence frame (similar to a key frame used during inference). We
set Ir and Ii to be 9 frames apart at maximum. The deep feature
map fr is first obtained from the reference frame, while FlowNet
runs on both frames to estimate the flow field. The estimated flow,
after going through the transformation sub-network, is used to
propagate fr to fi . The element-wise difference of fi and fr is used

mAP Speed (fps)
Baseline [27] 65.92 33
+trans. flow 67.20 33
+trans. flow +motion amp. 68.84 32

Table 1: Performances of our variant architectures. The re-
ported run time is the sum of pre-processing, network infer-
ence and post-processing time.

to augment fi , which will be the final feature map fed to the de-
tection sub-network. The incurred localization and classification
losses are then back-propagated to update all components of all
sub-networks. Here, we use ResNet with ImageNet pre-training.
FlowNet is pre-trained on the Flying Chair dataset [3].

In both training and inference, input images are resized to 600x800
and 300x400 for the feature extraction and flow sub-network re-
spectively. Training is conducted by stochastic gradient descent
(SGD) for 96K iterations, where in the first 64K and the last 32K
iterations learning rates are set to 5 × 10−4 and 5 × 10−5 respec-
tively. We train our model using a single NVIDIA GeForce GTX
1080 Ti GPU for approximately 12 hours. During inference, every
10th frame is sampled as a key frame for simplicity, whose deep
feature is propagated to the successive 9 frames.

4.2 Results
We conduct experiments with different variations of architectures.
Table 1 reports the performance of three experimented architec-
tures. We take the original deep feature flow implementation as the
baseline method which consists of only feature propagation.

To inspect the effect of flow transformation, we compare the
resulted flow fields against those produced by the baseline method.
Figure 3 shows some visualizations of the pre- and post-transformed
flows alongwith their associated RGB images. Evenwithout ground-
truth flows to supervise training the flow transformation layers,
we observe that using losses incurred by solely detection enables
transformed flow to learn capturing motions more smoothly and
correctly. This has a direct impact on the overall detection accuracy,
as accurate flows facilitate more precise feature propagation for
non-key frames.

Next, we analyze the effect of the motion-aware appearance
features. From table 1, it is shown that incorporating the implicit
motion representation on top of our flow transformation improves
the detection result by 2.7 mAP from the baseline. The mAP for
each action class is reported in figure 4. It can be observed that
the implicit motion significantly boosts certain action classes such
as volleyball spike and golf swing, etc. that perform poorly by the
baseline method. Some of these examples are depicted in figure
5 where our method is able to capture action when the baseline
method fails. The gain can be explained by our feature amplifica-
tion, which makes appearance features be aware of specific motion
patterns.

Finally, in table 2 we compare our detection results against state-
of-the-art methods [12][24] with real-time performance, as docu-
mented by El-Nouby et al. [4] and Singh et al. [24]. Our best perform-
ingmodel outperforms the other top performers in terms of run time
while retaining comparable accuracy. It should be noted, as pointed
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Figure 3: Effect of flow transformation. Action examples of
Ice Dancing and Fencing indicate that transformed flows
better capture motions (leg swing in Ice Dancing and arm
movement of the right person in Fencing).

Figure 4: Detection results comparison (mAP) on individual
action classes. Green bins indicate the amount our method
improves upon the baseline; vice versa for the purple bins.

mAP Speed (fps)
Singh et al.[24] RGB 64.96 40
Singh et al.[24] RGB+Fast flow 65.66 28
Singh et al.[24] RGB+Acc. flow 68.31 7
Kalogeiton et al.[12] 69.50 25-30
Ours (+flow trans.+motion amp.) 68.84 32

Table 2: Comparisons of our best architecture with state-of-
the-arts. Singh et al. apply two types of flow estimator; the
fast one enables real-time performance while the accurate
one provides higher accuracy.

out by El-Nouby et al., that other methods test on untrimmed videos
as their frameworks handle both spatial and temporal detection. In
other words, they could suffer from the disadvantage of having a
greater chance of false positives on unlabeled action frames.

5 CONCLUSION
In this paper we propose an integrated action detection framework
with real-time performance. By exploiting temporal coherence be-
tween video frames, we guide appearance features efficiently by
motion which significantly improves detection run time. Addition-
ally, we adopt a simple yet effective motion cue in the appearance
stream, implicitly enabling motion awareness. This not only boosts
detection accuracy, but also saves computation from having to
utilize a two-stream network. We demonstrate that our proposed
method is faster (up to 33 fps) than all previous works to our best
knowledge while being able to achieve comparable accuracy with
other best performers. In future work, we will include the function-
ality of temporal localization to form a complete spatio-temporal
action detection pipeline. We will also perform adaptive key frame
selection as opposed to the fixed sampling scheme currently being
used. Lastly, more sophisticated motion representations will be con-
sidered. We will also perform thorough evaluation on untrimmed
videos and more public datasets for a fair comparison.
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