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Abstract

Given a graph G, the exact distance-p graph G[♮p] has V (G) as its vertex set, and
two vertices are adjacent whenever the distance between them in G equals p. We present
formulas describing the structure of exact distance-p graphs of the Cartesian, the strong,
and the lexicographic product. We prove such formulas for the exact distance-2 graphs
of direct products of graphs. We also consider infinite grids and some other product
structures. We characterize the products of graphs of which exact distance graphs are
connected. The exact distance-p graphs of hypercubes Qn are also studied. As these
graphs contain generalized Johnson graphs as induced subgraphs, we use some known
and find some new constructions of their colorings. These constructions are applied for
colorings of the exact distance-p graphs of hypercubes with the focus on the chromatic
number of Q

[♮p]
n for p ∈ {n− 2, n− 3, n− 4}.
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1 Introduction

Nešetřil and Ossona de Mendez introduced in [16, Section 11.9] the concept of exact distance-p

graph, where p is a positive integer, as follows. If G is a graph, then the exact distance-p graph

G[♮p] of G is the graph with V (G[♮p]) = V (G) and two vertices in G[♮p] are adjacent if and only

if they are at distance exactly p in G. Note that G[♮1] = G.

The main focus in earlier investigations of exact distance graphs was on their chromatic

number. One of the main reasons for this interest is the problem asking whether there exists

a constant C such that for every odd integer p and every planar graph G we have χ(G[♮p]) ≤

C. The problem that was explicitly stated in [16, Problem 11.1] and attributed to van den

Heuvel and Naserasr (see also [17, Problem 1]) has been very recently answered in negative by

considering the exact distance graphs of large complete q-ary tree [5]. Results on the chromatic

number of exact distance graphs are in particular known for trees [5] and chordal graphs [19].

Also very recently, van den Heuvel, Kierstead and Quiroz [10] proved that for any graph G and

odd positive integer p, χ(G[♮p]) is bounded by the weak (2p− 1)-colouring number of G.

The exact distance-p graphs have been much earlier considered for the case when G is a

hypercube in the frame of the so-called cube-like graphs [6, 9, 13, 18, 20, 22], see also the

book of Jensen and Toft [12]. Initially, the notion of the cube-like graph was introduced by

Lovász [9] who proved that every cube-like has integral spectrum. Apparently, many authors

had conjectured that the chromatic number of cube-like graphs is always some power of 2. It

turned out that there is no cube-like graph of chromatic number 3 but there exists a cube-

like graph of chromatic number 7 [18]. Ziegler also studied the cube-like graphs (under the

name Hamming graphs), and determined the chromatic number in numerous cases. Finally,

the chromatic number of exact distance-2 hypercube is a problem which has been intensively

studied [13, 20].

We believe that the concept of exact distance graphs is not only interesting because of the

chromatic number, but also as a general metric graph theory concept. With this paper we thus

hope to initiate an interest for general properties of the construction. Actually, using a different

language, back in 2001 Ziegler proved the following property for bipartite graphs.

Lemma 1.1. ([22]) Let G be a bipartite graph.

(i) If p is even, then G[♮p] is not connected.

(ii) If p is odd, then G[♮p] is a bipartite graph (and has the same bipartition than G).

In this paper we focus on the exact distance graphs of graph products and proceed as follows.

In the rest of this section we give required definitions and fix notation. Then, in Section 2, we
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present formulas describing the structure of exact distance-p graphs of the Cartesian, the strong,

and the lexicographic product, respectively, of arbitrary two graphs. In the case of the direct

product of graphs only exact distance-2 graphs could be expressible with a nice formula, which

in turn simplifies to (G ×H)[♮2] = G[♮2]
⊠H [♮2] when G and H are both triangle-free graphs.

Nice expressions are found also for the exact distance-2 graphs of some products of the 2-way

infinite paths, which yields the chromatic number of the corresponding grids. In Section 3, we

consider the characteristic conditions for the connectivity of exact distance graphs with respect

to all four products. This time, for the Cartesian and the direct product we can only deal with

the case p = 2, while for the other two products the result covers exact distance-p graphs for

an arbitrary integer p. In Section 4, we study the exact distance-p graphs of hypercubes. We

start by showing that Q
[♮n−1]
n

∼= Qn, and by describing some structural properties of Q
[♮p]
n for

an arbitrary p ≤ n. Noting that some generalized Johnson graphs appear as induced subgraphs

in Q
[♮p]
n , we consider the chromatic number of these graphs, combining some results from the

literature with some new constructions. This enables us to give upper bounds for the chromatic

number of Q
[♮p]
n for p ∈ {n− 2, n− 3, n− 4}, which are 8, 15, and 26, respectively.

If G is a graph, then dG(x, y) is the standard shortest-path distance between vertices x and

y in G. The maximum distance between u and all the other vertices is the eccentricity of u. The

maximum and the minimum eccentricity among the vertices of G are the diameter diam(G)

and the radius rad(G).

We define G
[♮0]

as the graph with the vertex set V (G) and with a loop added to each of its

vertices. If G and H are graphs on the same vertex set, then G ⊎H is the graph with vertex

set V (G) = V (H) and edge set E(G) ∪ E(H). If G is a graph, then kG denotes the disjoint

union of k copies of the graph G.

The vertex set of each of the four standard graph products of graphs G and H is equal to

V (G) × V (H). In the direct product G × H vertices (g1, h1) and (g2, h2) are adjacent when

g1g2 ∈ E(G) and h1h2 ∈ E(H). In the lexicographic product G◦H , vertices (g1, h1) and (g2, h2)

are adjacent if either g1g2 ∈ E(G), or g1 = g2 and h1h2 ∈ E(H). In the strong product G⊠H

vertices (g1, h1) and (g2, h2) are adjacent whenever either g1g2 ∈ E(G) and h1 = h2, or g1 = g2

and h1h2 ∈ E(H), or g1g2 ∈ E(G) and h1h2 ∈ E(H). Finally, in the Cartesian product G�H

vertices (g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and

h1h2 ∈ E(H). All these products are associative and, with the exception of the lexicographic

product, also commutative. Let G ∗H be any of the four standard graph products. Then the

subgraph of G ∗H induced by {g} × V (H) is called an H-layer of G ∗H and denoted gH . For

more on products graphs see the book [8].
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2 Exact distance graphs of graph products

We first recall the distance function of the four standard products, cf. [8].

Lemma 2.1. ([8]) If G and H are graphs and (g1, h1), (g2, h2) ∈ V (G)× V (H), then

(i) dG�H((g1, h1), (g2, h2)) = dG(g1, g2) + dH(h1, h2);

(ii) dG⊠H((g1, h1), (g2, h2)) = max{dG(g1, g2), dH(h1, h2)};

(iii) dG×H((g1, h1), (g2, h2)) = k, where k is the smallest integer such that there exists a g1, g2-

walk of length k in G and a h1, h2-walk of length k in H;

(iv) dG◦H((g1, h1), (g2, h2)) =







dG(g1, g2), if g1 6= g2;
min{dH(h1, h2), 2}, if g1 = g2 and degG(g1) > 0;
dH(h1, h2), otherwise.

Theorem 2.2. If G and H are graphs, then

(G�H)[♮p] =

p
⊎

i=0

(

G[♮i] ×H [♮p−i]
)

.

Equivalently,

(G�H)[♮p] =

p−1
⊎

i=1

(

G[♮i] ×H [♮p−i]
)

⊎
(

G[♮p]
�H [♮p]

)

.

Proof. By Lemma 2.1(i), dG�H((g1, h1), (g2, h2)) = p if and only if there exists i, 0 ≤ i ≤ p,

such that dG(g1, g2) = i and dH(h1, h2) = p− i. This in turn holds if and only if g1g2 ∈ E(G[♮i])

and h1h2 ∈ E(G[♮p−i]). From this the first equality follows by the definition of the direct

product. The second equality follows from the fact that
(

G[♮0] ×H [♮p]
)

⊎
(

G[♮p] ×H [♮0]
)

=

G[♮p]
�H [♮p].

Fig. 1 illustrates Theorem 2.2 on the case G = P4, H = P3, and p = 2.

(

P
[♮2]
4 × P

[♮0]
3

)

⊎
(

P
[♮0]
4 × P

[♮2]
3

)

P
[♮1]
4 × P

[♮1]
3 (P4 �P3)

[♮2]

Figure 1: Illustration of the structure of (P4 �P3)
[♮2] which is isomorphic to

(

P
[♮2]
4 × P

[♮0]
3

)

⊎
(

P
[♮0]
4 × P

[♮2]
3

)

⊎
(

P
[♮1]
4 × P

[♮1]
3

)

.
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Theorem 2.3. If G and H are graphs, then

(G⊠H)[♮p] =

p
⊎

i=0

(

(G[♮p] ×H [♮i]) ⊎ (G[♮i] ×H [♮p])
)

.

Proof. By Lemma 2.1(ii), dG⊠H((g1, h1), (g2, h2)) = p if and only if either dG(g1, g2) = p and

dH(h1, h2) = i, where 0 ≤ i ≤ p, or dG(g1, g2) = i and dH(h1, h2) = p, where 0 ≤ i ≤ p. Hence,

the theorem follows.

In view of Lemma 2.1(iii), it is not surprising that the situation with the direct product is

more tricky (as it is often the case with the direct product). To state a formula for (G×H)[♮2],

we need the following concept, see [16, Section 11.9]. If G is a graph, then G♮p is the graph

with V (G♮p) = V (G), vertices x and y being adjacent if and only if they are connected in G

with a path of length p.

Theorem 2.4. If G and H are graphs without isolated vertices, then

(G×H)[♮2] = (G♮2
�H♮2) ⊎ (G♮2 ×H [♮2]) ⊎ (G[♮2] ×H♮2) .

In particular, if G and H are triangle-free, then

(G×H)[♮2] = G[♮2]
⊠H [♮2] .

Proof. Let (g1, h1), (g2, h2) be vertices of G × H with dG×H((g1, h1), (g2, h2)) = 2. Then by

Lemma 2.1(iii) there exist a g1, g2-walk of length 2 in G and a h1, h2-walk of length 2 in H ,

and not both g1g2 ∈ E(G) and h1h2 ∈ E(H) hold.

If g1 = g2, then, dG×H((g1, h1), (g2, h2)) = 2 if and only if there is a path of length 2

between h1 and h2 in H . Note that the sufficiency of this assertion holds because G is isolate-

free. Similarly, if h1 = h2, then, dG×H((g1, h1), (g2, h2)) = 2 if and only if there is a path of

length 2 between g1 and g2 in G, where we use the fact that H is isolate-free. It follows that

G♮2
�H♮2 is a spanning subgraph of (G×H)[♮2].

Suppose next that g1 6= g2 and h1 6= h2. Then dG×H((g1, h1), (g2, h2)) = 2 if and only if

• either there is a path of length 2 between h1 and h2 in H and dG(g1, g2) = 2,

• or there is a path of length 2 between g1 and g2 in G and dH(h1, h2) = 2.

(Indeed, if g1g2 ∈ E(G) and h1h2 ∈ E(H), then (g1, h1)(g2, h2) ∈ E(G×H), and if there is no

g1, g2-path of length 2 in G or no h1, h2-path of length 2 inH , then dG×H((g1, h1), (g2, h2)) > 2.)

The first possibility implies that G♮2 ×H [♮2] is a spanning subgraph of (G ×H)[♮2], while the

second possibility implies that same forG[♮2]×H♮2. This proves the first formula of the theorem.
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Suppose now that G and H are triangle-free. Then G[♮2] = G♮2 and H [♮2] = H♮2. By the

already proved formula we have

(G×H)[♮2] = (G♮2
�H♮2) ⊎ (G♮2 ×H [♮2]) ⊎ (G[♮2] ×H♮2)

= (G[♮2]
�H [♮2]) ⊎ (G[♮2] ×H [♮2])

= G[♮2]
⊠H [♮2] ,

where the last equality holds by the basic relation between the three products in question.

For the lexicographic product, the case where G is trivial is special since we have (K1 ◦

H)[♮p] = H [♮p]. If G has no isolated vertex, we have the following.

Theorem 2.5. If G is a graph without isolated vertices and H an arbitrary graph, then

(G ◦H)[♮p] =

{

G[♮2] ◦H, if p = 2;

G[♮p] ◦Kn(H), otherwise.

Proof. By Lemma 2.1, dG◦H((g1, h1), (g2, h2)) = min{dH(h1, h2), 2} if g1 = g2 or dG(g1, g2),

otherwise. First, if p = 2, then two vertices (g, h1) and (g, h2) are at distance two in G ◦ H

if and only if h1 6= h2 and they are not adjacent. Also, vertices (g1, h1) and (g2, h2), where

g1 6= g2, are at distance 2 if and only if dG(g1, g2) = 2. Consequently, (G ◦H)[♮2] = G[♮2] ◦H .

Second, if p ≥ 3, then no vertices (g, h1) and (g, h2) are adjacent in (G ◦ H)[♮p]. Also,

vertices (g1, h1) and (g2, h2), where g1 6= g2, are at distance p if and only if dG(g1, g2) = p.

Consequently, (G ◦H)[♮p] = G[♮p] ◦Kn(H).

We now turn to infinite graphs and state the following interesting representations of exact

distance-2 graphs of infinite grids.

Proposition 2.6. If P∞ is the 2-way infinite path, then

(1) (P∞ �P∞)[♮2] = 2(P∞ ⊠ P∞), and

(2) (P∞ × P∞)[♮2] = 4(P∞ ⊠ P∞).

Proof. Throughout the proof let V (P∞) = Z, so that the vertex set of each of the products

considered as well as of their distance-2 graphs is Z× Z.

(1) A vertex (i, j) ∈ Z×Z of P∞ �P∞ is adjacent to the four vertices (i, j±1) and (i±1, j).

Consequently, in (P∞ �P∞)[♮2], the vertex (i, j) is adjacent to the vertices (i±1, j±1), (i, j±2),

and (i± 2, j). (Note that (P∞ �P∞)[♮2] is 8-regular). It follows that (P∞ �P∞)[♮2] consists of

two connected components, one component being induced by the vertices (i, j) such that i+ j

is even, and the other component being induced by the vertices (i, j) such that i+ j is odd. Let

these components be called even and odd, respectively.
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Consider the even component of (P∞ �P∞)[♮2] and for k ∈ Z set Vk = {(i, j) : i+ j = 2k}.

A vertex from Vk has two neighbors in Vk, and three neighbors in each of Vk−1 and Vk+1. Hence

the set Vk induces a subgraph isomorphic to P∞ and, moreover, Vk∪Vk+1 (as well as Vk∪Vk−1)

induces a subgraph isomorphic to P2 ⊠ P∞. This fact is illustrated in Fig. 2 for k = 0, that is,

for the sets V0, V1, and V−1.

(−4, 2) (−3, 1) (−2, 0) (−1,−1) (0,−2) (1,−3) (2,−4)

(−3, 3) (−2, 2) (−1, 1) (0, 0) (1,−1) (2,−2) (3,−3)

(−2, 4) (−1, 3) (0, 2) (1, 1) (2, 0) (3,−1) (4,−2)V1

V0

V−1 · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2: Central parts of the sets V0, V1, and V−1 of the even component of (P∞ �P∞)[♮2]

By the above local strong product structure induced by the sets Vk ∪ Vk+1, k ∈ Z, we

inductively conclude that the even component of (P∞ �P∞)[♮2] is isomorphic to P∞ ⊠ P∞.

A parallel argument applies to the odd component. This proves the first assertion of the

proposition.

(2) A vertex (i, j) ∈ Z×Z of P∞×P∞ is adjacent to the vertices (i±1, j±1) and consequently

the vertex (i, j) of (P∞×P∞)[♮2] is adjacent to the vertices (i±2, j±2), (i, j±2), and (i±2, j).

Let X00 = {(i, j) : i, j even}, X01 = {(i, j) : i even, j odd}, X10 = {(i, j) : i odd, j even},

and X11 = {(i, j) : i, j odd}. Then (P∞ × P∞)[♮2] consists of four connected components Gij ,

i, j ∈ {0, 1}, where Gij is induced by the vertex set Xij . It is straightforward to see that each

of the Gij induces a subgraph of (P∞ × P∞)[♮2] isomorphic to P∞ ⊠ P∞, hence the second

assertion of the proposition.

Formula (2) of the above proposition could also be proven in the following way. One should

first observe (and prove) that the direct product P∞ × P∞ is isomorphic to the disjoint union

of two copies of the square grid P∞ �P∞, and then apply Proposition 2.6(1).

Note that in view of Proposition 2.6 it is obvious that

χ((P∞ �P∞)[♮2]) = χ((P∞ × P∞)[♮2]) = 4.

The graph (P∞ ⊠ P∞)[♮2] is 16-regular, but its structure is not so transparent. Nevertheless,
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χ((P∞⊠P∞)[♮2]) = 4 as can be demonstrated by first coloring the vertices (i, j), i, j ∈ {1, 2, 3, 4},

with the following pattern:

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

and then repeatedly extending the pattern to the whole graph (P∞⊠P∞)[♮2]. This pattern can

be generalized to an arbitrary p ≥ 1 to get a 4-coloring of (P∞ ⊠ P∞)[♮p] as follows:

1 . . . 1 2 . . . 2
...

...
...

...
1 . . . 1 2 . . . 2
3 . . . 3 4 . . . 4
...

...
...

...
3 . . . 3 4 . . . 4

Hence, we infer that

χ((P∞ ⊠ P∞)[♮p]) = 4

holds for every positive integer p.

It seems intriguing to find a nice expression for (P∞ �P∞)[♮p] and (P∞ × P∞)[♮p] when

p > 2.

3 Connectivity

We start with the following easy observation.

Lemma 3.1. If G is a non-trivial graph and p > rad(G), then G[♮p] is not connected.

Indeed, if p > rad(G), then every vertex whose eccentricity equals rad(G) is an isolated

vertex of G[♮p].

Theorem 3.2. Let G and H be connected graphs with rad(G) ≥ rad(H), and let p ≥ 2. The

graph (G⊠H)[♮p] is connected if and only if the following conditions hold:

(1) rad(G) ≥ p, and

(2) G[♮p] is connected or diam(H) ≥ p.

Proof. First, suppose that (G⊠H)[♮p] is connected. Since rad(G⊠H) = max{rad(G), rad(H)} =

rad(G), it follows, by applying Lemma 3.1, that rad(G) ≥ p. Suppose next that condition (2)

does not hold, that is, G[♮p] is not connected and diam(H) < p. Let P be a shortest path

between (g, h) and (g′, h′) of length p in G ⊠H . Then, since diam(H) < p, the projection of

8



P on G is a (shortest) g, g′-path of length p in G. In other words, starting from a vertex (g, h)

one can reach by shortest paths of length p in G⊠H only the vertices in the layers g′

H , where

dG(g, g
′) = p. Hence, if g1 and g2 are vertices that belong to different connected components of

G[♮p], and h is an arbitrary vertex of H , then (g1, h) and (g2, h) belong to different connected

components of (G⊠H)[♮p].

For the converse, assume that conditions (1) and (2) hold. We distinguish two cases.

In the first case, suppose that rad(G) ≥ p, and diam(H) ≥ p. Let (g, h) be a vertex in

G ⊠H . In the same way as in the first paragraph we can show that all the vertices in gH are

in the same connected component of (G⊠H)[♮p]. Let g′g ∈ E(G) for some g′ ∈ V (G), and let

h and h′ be vertices in H at distance p (as p ≤ diam(H) such two vertices exist). Let h′′ be

a neighbor of h that lies on a shortest h, h′-path. Note that dG⊠H [(g, h), (g′, h′)] = p, where

the neighbor on a shortest (g, h), (g′, h′)-path is (g, h′′). Hence (g′, h′) is in the same connected

component of (G⊠H)[♮p] as all the vertices of gH . By the same reasoning as before, all vertices

in gH are in the same component as (g′, h) of (G ⊠ H)[♮p]. As G is connected, an inductive

argument implies that all H-layers are in one and the same component.

In the second case, let G[♮p] be connected (and rad(G) ≥ p). By excluding the first case,

suppose moreover that diam(H) < p. Let (g, h) be a vertex in G ⊠ H , and let g′ ∈ V (G) be

a neighbor of g in G[♮p]. Hence, all vertices from the layer g′

H are adjacent in (G ⊠H)[♮p] to

the vertex (g, h). In turn, by reversing the roles of g and g′, all vertices in gH is adjacent to

all vertices from the layer g′

H . Since G[♮p] is connected, an inductive arguments yields that

(G⊠H)[♮p] is connected.

The situation of the lexicographic product is the following.

Proposition 3.3. If p ≥ 1 and G is a non-trivial graph, then (G ◦H)[♮p] is connected if and

only if G[♮p] is connected.

Proof. The assertion for p = 1 follows, since G ◦H is connected if and only if G is connected.

Let p = 2. Suppose that G[♮2] is not connected. Note that any shortest path of length 2

from a vertex in gH either ends in the same layer or in a layer g′

H , where gg′ ∈ G ◦ H [♮2].

Hence G[♮2] is not connected, implies that (G ◦ H)[♮p] is not connected., Assume conversely

that G[♮2] is connected. Let (g, h) and (g, h′) be arbitrary vertices from gH . If hh′ /∈ E(H),

then dG◦H [(g, h), (g, h′)] = 2, which implies that (g, h) and (g, h′) are in the same component

of G[♮2]. Now, let hh′ ∈ E(H). Since G[♮2] is connected, rad(G) ≥ 2. Hence, there exists a

vertex g′ ∈ V (G) with dG(g, g
′) = 2. Then, dG◦H [(g, h), (g′, h)] = dG◦H [(g′, h), (g, h′)] = 2,

which implies that (g, h) and (g, h′) are in the same component of (G ◦H)[♮p]. The above two

cases imply that all vertices from gH are in the same component of (G ◦H)[♮p]. Because G[♮p]

is connected, inductive argument yields that (G ◦H)[♮p] is connected.
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Finally, let p ≥ 3. The projection to G of any shortest path in G◦H of length p is a shortest

path in G of the same length. From this observation the assertion follows immediately.

Proposition 3.4. Let G and H be connected graphs. Then,

(a) (G�H)[♮2] is connected if and only if one of G or H is non-bipartite.

(b) (G×H)[♮2] is connected if and only if G[♮2] and H [♮2] are connected.

Proof. (a) Theorem 2.2 implies that G ×H is a spanning subgraph of (G�H)[♮2]. The result

now follows by Weichel’s theorem [21] asserting that G ×H is connected if and only if G and

H are connected and at least one of them is not bipartite.

(b) By Theorem 2.4, (G × H)[♮2] contains G[♮2]
⊠ H [♮2] as a spanning subgraph (because

E(G[♮2]) ⊆ E(G♮2), for any graph G). The claim now follows because the strong product is

connected if and only if both factor graphs are connected, see [8].

The connectivity of (G�H)[♮p] and of (G × H)[♮p] where p ≥ 3 seems an intriguing open

question. In the next result we solve it for the particular case of hypercubes Qd, where Q1 = K2

and Qd = Qd−1�K2 for d ≥ 2.

Theorem 3.5. Let d ≥ 2 and 1 ≤ p < d. Then Q
[♮p]
d is connected if and only if p is odd.

Proof. If p is even, then Q
[♮p]
d is disconnected by Lemma 1.1(a).

Assume now that p is odd. The case p = 1 is trivial, hence assume in the rest that p ≥ 3. To

prove that Q
[♮p]
d is connected it suffices to show that in Q

[♮p]
d there exists a path from the vertex

0d to a vertex with exactly one bit 1. Indeed, if this is proved, then since Qd is edge-transitive,

every pair of adjacent vertices of Qd is connected by a path in Q
[♮p]
d . Consequently, as Qd is

connected, Q
[♮p]
d is also connected.

Clearly, the vertex x0 = 0d is adjacent in Q
[♮p]
d to the vertex x1 = 1p0d−p, which is in turn

adjacent to the vertex x2 = 10p−110d−p−1. By changing the first p− 1 bits and the (p+1)st bit

of x2 we arrive to the vertex x3 = 01p−20d−p+1. Since p− 2 is odd, we can write p = p1 + p2,

where p1 − p2 = 1. Let x4 be a neighbor of x3 in Q[♮p] obtained from x3 by changing p2 of its

1s into 0s, and hence p− p2 zero bits of x3 into 1s. In this way x4 contains p1+(p− p2) = p+1

bits equal to 1. Now x4 is in Q
[♮p]
d adjacent to p+ 1 vertices each of which has exactly one bit

1.

4 Exact distance graphs of hypercubes

In this section we first describe the structure of exact distance graphs of hypercubes by showing

that they contains copies of some generalized Johnson graphs. Afterward, we combine known
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results and new ones about the chromatic number of generalized Johnson graphs to derive upper

bounds for the chromatic number of some exact distance graphs of hypercubes.

The generalized Johnson graph J(n, k, i) (where i ≤ k ≤ n) is the graph with the set

{A ⊆ {1, . . . , n} : |A| = k} and edge set {AB : |A ∩ B| = i}. The family of generalized

Johnson graphs includes Kneser graphs K(n, k) = J(n, k, 0) (which themselves include the odd

graphs J(2k + 1, k, 0)) and the Johnson graphs J(n, k, k − 1)) [1].

4.1 On the structure of exact distance graphs of hypercubes

For even distance, the structure of the exact distance graph of the hypercube is known.

Proposition 4.1. ([22]) Q
[♮2p]
n = 2(Q

[♮2p]
n−1 ⊎Q

[♮2p−1]
n−1 ).

For odd distance n− 1 we prove the existence of the following isomorphism.

Proposition 4.2. For every positive even integer n, Q
[♮n−1]
n

∼= Qn.

Proof. For a vertex x of Q
[♮n−1]
n , we denote by xi,i+1, for i ∈ {1, . . . , n− 1}, the concatenation

of the ith bit and (i+ 1)th bit of x. We say that xi,i+1 is an odd word if xi,i+1 ∈ {01, 10}, and

otherwise xi,i+1 is an even word (i.e., when xi,i+1 ∈ {00, 11}). Next, if {x1,2, x3,4, . . . , xn−1,n}

contains an even number of odd words, then x is said to be of type A. Otherwise, x is said to

be of type B. We set the following function f , for i ∈ {0, . . . , (n− 2)/2} from {0, 1}n to {0, 1}n:

f(x)2i+1,2i+2 =



























x2i+1,2i+2, if x2i+1,2i+2 is even and x is of type A;

x2i+1,2i+2, if x2i+1,2i+2 is odd and x is of type A;

x2i+1,2i+2, if x2i+1,2i+2 is even and x is of type B;

x2i+1,2i+2, otherwise.

We first prove that f is a bijective and, afterwards, that f is an isomorphism between Q
[♮n−1]
n

and Qn. First, since f(x) is of type A if and only if x is of type A, it can be easily noticed that

x 6= x′, for x, x′ ∈ V (Q
[♮n−1]
n ), implies f(x) 6= f(x′). Also, for every vertex y of Qn, there exists

x ∈ V (Q
[♮n−1]
n ) such that f(x) = y. Thus, f is bijective.

Second, since n−1 is odd, every adjacent vertices x and x′ in Q
[♮n−1]
n are in different classes

( Q
[♮n−1]
n is bipartite). Suppose that x and x′ differ in n− 1 bits, i.e., have exactly one common

bit xk. Suppose that x2i+1,2i+2 contains the bit xk. It can be easily observed that for each

j ∈ {0, . . . , (n− 2)/2} \ {i}, x2j+1,2j+2 is an even word if and only if x′
2j+1,2j+2 is an even word.

Moreover, x2i+1,2i+2 is an even word if and only if x′
2i+1,2i+2 is an odd word. Consequently,

for each j ∈ {0, . . . , (n − 2)/2} \ {i}, f(x)2j+1,2j+2 = f(x′)2j+1,2j+2 and since f(x)2i+1,2i+2

and f(x′)2i+1,2i+2 have exactly one common bit, f(x) and f(x′) have n− 1 common bits and,
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consequently, are adjacent in Qn. Finally, if x and x′ are not adjacent in Q
[♮n−1]
n , then f(x)

and f(x′) are not adjacent in Qn, since both Q
[♮n−1]
n and Qn are n-regular. Thus, f is an

isomorphism.

The following isomorphism is well known, cf. [1].

Proposition 4.3. If n, k, and i are positive integers, then J(n, k, i) ∼= J(n, n− k, n− 2k + i).

The set of vertices of Qn having exactly j bits 1 will be denoted by Ln
j , or shortly Lj when

the hypercube Qn is understood from context.

Proposition 4.4. For every integer n and even integer p, p ≤ n, the exact distance graph Q
[♮p]
n

contains J(n, i, i− p/2) as an induced subgraph, for each i ∈ {p/2, . . . , n− p/2}. Moreover, all

these induced subgraphs are pairwise vertex disjoint in Q
[♮p]
n .

Proof. By changing p/2 bits 1 and p/2 bits 0 from a vertex of Li, we obtain another vertex

from Li with i − p/2 common bits 1. If we change k bits 1, with k > p/2 or k < p/2 from a

vertex of Li, then we obtain a vertex of V (G) \ Li. Thus, the vertices of Ln
i induce the graph

J(n, i, i− p/2).

Remark 4.5. For every integer n and even integer p, where p ≤ n, the subgraph induced

by ∪0≤j≤⌊n/2⌋L
n
2j and the subgraph induced by ∪0≤j≤⌊(n−1)/2⌋L

n
2j+1 are the two isomorphic

connected components of Q
[♮p]
n .

This remark follows from two facts. First, when p is even there is no edges between a vertex

containing an even number of bits 1 and a vertex containing an odd number of bits 1 (by parity).

Second, by inverting the bits 0 and 1, we have a trivial isomorphism between ∪0≤j≤⌊n/2⌋L
n
2j

and ∪0≤j≤⌊(n−1)/2⌋L
n
2j+1.

4.2 Colorings of the generalized Johnson graphs

The determination of the chromatic number of Kneser graphs is a classical result of graph

theory [3, 14, 15].

Theorem 4.6. ([3, 14]) For any integers n and k < n/2, χ(J(n, k, 0)) = n− 2k + 2.

On the other hand, it is not known much about the chromatic number of generalized Johnson

graphs and related graph classes. We state a few known bounds and values in this area.

Theorem 4.7. ([4]) We have χ(J(6, 3, 1)) = 6 and χ(J(8, 4, 1)) = 5.

Theorem 4.8. ([4]) For any positive integers n and i < n/2, i+2 ≤ χ(J(n, n/2, i)) ≤ 2
(

2i+2
i+1

)

.
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This latter result was recently extended and improved by Balogh, Cherkashin and Kiselev [2]

who presented a upper bound which is quadratic on i even for the generalized Kneser graph.

We define the generalized Kneser graph K(n, k, i), where i ≤ k ≤ n, as the graph with vertex

set {A ⊆ {1, . . . , n} : |A| = k} and edge set {AB : |A ∩ B| ≤ i}. For homogeneity reasons,

the generalized Kneser graphs are defined slightly differently than in [2, 11] (there is a shift

for the third parameter). Note that the generalized Johnson graph J(n, k, i) is a subgraph of

K(n, k, i). Consequently, χ(J(n, k, i)) ≤ χ(K(n, k, i)). The following are known results about

the chromatic number of generalized Kneser graphs.

Theorem 4.9. ([11]) For every positive integers n, k and i, χ(K(n, k, i)) ≤
(

n−2k+2(i+1)
i+1

)

.

Theorem 4.10. ([11]) For any 0 < i+1 < k < n, we have χ(K(n+2, k+1, i)) ≤ χ(K(n, k, i))).

In particular, for k ≥ 3:

• χ(K(2k, k, 1)) ≤ χ(K(6, 3, 1)) ≤ 6;

• χ(K(2k + 1, k, 1)) ≤ χ(K(7, 3, 1)) ≤ 9;

• χ(K(2k + 2, k, i)) ≤ χ(K(8, 3, 1)).

In the following proposition, we give an upper bound on the chromatic number of K(8, 3, 1).

Note that by Theorem 4.10 this upper bound implies the same upper bound on χ(J(2k+2, k, i)),

for 0 < i+ 1 < k < n and k ≥ 3.

Proposition 4.11. We have χ(K(8, 3, 1)) ≤ 12.

Proof. We claim that the mapping c : V (K(8, 3, 1)) → {1, . . . , 12}, defined by

c(A) =























































i, if {2i− 1, 2i} ⊆ A, 1 ≤ i ≤ 4;
5, if A = {1, 4, j}, j ∈ {5, 6, 7, 8};
6, if A = {2, 3, j}, j ∈ {5, 6, 7, 8};
7, if A = {j, 5, 8}, j ∈ {1, 2, 3, 4};
8, if A = {j, 6, 7}, j ∈ {1, 2, 3, 4};
9, if A ⊆ {1, 3, 5, 7};
10, if A ⊆ {1, 3, 6, 8};
11, if A ⊆ {2, 4, 5, 7};
12, otherwise (if A ⊆ {2, 4, 6, 8});

is a proper coloring of K(8, 3, 1) with twelve colors.

We start by proving that c is well defined (i.e., every vertex A of K(8, 3, 1) receives a unique

color by the above definition). First note that at least two elements of A are either in {1, 2, 3, 4}

or in {5, 6, 7, 8}. Suppose, without loss of generality, that at least two elements of A are in

{1, 2, 3, 4}. If {1, 2} ⊆ A, {3, 4} ⊆ A, {1, 4} ⊆ A or {2, 3} ⊆ A, then c(A) ∈ {1, 2, 3, 4, 5, 6}.
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Table 1: Bounds on χ(Q
[♮p]
n ). Bold numbers represent exact values, a pair a-b represents a lower

bound and an upper bound on χ(Q
[♮p]
n ).

n\p 4 6 8 10
6 7 [18] 2
7 8 [22] 4 [22]
8 8 [22] 4-7 2
9 8 [22] 5-15 4-8
10 6-26 5-15 2

Consequently, by excluding this case, either {1, 3} ⊆ A or {2, 4} ⊆ A, and consequently A has

a color among {9, 10, 11, 12}.

Now, we prove that for any two adjacent vertices A and B ofK(8, 3, 1), we have c(A) 6= c(B).

If c(A) = c(B) and c(A) ∈ {1, 2, 3, 4, 5, 6, 7, 8}, then A and B have two common elements and

are thus not adjacent. Since any two vertices, which are subsets of a set of size 4, have two

elements in common, we infer that c(A) = c(B) and c(A) ∈ {9, 10, 11, 12} implies that A and

B are not adjacent.

4.3 Colorings of exact distance graphs of hypercubes

Bounds or exact values are known for the chromatic number of exact distance-p graph of the

hypercube. We skip mentioning numerous results about the chromatic number of Q
[♮2]
n since

by Proposition 4.1 it is in relation with the chromatic number of the second power of the

hypercube.

Theorem 4.12. ([18, 22]) If n is an odd integer, then χ(Q
[♮n−1]
n ) = 4.

Theorem 4.13. ([22]) We have χ(Q
[♮4]
6 ) = 7, χ(Q

[♮4]
7 ) = 8, χ(Q

[♮4]
8 ) = 8, χ(Q

[♮6]
8 ) ≤ 8 and

χ(Q
[♮6]
9 ) ≤ 16.

Theorem 4.14. ([[7]) We have χ(Q
[♮d]
n ) ≤ 2⌈log2(1+(

n−1
d−1))⌉.

Table 1 illustrates the upper bounds obtained in this section for small values of n. It can be

observed that we have improved the results from Ziegler on Q
[♮6]
8 and Q

[♮6]
9 . The lower bounds

from Table 1 are obtained by using Theorem 4.6 (by Proposition 4.4, Q
[♮p]
n contains J(n, p/2, 0))

as induced graph).

Using the structural tools of the previous subsection, we derive new results about the chro-

matic number of Q
[♮d]
n for n− d ≤ 4 improving some of the above results. (The situation when

n − d > 4 could be handled in a similar way.) Recall that when d is odd, Q
[♮d]
n is bipartite,

hence in the following we only consider even d.
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Theorem 4.15. If n ≥ 4 is an even positive integer, then

χ(Q[♮n−2]
n ) ≤ χ(J(n, n/2, 1)) + 2.

Proof. Note that, by Remark 4.5, one connected component of Q
[♮n−2]
n contains the vertices of

both L(n−2)/2 and L(n+2)/2 and the other one the vertices of Ln/2.

It is possible to color the vertices of Ln/2 with χ(J(n, n/2, 1)) colors. Note that if two

vertices u and v differ in exactly n − 2 bits, u ∈ Li, for i ≤ (n − 4)/2, then it implies v ∈ Lj

for j ≥ n/2. Consequently there is no edge between two vertices with less than (n− 4)/2 bits

1. Similarly, there is no edge between two vertices with more than (n+4)/2 bits 1. Finally, we

use two new colors to color all the vertices in Li, for i ≤ (n− 4)/2 with the same color and to

color all the vertices in Li, for i ≥ (n+ 4)/2 with the same color.

Corollary 4.16. If n ≥ 4 is an even positive integer, then χ(Q
[♮n−2]
n ) ≤ 8. In addition,

χ(Q
[♮6]
8 ) ≤ 7.

Proof. The first assertion follows by combining Theorem 4.15 (left bound) with Theorem 4.10.

The second assertion follows by combining Theorem 4.15 (right bound) with Theorem 4.7.

Theorem 4.17. If n ≥ 5 is an odd positive integer, then

χ(Q[♮n−3]
n ) ≤ χ(J(n, (n− 3)/2, 0)) + χ(J(n, (n− 1)/2, 1)) + 1 ≤ χ(K(7, 3, 1)) + 6.

Proof. Note that one connected component of Q
[♮n−3]
n contains the vertices of both L(n−3)/2

and L(n+1)/2 and the other one the vertices of both L(n−1)/2 and L(n+3)/2. By Proposition 4.4

and its proof, the vertices from L(n−3)/2 induce the graph J(n, (n − 3)/2, 0) and the vertices

from L(n+1)/2 induce the graph J(n, (n− 1)/2, 1). Also, by Proposition 4.3, we have J(n, (n−

3)/2, 0) ∼= J(n, (n+ 3)/2, 3) and J(n, (n− 1)/2, 1) ∼= J(n, (n+ 1)/2, 2).

It is possible to color the vertices of L(n−3)/2 with χ(J(n, (n− 3)/2, 0)) colors and to color

the vertices of L(n+1)/2 with χ(J(n, (n− 1)/2, 1)) colors.

Note that for every two vertices u and v differing in exactly n − 3 bits, u ∈ Li, for i ≤

(n−3)/2, we have v ∈ Lj for j ≥ (n−3)/2. Consequently there is no edge between two vertices

with less than (n− 3)/2 bits 1. Similarly, there is no edge between two vertices with more than

(n+3)/2 bits 1. Thus we can use just one new color for all the vertices in Li, for i > (n+3)/2.

Finally, note that no vertex of L(n−3)/2 is adjacent to a vertex of Li for i < (n−3)/2, hence it is

possible to re-use a color used for L(n−3)/2 to color all the vertices in Li, for i < (n− 3)/2.

Combining Theorem 4.17 with Theorem 4.10 we infer the following bound.

Corollary 4.18. If n ≥ 5 is an odd positive integer, then χ(Q
[♮n−3]
n ) ≤ 15.
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Theorem 4.19. If n ≥ 6 is an even positive integer, then

χ(Q
[♮n−4]
n ) ≤ min{2χ(J(n, (n− 4)/2, 0)) + χ(J(n, n/2, 2)), 2χ(J(n, (n− 2)/2, 1)) + 2}

≤ 2χ(K(8, 3, 1)) + 2.

Proof. Note that one connected component of Q
[♮n−4]
n contains the vertices of both L(n−4)/2,

Ln/2 and L(n+4)/2 and the other one the vertices of both L(n−2)/2 and L(n+2)/2. First, we

begin by proving that χ(Q
[♮n−4]
n ) ≤ 2χ(J(n, (n − 4)/2, 0)) + χ(J(n, n/2, 2)). By Proposition

4.4, the vertices from L(n−4)/2 induce the graph J(n, (n − 4)/2, 0), the vertices from L(n−2)/2

induce the graph J(n, (n − 2)/2, 1) and the vertices from Ln/2 induce the graph J(n, n/2, 2).

By Proposition 4.3, J(n, (n − 4)/2, 0) ∼= J(n, (n + 4)/2, 4) and J(n, (n − 2)/2, 1) ∼= J(n, (n +

2)/2, 3). Consequently, it is possible to color the vertices of L(n−4)/2, Ln/2, and L(n+4)/2 with

2χ(J(n, (n−4)/2, 0))+χ(J(n, n/2, 2)) colors. Note that for vertices u and v differing in exactly

n− 4 bits, u ∈ Li, for i ≤ (n− 4)/2, we have v ∈ Lj for j ≥ (n− 4)/2. Consequently there is no

edge between two vertices with less than (n − 4)/2 bits 1. Similarly, there is no edge between

two vertices with more than (n + 4)/2 bits 1. Finally, it is possible to re-use a color used for

L(n−4)/2 to color all the vertices in Li, for i < (n− 2)/2 and to re-use a color used for L(n+4)/2

to color all the vertices in Li, for i > (n+ 2)/2.

Second, we prove that χ(Q
[♮n−4]
n ) ≤ 2χ(J(n, (n − 2)/2, 1)) + 2. It is possible to color the

vertices of L(n−2)/2 with χ(J(n, (n − 2)/2, 1)) colors. Note that for every two vertices u and

v differing in exactly n − 6 bits, u ∈ Li, for i ≤ (n − 6)/2, we have v ∈ Lj for j ≥ (n − 3)/2.

Consequently there is no edge between two vertices with less than (n − 6)/2 bits 1. Similarly,

there is no edge between two vertices with more than (n+6)/2 bits 1. Finally, we use two new

colors to color all the vertices in Li, for i ≤ (n− 6)/2, with the same color and to color all the

vertices in Li, for i ≥ (n+ 4)/2 with the same color.

Combining Proposition 4.11 with Theorem 4.19 we get

Corollary 4.20. If n ≥ 6 is an even positive integer, then χ(Q
[♮n−4]
n ) ≤ 26.
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[15] J. Matoušek, A combinatorial proof of Kneser’s conjecture, Combinatorica 24 (2004) 163–

170.
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