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Featured Application: The presented work has been developed to be used in operating rooms,1

during upper gastrointestinal exploration of the stomach. The system can distinguish between2

healthy mucosa, chronic gastritis and intestinal metaplasia.3

Abstract: In this paper, we are interested in the in vivo detection of pre-cancerous stomach lesions.4

Pre-cancerous lesions are unfortunately rarely explored in research papers as most of them are5

focused on cancer detection or conducted ex-vivo. To this purpose, a novel prototype is introduced. It6

consists of a standard endoscope with multispectral cameras, an optical setup, a fiberscope, and an7

external light source. Reflectance spectra are acquired in vivo on 16 patients with a healthy stomach,8

chronic gastritis, or intestinal metaplasia. A specific pipeline has been designed for the classification9

of spectra between healthy mucosa and different pathologies. The pipeline includes a wavelength10

clustering algorithm, spectral features computation, and the training of a classifier in a "leave one11

patient out" manner. Good classification results, around 80% have been obtained, and two attractive12

wavelength ranges were found in the red and near-infrared ranges: [745, 755 nm] and [780, 840 nm].13

The new prototype and the associated results give good arguments in favor of future common use14

in operating rooms, during upper gastrointestinal exploration of the stomach for the detection of15

stomach diseases.16

Keywords: multispectral imaging, stomach lesions, gastroendoscopy17

1. Introduction18

Based on GLOBOCAN 2018 data [1], stomach cancer is the sixth most common and the fourth19

most deadly cancer. Unfortunately, the five-year survival rate of this cancer is about 30% and has not20

increased since the 90’s century. Improving the survival rate of this cancer is important to have a better21

diagnosis and a better understanding of the early stages of cancer. Thus, a promising way is to focus22

on pre-cancerous lesions and to use new imaging modalities with supervised learning techniques.23

Nowadays, practicians mostly use upper gastrointestinal endoscopy, under white light (WL) or24

Narrow Band Imaging (NBI), to diagnose stomach pathologies. Recognizing inflammatory lesions is25

still a hard task as they are often undetectable, especially under white light. Lesions are often too small26

to be seen at a macroscopic level. Thus, biopsies are performed in a systematic and non-oriented way.27

Little pieces of the stomach are collected and analyzed a posteriori in a laboratory to make a diagnosis.28

As the location of the samples is randomly chosen, the result could be different from one location to29

another and depends on the endoscopist’s experience.30
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NBI is a system created by Olympus, made of two or three narrow filters centered on the31

Hemoglobin absorption peaks, thus showing vascularity darker than the surroundings. The system has32

been successfully used to diagnose Barett’s oesophagus [2] and allows good visualization of specific33

patterns of chronic gastritis and intestinal metaplasia [3].34

The main alternative to NBI is the "Fuji Intelligent Chromo Endoscopy" (FICE) system by FUJI [4].35

FICE estimates multispectral images, between 400 and 695 nm, with a 5 nm step, from a standard36

endoscopic image. Then, the practician can choose to display three images among them in red, green,37

and blue channels. Ten settings are pre-configured. FICE has been proven to be useful for the detection38

of complete and incomplete metaplasia [5]. The significant difference between FICE and NBI is that39

FICE proposes a software improvement with the computation of spectral images, and NBI proposes40

an optics improvement with specific filters [6].41

Fuji recently proposed two new medical systems, the Blue Light Imaging (BLI) and the Linked42

Color Imaging (LCI). BLI allows better visualization of superficial vascular and mucosal patterns with43

a sensor sensitivity focussed on the Hemoglobin absorption peak at 410 nm [7]. LCI has a specific44

pre-processed composition of the light and applies image processing techniques to increase the color45

contrast, thus improving also the delineation of pathologies [8].46

Lately, endoscope manufacturers (e.g., FUJI, Olympus, Pentax) greatly improved image47

resolutions [9]. However, fewer improvements are introduced for the detection of the lesions. A48

better system is the magnifying NBI [10]. Uedo et al. used this system to link the apparition of white49

and blue crests on the stomach’s surface to metaplasia [11].50

These systems show that non-conventional imaging, more specifically the use of spectral51

information, is promising to improve the detection of stomach lesions. Multispectral or hyperspectral52

systems use reflectance or fluorescence to get meaningful information on tissue composition. In53

particular, reflectance represents the fraction of light coming back from the tissue as a function of54

the wavelengths. Fluorescence is the emission of light by tissues in response to a shorter exciting55

wavelength. The light response can be influenced in a different way by amount and type of each of a56

different biomolecule acting as chromophore or fluorophore present in the tissue. The overall light57

signal recorded from the tissue will result from the different effects of various components, and that is58

the reason for which it depends on the tissue composition.59

For example, the system made by Gu et al., made of seven bands between 465 nm and 665 nm.60

The three bands, 645 nm, 545 nm, and 495 nm, have been selected as the triplet that minimizes mutual61

information. These three bands are then used to create an enhanced RGB image for better visualization.62

The system has been tested for ulcer detection [12].63

Visualization helps to detect pathologies, but the interpretation remains in endoscopists’ hands.64

The diagnosis thus depends on the endoscopist’s experience and is not necessarily correlated to65

histological results. It is essential to improve the detection thanks to signal and image processing66

methods adapted to non-conventional modalities. For example, Kiyotoki et al. used a hyperspectral67

camera between 400 and 800 nm to characterize the spectral response of resected tumors [13]. 1468

patients have been studied by selecting spectra on healthy and cancerous areas. Ogihara et al. have69

conducted similar works. They also used a hyperspectral camera in the range [400, 800 nm] to analyze70

resected stomachs. They noticed a high inter-patient variability that led them to normalize all spectra71

according to the mean spectra taken on healthy areas. These works are promising but are all conducted72

ex vivo.73

A few works considering in vivo exploration with multispectral systems exist in the literature.74

In 2017, Hohmann et al. demonstrated that multispectral data was useful for the detection of75

adenocarcinoma [14]. Their system is composed of a standard endoscope and a modified light source.76

The spectral range used in this study is [438, 628 nm]. They have tested several classifiers including77

Random Forest, RobustBoost, Adaboost or Support-Vector Machine (SVM). Their classification78

accuracy was around 60%. Makhlouf et al. worked on a confocal microendoscope with two modes. One79
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with a gray-level image to observe the fluorescence response and the other to obtain a multispectral80

image of fluorescence [15].81

An attractive aspect of hyperspectral acquisitions is the link between spectra and biological82

parameters. A spectrum is the sum of several chromophores’ contributions. Thus, an unmixing process83

can be done. For example, Grosberg et al. characterized gastric mucosa with hyperspectral two-photon84

microscopy. They obtained images at cellular levels. Unmixing was performed to distinguish four85

tissue types: epithelium, lamina propria, collagen, and lymphatic tissue [16]. Bergholt et al. acquired86

spectra via Raman spectroscopy [17]. Spectra were also unmixed to find the relative contribution of87

DNA, proteins, lipids, and glycoproteins. Relative contributions were successfully used to classify88

four tissue types: healthy, intestinal metaplasia, dysplasia, and adenocarcinoma. They have obtained89

a good sensitivity between 80% and 90% and a specificity higher than 90% with a Partial Least90

Squares-Discriminant Analysis PLS-DA).91

Martinez et al. developed a system with a filter wheel for acquisitions at six different wavelengths.92

The principle drawback is that images have to be registered. A "Nearest Neighbors" classifier and an93

SVM classifier (with a linear or a gaussian kernel) have been used on 5x5 patches to detect pre-cancerous94

states in the stomach [18]. The best results have been obtained with the SVM classifier with a gaussian95

kernel with an accuracy of 77%. Except for this work, we rarely find other papers related to in vivo96

stomach exploration.97

Other techniques have been developed to help the detection of pathologies with imaging systems.98

For example, contrast agents can be used to characterize the stomach wall like chromoendoscopy [19].99

Some agents are absorbed by cells or accumulate on peaks and valley of the mucosa, thus showing the100

structure of the cells. The use of contrast agents is not mandatory. Some biological substances can be101

stimulated by light, acting as fluorophores. This phenomenon is exploited by fluorescence techniques:102

by exciting fluorophores with at a certain wavelength, they re-emit light in a higher wavelength [20].103

In practice, collagen is the most important in sub-mucosa but we can also find Pyridoxal phosphate,104

riboflavin, phospholipid and porphyrins I and II (PPS) [21]. To the opposite, Chromophores105

(Hemoglobin for instance) does not re-emit light but absorb it. The result of fluorophores and106

chromophores is usually visualized by a multispectral camera [22].107

In the present paper, a new prototype is introduced for acquiring NBI endoscopic images and108

multispectral images. We demonstrate how this prototype can be used for the recognition of several109

pre-cancerous gastric lesions such as chronic gastritis or intestinal metaplasia. In section 2, we first110

introduced a previous preclinical study on mice’s stomach [23]. Then a new clinical prototype based111

on multispectral cameras is detailed and the acquisition of data and the signal processing methods are112

given. In section 3, the classification results are presented and discussed.113

2. Materials and Methods114

2.1. Preclinical study on mice’s stomach115

In a previous paper, the reflectance of the stomach has been studied on mice infected by H. pylori,116

a bacteria involved in the development of gastritis on mice and humans [23]. The mice were sacrificed117

at different time-point after infection and their stomach resected for multispectral analysis with a118

spectrometer. The work on mice can be seen as a preliminary work in which a classification pipeline119

has been developed. This pipeline allowed us to separate spectra between control and inflamed120

mice with good accuracy of 98% and, more interestingly, to identify two wavelength ranges in the121

red/infrared ranges that are discriminant for the classification: [620, 668 nm] and [668, 950 nm]. This122

study proves that analyzing reflectance spectra is a promising way to detect pathologies. We re-use the123

methodology and the pipeline for the processing of in vivo human’s data as presented in the following124

paragraphs.125

The data that are acquired consist of a set of spectra. More precisely, two sets of spectra, one in the126

visible range with wavelengths between 400 and 630 nm with a 10 nm step (thus, 24 points by spectra)127
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and in the near-infrared with wavelengths between 610 and 840 nm with a 10 nm step (also 24 points128

by spectra). It is interesting to examine the correlation between the wavelengths (i.e. the 24 points).129

Figures 1a and 1b show this correlation. The value of each point (i,j) of these correlation matrices130

corresponds to the correlation between reflectance spectra at wavelengths i and j. In both images, red131

squares can be observed along the diagonal. These squares indicate that some wavelengths are highly132

correlated, especially the ranges around [410, 480 nm] and [520, 580 nm] in the visible and around [610,133

690 nm] and [780, 840 nm] in the near-infrared. This observation motivates us to cluster the spectral134

bands into coherent groups. Figures 1c and 1d show the results of the band clustering algorithm. A135

median spectrum is presented with vertical black lines allowing the visualization of borders. For the136

visible (VIS) camera, eight bands are obtained, and, for the near-infrared (NIR) camera, seven bands137

are obtained.138

(a) Correlation matrix with the VIS camera. (b) Correlation matrix with the NIR camera.

(c) Separation into spectral ranges
for the VIS camera.

(d) Separation into spectral ranges
for the NIR camera.

Figure 1. Correlation between wavelengths.

To obtain these results, we recursively merge the neighboring bands that are correlated more than139

90%. At every iteration, the correlation between neighboring bands is computed, and the two most140

correlated bands are merged. The detailed algorithm is presented in the box 1. The algorithm uses the141

same scheme as hierarchical clustering with an additional connectivity constraint. At the beginning of142

the algorithm, every wavelength is a cluster, and at each iteration, two clusters are merged. A version143

of this algorithm exists with connectivity constraints. In our case, only neighboring wavelengths can be144
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merged. This algorithm is unsupervised because the label (i.e. control, chronic gastritis, or metaplasia)145

is not used.

Algorithm 1: Pseudo code of the wavelengths clustering algorithm
Input : M = a (Nspectra, Nbands) matrix containing all spectra

τ = a constant equal to 0.9 by default

Output : Mreduced = A (Nspectra, Ncomp) matrix with Ncomp ≤ Nbands
m← 1,0
Mreduced ← M
repeat

c = correlation(Mreduced), the correlation between neighboring bands
m← max (c)
x, y← argmax(c)
MERGE columns x et y in Mreduced

until m > τ

146

The wavelengths that have been clustered are reduced to their spectral mean µi on the cluster
range according to equation 1:

µi =
1
Ni

λi+1

∑
λ=λi

Sλ (1)

where Ni is the number of wavelengths in the range [λi, λi+1[ and Sλ is the reflectance of the spectra at147

λ.148

After the reduction of the number of wavelengths, features are extracted. Three types of features149

are investigated: either the reduced bands are directly used, or the features are computed as the150

ensemble of all possible subtractions or divisions. More formally, we denote the ratios as Ri,j and the151

differences as Di,j. They are defined in the equations 2 and 3:152

Ri,j =
µi
µj

, (2)

Di,j = µi − µj. (3)

Then, a univariate selection step is performed to reduce the complexity of the classifier. Reducing153

complexity helps us to avoid over-fitting problems. The F-test of ANalysis Of VAriance (ANOVA) [24]154

is used to extract the k most discriminant features. It consists of the computation of a p-value, the155

probability that two distributions are the same. The lower the p-value is, the more discriminant the156

feature is.157

The classification consists of a simple SVM classifier with a linear kernel. Leave one patient out158

cross-validation is performed. At every iteration, all spectra except from one patient are used to train159

the classifier. The complete pipeline is written in Python thanks to the Scikit-learn library [25] and is160

summarized in the box 2.161
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Algorithm 2: Classification pipeline
Input : M = a (Nspectra,Nbands) matrix containing all spectra

y = a Nspectra elements vector corresponding to labels

Output : r = a Nspectra elements vector corresponding to classification results
Mreduced = Reduction of M by algorithm 1
foreach patient p do

Mtest = Spectra from patient p in Mreduced
Mtraining = difference between Mreduced and Mtest

Xtraining = COMPUTE features of Mtraining
Xtest = COMPUTE features of Mtest
F = SELECTION of the k best features according to Xtraining
XF,training = Features F de Xtraining
XF,test = Features F de Xtest
cl f = A SVM classifier with linear kernel
TRAIN cl f with XF,training
r[p] = TEST cl f with XF,test

end foreach

2.2. Description of the prototype162

The system that has been designed in this study can acquire NBI images and multispectral images.163

A standard endoscope (Olympus Exera III) that already exists in most operating rooms is used. Besides,164

there are two multispectral cameras (XIMEA based on CMOSIS CMV2000 technology [26]), one in the165

visible range (450-620 nm) with 16 bands and one in the red and near-infrared (600-1000 nm) with 25166

bands. The cameras are connected to a computer with USB 3.0 ports. For convenience, these cameras167

are respectively called VIS and NIR. To acquire images inside the stomach, a fiberscope (microflex168

fiberscope from ITConcepts, 2.5 m length, and 2.5 mm thick [27]) is used. The fiberscope contains169

emitting fibers to illuminate the stomach and receiving fibers to catch images. It is to notice that this170

fiberscope must be sterilized before each use, this is one of the current limitations as the multispectral171

system cannot be used during the cleaning of the fiberscope procedure. To connect the fiberscope172

to the cameras, a beamsplitter system is used (TwinCam from Cairn Research [28]). A dichroic173

filter splits light rays into two according to the wavelength ranges [470-620 nm] and [600-975 nm].174

Additionally, a filter is added to avoid Ultraviolet (UV) light. In our case, a 1000W powerful external175

light source is needed because the fiber and the sensitivity of the camera induce a loss of intensity.176

Thus a Mercury-Xenon light source controlled by a controller device helps to illuminate the stomach177

(Newport reference: 66924-1000XF-R1)178

The system has to be calibrated spatially and spectrally. The spatial and spectral calibration have179

been presented in a previous paper [29]. Spatial calibration is needed to correct the redial distortion180

and to register the NBI image with the multispectral images. The calibration is done by using the181

tip of the fiberscope, which is visible in the NBI images. Spectral calibration is required because the182

filters of the cameras are based on the Fabry-Perot structure. They have a primary response but also a183

secondary response. Moreover, it exists noisy response out of the initial expected wavelength range184

called crosstalk problem. The calibration has been done by learning a multilinear transformation on185

a set of patches of the ColorChecker R©. More concretely, the 24 bands ([400, 630 nm] with a step of186

10 nm) are deduced from the 16 original bands with the multiplication of a 16× 24 matrix and, in the187

same way from the 24 bands ([610, 840 nm] with a step of 10 nm) are deduced from the 25 original188

bands with the multiplication of a 25× 24 matrix. After this transformation, all spectra are normalized189

according to their l2 norm, meaning that all spectra are divided by their sum of squares.190

In a practical situation, the endoscopist inserts the fiberscope in the operating channel of the191

endoscope, as described in image 2. This operating channel is usually used to insert tools like pincer192
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or cutting/grasping instruments. The endoscopy usually lasts 1 or 2 minutes during which the193

multispectral cameras acquire images every second approximatively. A specific acquisition software194

has been developed in C# programming language with .NET 4.5 framework and the library xiAPI that195

allows the control of the multispectral cameras [30]. This software manages the data saving and adapts196

the exposition time of the cameras automatically. The cameras have been optically calibrated such that197

the focus is approximately 2cm. This distance is the mean distance that exists between the fiberscope198

tip and the stomach wall.199

(a) Overview of the prototype.

(b) The fiberscope is inserted in the operating
channel of the endoscope.

Figure 2. Functional scheme of the prototype.

2.3. Data acquisition and preprocessing200

The presented bimodal system can acquire multispectral images at approximately one image per201

second. This exposure time is due to the low power of light that comes back in the fiber. Figure 3a202

shows an example of a multispectral image acquired in the stomach. The image is rearranged in 16203

small images to show the 16 bands of the VIS camera. We can see the disk in the center, which is the204

area covered by the fiberscope. All images do not necessarily contain useful information. In general,205

multispectral images are often blurry. This phenomenon is due to the movements of the endoscope,206

the poor spatial resolution, the fiberscope, and the high exposure time. Then, it is challenging to use207

textural information as some parts of the image could be too dark or over-exposed. Therefore, we make208

sure to keep only pixels whose maximum is under 512. Indeed, the camera’s technical documentation209

specifies that, if the 10th bit is set to 1, then the pixel is considered saturated. In the same manner, pixels210

whose spectral mean does not exceed 128 are considered too dark to be exploited. To understand this211

choice, we present an example in figure 3b. Three pixels are compared: in blue, a pixel which is too212

dark, in green, a valid pixel, and in red, a saturated pixel.213

A linear transformation described in a previous paper [29] is applied to the spectral radiance to214

get estimated reflectance spectra (figure 3c) i.e. to estimate the 24 points in the VIS and the 24 points in215

the NIR from the original 16 bands of the VIS camera and the 25 bands of the NIR camera.216
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(a) Multispectral image acquired inside the stomach.

(b) Raw data obtained from the pixels of the
multispectral image.

(c) Corresponding estimated spectra.

Figure 3. Example of the extraction of spectra from the multispectral image.

As the multispectral images are difficult to interpret directly, an experienced gastro-endoscopist217

selected NBI endoscopic images in which the fiber is focused on a significative zone of the pathology.218

Then we can select the temporally nearest multispectral image for the analysis.219

The image should then be filtered with a low-pass filter to reduce the noise. Although it exists a
various number of filtering like the use of wavelets [31]. In our case, we have chosen to use a simple
pyramidal filter: 

1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1


.
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Then, spectra are taken on a grid by considering 1 pixel over 7 (vertically and horizontally). We220

gathered data for 16 patients. The table 1 classifies them according to their histological results. For221

all these patients, 200 valid spectra were randomly taken among the valid spectra to have the same222

number of spectra for each patient.223

Table 1. Distribution of multispectral data according to histology.

Healthy
Chronic
Gastritis

Intestinal
Metaplasia

4 7 5

Figures and results from the two cameras are intentionally separated. Cameras acquire images224

independently, and in practice, if no pixel in an image is valid (i.e. either too dark or over-exposed),225

the image is removed.226

The two figures 4 show median spectra of the 16 patients after calibration, respectively for VIS227

camera (figure 4a) and NIR (figure 4b). The color indicates histological results: blue for control, green228

for chronic gastritis, and red for intestinal metaplasia. We do not see specific behavior in the visible229

range, but control spectra seem clustered for the NIR camera, they have a lower derivative. On the230

spectral range [610, 730 nm], plots corresponding to metaplasia are under the plots of control class and231

inversely for the spectral range [730, 840 nm].232

(a) Median spectra from VIS camera. (b) Median spectra from NIR camera.

Figure 4. Acquisitions with VIS and NIR cameras.

The obtained spectra are then processed by the pipeline detailed in section 2. The next sections233

give the classification results obtained separately with VIS and NIR data.234

3. Results235

In this section, the classification results are presented. A support vector machine (SVM) with236

a linear kernel is trained in a "leave one patient out" manner. The three types of features are tested,237

i.e. the reduced bands, the subtractions features, or the divisions’ features. It is to note that two238

hyperparameters can be tuned: the number of features retained in the feature selection step k and the239

regularization parameter c that controls the balance between misclassification rate and the size of the240

margin. A lower value of c leads to a better misclassification rate but also a smaller margin, thus being241

less robust to over-fitting.242

In this section, data acquired by the two cameras are processed separately. The table 2 presents243

the results obtained with the VIS camera and the table 3, the one obtained with the NIR camera.244



Version January 14, 2020 submitted to Appl. Sci. 10 of 14

Table 2. Classification results with the VIS camera.

Optimal
hyperparameter Class Precision Recall F1-Score

Reduced
Bands

c = 0,0001
k = 1

Healthy 0.98 1.00 0.99
Chronic gastritis 0.58 0.99 0.73

Intestinal metaplasia 0.00 0.00 0.00
Average 0.52 0.66 0.57

Divisions c = 0,0001
k = 1

Healthy 1.00 1.00 1.00
Chronic gastritis 0.58 1.00 0.74

Intestinal metaplasia 0.00 0.00 0.00
Average 0.53 0.67 0.58

Subtractions c = 0,0001
k = 1

Healthy 1.00 1.00 1.00
Chronic gastritis 0.58 1.00 0.74

Intestinal metaplasia 0.00 0.00 0.00
Average 0.53 0.67 0.58

Table 3. Classification results with the NIR camera.

Optimal
hyperparameter Class Precision Recall F1-Score

Reduced
Bands

c = 0,001
k = 1

Healthy 0.88 0.51 0.64
Chronic gastritis 0.59 0.94 0.73

Intestinal metaplasia 0.73 0.37 0.49
Average 0.73 0.61 0.62

Divisions c = 0,001
k = 1

Healthy 0.87 0.56 0.68
Chronic gastritis 0.87 0.96 0.91

Intestinal metaplasia 0.69 0.78 0.73
Average 0.80 0.80 0.80

Subtractions c = 0,001
k = 1

Healthy 0.86 0.57 0.69
Chronic gastritis 0.86 0.96 0.91

Intestinal metaplasia 0.69 0.76 0.73
Average 0.80 0.77 0.77

In the table 2, we observe that intestinal metaplasia is confounded with chronic gastritis. For245

the three types of features, the results are close to 53% of precision and 67% recall. Better results are246

obtained in table 3, especially with divisions and subtractions’ features. The average of the three247

classes is 80% for the precision and 80% for the recall.248

Figure 5. Confusion matrix.

It can be seen in the confusion matrix figure 5 that the healthy class is sometimes confounded with249

intestinal metaplasia and that chronic gastritis is sometimes confounded with intestinal metaplasia.250
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This second point is more acceptable in the sense that intestinal metaplasia usually appears as little251

patches in the middle of chronic gastritis. Thus a patient with intestinal metaplasia has always chronic252

gastritis too.253

Figure 6. Results by patient.

It is interesting to detail the classification results for each patient. Figure 6 presents the number254

of spectra classified in each category for each patient. It can be seen that the classification is usually255

good except for patients 10 and 15, which are healthy and have mostly "intestinal metaplasia"-like256

spectra. Patient 13 has intestinal metaplasia, but its spectra are mostly classified as chronic gastritis.257

More generally, 13 patients out of 16 patients have most of their spectra classified in the right class.258

(a) Distribution of divisions features. (b) Scores for each division features.

Figure 7. Analysis of divisions features.

Moreover, the interesting point is that only one ratio is sufficient to reach good classification259

results. The best results are obtained with k = 1, the best ratio is the one with the highest score in260



Version January 14, 2020 submitted to Appl. Sci. 12 of 14

figure 7b i.e. R4,6. R4,6 is the division of the range [745, 755 nm] by the range [780, 840 nm]. It can261

be observed in figure 7a that the distribution of the three classes (blue for healthy, green for chronic262

gastritis, and red for intestinal metaplasia) for this particular ratio shows a good separability, especially263

between healthy and the two pathologies. It is interesting to also note the correlation between the264

preclinical study on mice. In both cases, the most discriminant wavelength range is located in the red265

and near-infrared part of the spectra.266

4. Conclusion267

In this paper, a new prototype is introduced to acquire endoscopic NBI videos and multispectral268

videos during in vivo stomach exploration. The prototype is used to acquire spectra on 16 patients. For269

each of these patients, 200 spectra are selected, leading to a dataset of 3200 spectra. Spectra obtained270

with multispectral cameras are processed with a classification pipeline containing a wavelength271

reduction algorithm, the computation of three types of features (reduced bands, subtractions and272

divisions) and a leave one patient out classification with an SVM classifier with a linear kernel. The273

classifier can recognize a healthy stomach wall from chronic gastritis and intestinal metaplasia with274

a good precision of 80%. Moreover, two exciting wavelength ranges are identified in the red and275

near-infrared ranges: [745, 755 nm] and [780, 840 nm]. To the best of our knowledge, the analysis of276

this ensemble of three types of tissues (i.e. chronic gastritis, intestinal metaplasia, and healthy) has277

never been considered in a previous paper.278

These promising results have to be confirmed on a larger dataset. The prototype can also be279

improved to have better quality for the images and, thus, to be able to exploit textural information280

caught by the multispectral cameras. Finally, unmixing algorithms can be used to get information on281

the relative concentration of chromophores and thus having a better understanding of the biological282

changes that appear with pre-cancerous lesions.283
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