Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy - Université de Bourgogne Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy


Deep learning has shown unprecedented success in a variety of applications, such as computer vision and medical image analysis. However, there is still potential to improve segmentation in multimodal images by embedding prior knowledge via learning-based shape modeling and registration to learn the modality invariant anatomical structure of organs. For example, in radiotherapy automatic prostate segmentation is essential in prostate cancer diagnosis, therapy, and post-therapy assessment from T2-weighted MR or CT images. In this paper, we present a fully automatic deep generative model-driven multimodal prostate segmentation method using convolutional neural network (DGMNet). The novelty of our method comes with its embedded generative neural network for learning-based shape modeling and its ability to adapt for different imaging modalities via learning-based registration. The proposed method includes a multi-task learning framework that combines a convolutional feature extraction and an embedded regression and classification based shape modeling. This enables the network to predict the deformable shape of an organ. We show that generative neural network-based shape modeling trained on a reliable contrast imaging modality (such as MRI) can be directly applied to low contrast imaging modality (such as CT) to achieve accurate prostate segmentation. The method was evaluated on MRI and CT datasets acquired from different clinical centers with large variations in contrast and scanning protocols. Experimental results reveal that our method can be used to automatically and accurately segment the prostate gland in different imaging modalities.

Dates et versions

hal-02470507 , version 1 (07-02-2020)



Kibrom Berihu Girum, Gilles Créhange, Raabid Hussain, Paul Michael P.M. Walker, Alain Lalande. Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy. First International Workshop on Artificial Intelligence in Radiation Therapy : AIRT 2019, held in Conjunction with MICCAI 2019, Oct 2019, Shenzhen, China. pp.119-127, ⟨10.1007/978-3-030-32486-5_15⟩. ⟨hal-02470507⟩
67 Consultations
0 Téléchargements



Gmail Facebook Twitter LinkedIn More