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Abstract—This paper presents a extented Kalman filter based
on a dynamic model of a commercial lithium ion battery pack in
automotive applications, and experimental data are collected us-
ing the Noao. This vehicle is an electric track with range extender,
which has been developed and produced by the association Pôle
de Performance de Nevers Magny-Cours (PPNMC). This model
has been developed with MATLAB/Simulink to investigate the
output characteristics of lithium-ion batteries. It incorporates I-V
performance of the battery, battery capacity fading, temperature
effect on battery performance, and the battery temperature rise.
This estimation technique is used in order to estimate some pa-
rameters, which cannot be measured directly by physical sensors
such as SOC and SOH and to compensate for uncertainties in the
model parameters and the measurements. The proposed model
is validated by comparing simulation results with experimental
data collected through battery testbed of Noao vehicle.
Index Terms—Hybrid vehicle, modeling, lithium ion battery,

capacity fading, temperature effect, Extended Kalman filter,
SOC, SOH.

I. INTRODUCTION

The limitation of resources and the climate change

impose a change in the mode of personal transport. One

promising solution is the use of electrical vehicles [1],

which give the possibility to use energy based on renewable

sources. Even though electric vehicles show good results

with regard to performance, they suffer from a draw back

based on their limited autonomy, which is linked to the

limited density of their energy storage [2]. This is why the

electrochemical storages, especially the lithium ion battery

systems, which promise the best performances, are under

constant development [3], [4]. A quick fix in order to gain

autonomy is the use of a combination of different energy

sources - so called hybrid systems [1], [5], [6].

Based on the information available from the racing team it is

difficult to get comprehensive information about the battery

system that is installed. Most of the time not even the battery

supplier is known. On the other hand race track vehicles are

interesting objects for a study as they are exposed to extreme

requirements with regard to performance and thus undergo

fast aging.

In order to be able to analyze a race track vehicle, it is

mandatory to dispose of comprehensive models of all key

components inside the system. Furthermore, if the model

is than used to evaluate the system control, the degree of

precision of each component model can be moderate.

A multitude of approaches to model lithium ion batteries

for vehicle applications are available, chemical models

allow a close view to the reaction process [7], [8] and 3D

models [9], [10] give a good impression about the variations

in reaction over the entire cell in order to give important

responses for cell developers. Cell users prefer to use zero

dimensional electrochemical models that allow to describe a

battery system depending on its key parameters like state of

charge (), state of health (), current, voltage and
temperature. Nevertheless in order to use one of these models

it is mandatory to know the key parameters of the lithium ion

battery, which is not always possible.

The Extended Kalman filter is a valuable instrument in

order to evaluate a system. It allows to identify system

parameters using a basic model and measurement values.

It has been used successfully in order to describe different

kinds of process, such as photobioreactor [11], and they have

already shown their use in the domain of batteries for vehicle

applications [2], [12], [13].

In the presented work, Extended Kalman filter is used

to estimate the lithium ion key parameters which are the

battery output voltage () as well as battery open-circuit
voltage ( ) and state of charge () by using a basic
zero dimensional electrochemical model and the experimental

measurement values of the current () of a lithium ion battery
system used in an electric vehicle with range extender. This

approach shows that based on a limited number of information

and some measurement values it is possible to develop a

system model that can be used for control system development.

In the next section, the electric track vehicle with range

extender is introduced. Thereafter, the system characteriza-

tion will be discussed, first by introducing a generic zero

dimensional electrochemical battery model and then by the

introduction of the Extended Kalman filter method. Both

approaches are applied in conjunction on measurement values

obtained during a track race. The results of this evaluation are

presented and discussed in section IV. The article closes with

conclusions and perspectives.

II. NOAO: ELECTRIC TRACK VEHICLE WITH RANGE

EXTENDER

The Noao is an electric track vehicle with range extender

(Figure 1). It has been developed and produced by the associ-

ation Pôle de Performance de Nevers Magny-Cours (PPNMC)

and its companies, which are all high class expert in the
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development of track and prototype vehicles resident in the

vincity of the Nevers Magny-Cours race track.

NOAO is the first rechargeable electric competition vehicle,

combined with a range extender.Its range can be increased by

means of a low capacity range extender to cover 100 km under
race conditions. Aside from its obvious exterior sports styling,

NOAO also has some exceptional aerodynamic qualities which

contribute to improving its performance. Aimed in priority

at racing schools which want to offer more environmentally

friendly courses, NOAO also serves as a prototype to further

improve the performance of this type of vehicle and, in the

near future, to offer new track car solutions. The vehicle has

the parameters presented in table II.

III. CHARACTERIZATION OF LITHIUM ION BATTERIES FOR

VEHICLE APPLICATIONS USING EXTENDED KALMAN

FILTER

A. Modelling of Lithium Ion Battery

Different approaches for lithium ion battery modelling have

been proposed in literature. In general, existing battery models

can be divided into physical models [15], analytical models

[16], [17], and circuit-based models [18]–[20]. Circuit-based

models can capture the complicated battery properties, which

can be easily implemented in electronic design automation

(EDA) tools at different levels of abstraction. It is more

realistic, intuitive and easy to handle [21], and considered as

the best compromise in term of complexity, time consuming

and accuracy compared as compared to other models. Lithium

ion battery model used in this work falls within circuit-based

models, which is a combination of a voltage source and other

electrical components to capture the electrochemical processes

and dynamics of a battery [22].It is based on the chen work

[18] and expanded by adding the effects of temperature and

capacity fading on a battery cell [23].

1) The battery output voltage: The battery output voltage

can be calculated due to the battery open circuit voltage,

voltage drop resulting from the battery equivalent internal

impedance and the temperature correction of the battery po-

tential(Eq 1). ∆( ) is a potential correction term used to

compensate for the variation of equilibrium potential that is

induced by temperature changes [19].

 =  −  ·+∆( ) (1)

Figure 1. Noao series hybrid race car [14]

2) The battery open circuit voltage: The battery open cir-

cuit voltage is the difference of the electrical potential between

the two terminals of a battery,when there is no external load

connected. As the value of battery open circuit voltage is

strongly dependent on battery SOC, it can be calculated as

[24] (Eq 2).

 =− 1031e(−35 ·) + 3685 + 02156 ·
− 01178 ·2 + 0321 ·3 (2)

3) The effect of capacity fading: Capacity fading refers to

the irreversible loss in the usable capacity of a battery due

to time, temperature and cycle number. Permanent loss in

capacity can be divided into calendar and cycling losses. So

that modeling the capacity fading is important for predicting

the remaining life of the battery [25]. Both calendar and

cycle life losses of a battery appear to be linear with time

and dramatically increase with increasing temperature [26].

Therefore, the effect of temperature must be considered while

modeling the capacity fading for a battery. The calendar

and cycle life losses lead to a capacity correction factor to

determine the remaining usable battery capacity. The capacity

correction factor can be calculated using Eq 3 [25].

 = 1− (Calendar life losses + Cycle life losses) (3)

Then the remaining usable battery capacity can be defined

using Eq 4.

 =  · (4)

The calendar life losses of a battery consist of storage losses

occuring when the battery is not used. The percentage of

storage losses can be expressed as (Eq 5).

  = 1544 107 e(
40498

83143 · ) ·  (5)

The variations of negative electrode  can be considered
for simulating the cycle life losses. The rate of change in

negative electrode  dependent on cycle number and

temperature [26] (Eq 6).




= 1 +  (6)

where  is the amount of capacity fading, 1 is the parameter
for cycling under reference conditions,  the parameter for
cycling under adverse conditions and n the number of cycles.

Under changing temperatures or C-rates,  will change, but
1 will remain the same [26].
Large currents, and thus large C-rates, can cause unwanted

side reaction in lithim ion cells. In figure (Figure 2) an example

of capacity fading due to high C-rates is given [27]. From

experiments the C-rate was shown to have a large influence

on the capacity fading. Nevertheless, to take the effect of high

C-rates into account, a second order equation as proposed by

Safari et al. [28] is used Eq 7.

 = 3() + 4() ·  + 5() · 
2 (7)
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 Battery output voltage [V]

 Battery open-circuit voltage [V]

 Battery equivalent internal resistance [Ω]
 Instantaneous cell current [A]

 Battery current [A]

∆( ) Temperature correction of the potential [V]

 State of charge

 Initial state of charge

 State of Health

 Usable battery capacity [Ah]

 Temperature [K]

 Storage time [months]

 Change in state of charge of battery negative

electrode

 Cycle number

1 Coefficient for the change in SOC of battery

negative electrode [−2]
2 Coefficient for the change in SOC of battery

negative electrode [−1]
 Capacity fading [Ah]

 Capacity correction factor

 Initial battery capacity [Ah]

Table I
LIST OF SYMBOLS

Parameter Values

Masse 1200 Kg

Nominal voltage 520V DC

Nominal output power 90 kW

Capacity 23 kWh

Top speed 200 km/h

Autonomy 100 km in race conditions

Recharge 1h with fast DC charger

Table II
VEHICLE PARAMETERS

Figure 2. An example of accelerated capacity fading due to higher C-rates

with  as the C-rate stress factor, 3, 4 and 5 as
parameters dependent on the amount of capacity fading and 
the current in C-rate. So  will be as (Eq 8).

 = 2 = 2 · (3() + 4() ·  + 5() · 
2) (8)

4) The state of charge: The state of charge () is an
indication of the amount of energy left in the battery cell as a

percentage of the current capacity. The higher the , the
more energy is stored in the cell. This will mean the battery

cell is more reactive, which will accelerate degradation of the

cell Eq 9.

 =  −
Z




(9)

5) The state of Health (): In this work capacity fading
is chosen for the SOH determination of a battery cell. The

 of a cell can be calculated with a predetermined End

of Life (EoL) condition. The EoL condition depends on the

application, but by convention this is set at 80 % of the rated

capacity. The  in percentages is :

 = (1− 

02
) · 100% (10)

where  is the rated capacity of the cell,  the amount of
capacity fading under reference conditions and SOH the state

of health of the cell from a capacity fading point of view.

B. Extended Kalman Filter for System Characterization

Extended Kalman filter (EKF) can be used to minimize

measurement noise effects [29], and estimate a system state

which can not be measured directly (i.e SOC or SOH). EKF

is a recursive algorithm which combines one data base and

a measurement set. This algorithm is composed by several

equations that estimate a measureable value. This value is

compared to the real measured value and the EKF corrects the

estimation. EKF is basicly defined by a state space model of

two functions: a process equation and a measurement equation.

A dynamic model and measurment system is given by

Eq 11 and Eq 12. Process equation is a function which uses

the previous value of  (i.e. −1) to estimate the current
value. Measurement equations correct the estimated value to

converge it to the real value.

 = −1 +−1 + −1 (11)

 =  + +  (12)

Extended Kalman Filter algorithm is composed by five

important equations, two equations for the prediction and

three for the correction. To clarify these equations, ̂ means

estimated value of  , and  − means a priori value of  .
Prediction equations are given by:

̂− = ̂−1 +−1 + −1 (13)
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− = −1
 + (14)

Correction equations are given by:

 = − 
 (− 

 +)−1 (15)

̂ = ̂− +( −̂− ) (16)

 = ( −)
−
 (17)

with  the vector to the state variable,  the control input,
 the measurement vector, () thethe error covariance
ahead, the variance of the process noise, the measurement

matrix covariance,  the covariance matrix of the measure-

ment noise and  the Extended Kalman Filter gain.

As explained before, EKF combines measurement set and one

data base. Data bases are often a mathematical model of the

battery.

The EKF requires a small signal model of the system at

each sample step. By linearizing around the current operating

point, using Eq 11 and Eq 12, and using the Jacobian matrix,

we obtain a linear system.

 =
( )


(18)

 =
( )


(19)

 =
()


=  (20)

In this nonlinear state space, we have :

 = [      ] and () =  ,  =  
Observability of the system must be investigated after sys-

tem linearization. Calculating the observability matrix shows

that this matrix is always of full rank.

White noise was added to the input system which is the

measure of current to generate normaly distributed random

numbers. Although no formal stability and tuning methods

are available for initializing the EKF and recourse to empirical

tuning is normally required, its use is nevertheless widespread.

Information about the system noise contribution is contained

in matrices  and  and, in essence, the selection of  and 
determines the accuracy of the filters performance, since they

mutually determine the action of the EKF gain matrix +1

and estimation error covariance matrix +1. The covariance
matrix representing measurement noise  can be estimated

from knowledge of the battery terminal voltage. The variance

is obtained from the square of the root mean square (rms) of

noise on each cell and is assumed to be Gaussian distributed

and independent.

Initialization of the covariance matrix describing the

disturbances on the plant  is complicated while knowledge

of the model inaccuracies and system disturbances is limited,

particularly as each cell has different characteristics. The

Figure 3. Battery Voltage [V]

Figure 4. Battery current [A]

initial covariance matrix  and , for our case,were chosen
empirically :

 = 0.1 and  = diag[10 0.7 0.9 0.1 0.1]

The error on the initial values of state variables was con-

sideredat 5%.

IV. RESULTS AND DISCUSSION

The proposed method is tested on a lithium-ion battery with

complete discharge cycle, which allowed us to through the

values of SOC from 89% to 20%. driving cycle have made of

the magny cours circuit, where the Formula 1 Grand Prix of

France is ran from 1991 to 2008.

Figure 3 shows the battery output voltage during one driving

cycle with a length of 146 s. We have chosen to simulate on
this time for the battery voltage and the Battery Current curves

for that the curves are clear. We find a small gap between EKF

estimation and experimental results, mainly with the increase

of time, this might be due to the description if the internal

resitance, which has been set to a constant value of XY Ω in
this case.

The experimental result and EKF estimation of the battery

current show very good agreement (Figure 4). The accurate
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Figure 5. Battery open circuit voltage [V]

Figure 6. State of charge (SOC)

prediction of Battery current can improve the efficiency of

estimation because EKF algorithm is based of this measure.

The experimental data on  were provided by the

manufacturer of Noao without much detail. We do not know

the exact method which was used to determine the  for

a privacy issue, where the interest of the use of the EKF

in order to characterize. The initial value of  is 89%

after several cycles it has droped to 20% (Figure 6). EKF

begains the estimation with 10% error but it shows a fast

convervenge and a good adequacy. However, we see a small

gap after 1800 seconds, which is due to an increase in  in
the experimental data for some time which probably derives

from a brake energy recovery. The comparison between the

simulation model and EKF estimation of open circuit voltage

shows a good adequacy (Figure 5).

Figure 7 shows the simulation of model and EFF estimation

of the proposed method to calculate  from capacity

fading. We find a small gap 0.0001 between the model and

the estimation of the EFK. The simulation over a few hours

is not sufficient to fully characterize the  but gives us a

good idea of the feasibility of this method to find the  .

To validate our method we tested EFF under different

conditions. We have a discharge cycle which starts from 93%

to 59%. The results found are similar with those of the first

Figure 7. State of Health (SOC)

Figure 8. State of charge (SOC)

cycle presented. We chose to present the curve of 
Figure 8 and  Figure 9.

V. CONCLUSION AND PERSPECTIVE

In this paper a Extended Kalman filter has been used to

estimate the parameters of a lithium-ion battery for electric

vehicles. This method provides the possibility to adjust the

parameters of a model according to measurement values.

The model uses incorporates I-V performance of the battery,

battery capacity fading, temperature effect on battery perfor-

mance, and the battery temperature rise. it allows to predict

the battery output voltage, the battery open circuit voltage,

the battery current, the state of charge and the state of Health.

The proposed model of  and  is based on capacity

fading.

The proposed  and  estimation algorithm is

based on the simple electrical battery model and current

measurement.This measure directly intervenes in the formu-

lation of the , where we have a good estimation of
this parameter. Against for the  , the current measure
intervenes indirectly in the formula by the capacity fading that

depends of C-rates, that explains the small gab. Finally we
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Figure 9. State of Health (SOH)

can conclude that the method proposed by EKF give a good

estimate for  and  .
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