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Abstract

Given a graph G and a nondecreasing sequence S = (s1, . . . , sk) of
positive integers, the mapping c : V (G) −→ {1, . . . , k} is called an S-
packing coloring of G if for any two distinct vertices x and y in c−1(i),
the distance between x and y is greater than si. The smallest integer
k such that there exists a (1, 2, . . . , k)-packing coloring of a graph G is
called the packing chromatic number of G, denoted χρ(G). The question
of boundedness of the packing chromatic number in the class of subcubic
(planar) graphs was investigated in several earlier papers; recently it was
established that the invariant is unbounded in the class of all subcubic
graphs.

In this paper, we prove that the packing chromatic number of any
2-connected bipartite subcubic outerplanar graph is bounded by 7. Fur-
thermore, we prove that every subcubic triangle-free outerplanar graph
has a (1, 2, 2, 2)-packing coloring, and that there exists a subcubic outer-
planar graph with a triangle that does not admit a (1, 2, 2, 2)-packing col-
oring. In addition, there exists a subcubic triangle-free outerplanar graph
that does not admit a (1, 2, 2, 3)-packing coloring. A similar dichotomy is
shown for bipartite outerplanar graphs: every such graph admits an S-
packing coloring for S = (1, 3, . . . , 3), where 3 appears ∆ times (∆ being
the maximum degree of vertices), and this property does not hold if one
of the integers 3 is replaced by 4 in the sequence S.

Keywords: outerplanar graph; packing chromatic number; cubic graph; color-
ing; packing.
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1 Introduction

The S-packing chromatic number was introduced a decade ago in [17] with mo-
tivation coming from the frequency assignment problem. Roughly the idea of
the concept is to generalize the classical coloring by involving the distance be-
tween vertices and allowing larger color values only for vertices that are more
distant. Nevertheless, the problem has attracted the attention of many dis-
crete mathematicians as it brings appealing combinatorial and computational
challenges.

Given a graph G and a positive integer d, a set A ⊆ V (G) is a d-packing
in G if for any two distinct vertices x, y ∈ A the distance between x and y in
G is greater than d. For a nondecreasing sequence S = (s1, . . . , sk) of positive
integers, the mapping c : V (G) −→ {1, . . . , k} is an S-packing coloring of G if
for every i ∈ [k] the set c−1(i) is an si-packing. If there exists an S-packing
coloring of G, we say that G is S-packing colorable. If the sequence is S = [k] for
some positive integer k, we omit S in the definition, and say that G is packing
colorable (as usual, we let [k] = {1, . . . , k}). The smallest integer k such that
G is packing colorable is the packing chromatic number of G, denoted χρ(G).
When we say that the packing coloring condition holds for a set A ⊆ V (G) we
mean that each set A ∩ c−1(i), for all i ≥ 1, is an i-packing in G. If A ⊂ V (G),
then by G[A] we denote the subgraph of G induced by A.

A number of papers considered packing coloring of different infinite grids and
lattices [7, 13, 14, 19, 24], where the most interesting development is about the
infinite square grid; we mention only the recent paper on the topic [5] where it
was shown that 13 ≤ χρ(Z×Z) ≤ 15, which is the latest refinement of the known
bounds (initial bounds were presented already in the seminal paper [17]). Fiala
and Golovach have shown that the decision version of the packing chromatic
number is NP-complete even in the class of trees [12]. Packing coloring of some
other classes of graphs, such as distance graphs [11, 22, 25], hypercubes [26],
subdivision graphs of subcubic graphs [4, 10, 15], and some other classes of
graphs [2, 18, 20] was also studied.

One of the main questions in this area concerns graphs with bounded max-
imum degree ∆, in particular, subcubic graphs (i.e., graphs with ∆ = 3). For
graphs with maximum degree ∆, where ∆ ≥ 4, the infinite ∆-regular tree serves
as an example showing that in this class of graphs the packing chromatic number
is unbounded (in fact, Sloper proved this in the context of so-called eccentric
colorings, but his result implies the same for the packing coloring [23]). On
the other hand, the question whether in subcubic graphs the packing chromatic
number is bounded was much more intriguing. It was posed in the seminal
paper [17], and then investigated in several papers [8, 9, 15] using different
approaches. Recently, Balogh, Kostochka and Liu [3] have provided a nega-
tive answer to the question. Moreover, they proved that for every fixed k and
g ≥ 2k+2, almost every n-vertex cubic graph of girth at least g has the packing
chromatic number greater than k. An explicit infinite family of subcubic graphs
with unbounded packing chromatic number was then presented in [6].

As the question was answered in the negative for all graphs with bounded
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maximum degree 3, it becomes interesting for some subclasses of subcubic
graphs. In particular, in [13] it was asked, whether there is an upper bound
for the packing chromatic number of all planar cubic graphs, and this question
was repeated in [6]. Very recently, the packing chromatic number of subcu-
bic outerplanar graphs was considered [16]. The upper bounds obtained in the
paper involve the number of (internal) faces of the plane embedding of an out-
erplanar graph; for instance, it is proven that if G is a 2-connected subcubic
outerplanar graph with r internal faces, then χρ(G) ≤ 17 · 63r − 2. The ques-
tion of boundedness of the packing chromatic number in subcubic outerplanar
graphs thus seems widely open. In this paper, we prove that, quite surprisingly,
only 7 colors suffice if we restrict ourselves to the bipartite 2-connected case.

In the following section we fix the notation. In Section 3 we prove the
following theorem, our main result.

Theorem 1. Let G be a 2-connected bipartite subcubic outerplanar graph. Then
χρ(G) ≤ 7.

We continue in Sections 4 and 5 with some results that are related to the
coloring of the square of a graph. It was proven by Lih and Wang [21] that
χ(G2) ≤ ∆(G) + 2 for an outerplanar graph G (see also [1] for an extension),
which confirms Wegner’s old conjecture for planar graphs in the case of outerpla-
nar graphs. In the language of S-packing colorings the result in [21] for outerpla-
nar graphs G with ∆(G) ≤ 3 implies that G is (2, 2, 2, 2, 2)-packing colorable.
More generally, for an arbitrary ∆(G) ≥ 3, the result of Lih and Wang [21]
gives the (2, . . . , 2)-packing colorability of outerplanar graphs G, where there
are ∆(G) + 2 integers 2.

In Section 4, we present the following result about bipartite outerplanar
graphs (i.e., no restriction to 2-connectedness and arbitrary maximum degree).

Theorem 2. Let G be a bipartite outerplanar graph. Let S = (1, 3, . . . , 3) be
the sequence containing once the integer 1 and k times the integer 3, k ≥ 3. If
∆(G) ≤ k, then G is S-packing colorable.

The result is complemented by an example showing that for S = (1, 3, . . . , 3, 4),
where 3 appears ∆(G)−1 times, there exists a bipartite outerplanar graph that
does not admit an S-packing coloring.

In Section 5, subcubic outerplanar graphs are considered (extending the
consideration of Theorem 1 to the non-bipartite case), and we prove:

Theorem 3. If G is a subcubic outerplanar graph with no triangles, then G is
(1, 2, 2, 2)-packing colorable.

The result is complemented by an example showing that there exists a subcubic
outerplanar graph (with triangles), which is not (1, 2, 2, 2)-packing colorable. In
addition, there exists a subcubic triangle-free outerplanar graph that does not
admit a (1, 2, 2, 3)-packing coloring.

In the final section, we present a variation of Theorem 3 concerning the
(1, 1, 2)-packing colorability of subcubic triangle-free outerplanar graphs, and
pose some open problems.
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2 Notation

A path between vertices a and b in a graph G will be called an a, b-path. The
length of a shortest a, b-path is the distance dG(a, b) between a and b in G (we
also write d(a, b) if the graph is understood from the context). An i-packing in
G is a set of vertices A such that for any two distinct vertices x, y ∈ A we have
dG(x, y) > i. Clearly, a 1-packing coincides with an independent set.

An outerplanar graph is a graph that has a planar drawing in which all
vertices belong to the outer face of the drawing. Each time an outerplanar
graph is considered, a drawing in which all vertices belong to the outer face of
the drawing will be fixed. Let G be an outerplanar graph. The outer cycle of
G corresponds to the cycle induced by the edges of the outer face.

For an outerplanar graph G, we denote by TG the weak dual of G, i.e.,
the graph whose vertex set is the set of all inner faces of G, and E(TG) =
{αβ| α and β share a common edge}. For α ∈ V (TG), we denote by C(α), the
(chordless) cycle in G that corresponds to the face α. As any vertex α ∈ TG

corresponds to an inner face of G, we let α also denote this face and write V (α)
for the set of its vertices.

Let G be a 2-connected outerplanar graph (we consider such graphs in Sec-
tion 3). Note that in this case TG is a tree. We consider TG as a rooted tree
with an arbitrary chosen vertex ω0 as the root. The notions of parent, child and
descendant should be clear in this context. We can also define the depth of a
vertex β ∈ V (TG), denoted by p(β), as dTG

(β, ω0). The depth of TG, denoted
by p(TG), is the maximum value of p(β), for β ∈ V (TG).

3 Packing coloring of 2-connected bipartite sub-

cubic outerplanar graphs

In this section we prove that a 2-connected bipartite subcubic outerplanar graph
G has packing chromatic number bounded by 7, i.e., χρ(G) ≤ 7. At the end
of the section we add a result (Proposition 5) which shows that this is best
possible.

The proof of the main theorem has two steps. In the first step we construct
a subset B of V (G), and present a coloring f of the vertices of A = V (G) \ B
by using only the colors from {1, 2, 3} such that the packing coloring condition
holds for A. The set B will be called the set of big vertices, and so any vertex
in B is called a big vertex. The big vertices will be colored in the second step
by using only the colors from {4, 5, 6, 7}. That is, we will extend f from A
to all vertices of V (G). We will prove that f : V (G) −→ {1, . . . , 7} has four
special properties, which will be helpful in proving that f is a packing coloring
of G (that is, for any two distinct vertices u, v ∈ V (G), f(u) = f(v) implies
dG(u, v) > f(u)). As in many cases, additional (technical) conditions, which
are not needed in the result, are helpful in the proof.

Proof of Theorem 1.
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Let G be a 2-connected bipartite subcubic outerplanar graph. Let ω0 be a
vertex of TG of minimum eccentricity; we consider TG to be a rooted tree with
ω0 as its root.

In the proof we will construct a set of vertices B and a packing coloring f
of G. The coloring f will satisfy the following additional properties.

(i) Any vertex with color different from 1 (including big vertices whose color
will be determined in Step 2) has all its neighbors colored by color 1.

(ii) Any face α of G contains exactly one big vertex if |α| ≥ 6 and at most one
big vertex if |α| = 4.

(iii) Any big vertex is at distance at least 4 from any other big vertex.

(iv) Any vertex with color from {6, 7} is at distance at least 6 from any vertex
with color from {6, 7}.

Step 1. In this first step of the proof, we construct the set B and conse-
quently the set A = V (G) \ B, and color the vertices of A by using only the
colors from {1, 2, 3}. During this step, we will ensure that properties (i), (ii)
and (iii) are satisfied (while property (iv) will be verified in the second step,
when we assign colors to the vertices from B).

The proof uses the structure of the tree TG. We consider the faces in a
Breadth-first search (BFS) order by starting with the face ω0. In each facial
cycle we will repeatedly use the pattern 1, 2, 1, 3; by this we mean that vertices
along the cycle will follow in the order 1, 2, 1, 3, . . . or 1, 3, 1, 2, . . ., which also
applies when the length of the cycle is not divisible by 4 (in which case, we omit
the appropriate number of colors at the end of the sequence). If the length of
the corresponding cycle is greater than 4, one of the vertices is taken as a big
vertex and is not yet colored (it will not belong to the set A), and for the rest of
the cycle we use the pattern 1, 2, 1, 3 (by repeating it an appropriate number of
times). In a 4-cycle we may either use only the colors from {1, 2, 3} or declare
one vertex as big, which depends on the type of the used coloring (described
soon).

Clearly, all the vertices of ω0 can be colored by using the above pattern. In
particular, if p(TG) = 0, then G is the cycle C(ω0), so that we can set A = V (ω0),
and the described coloring satisfies properties (i), (ii), (iii) and (iv).

Suppose now p(TG) > 0. By following a BFS order of TG, consider a face
α ∈ TG, α 6= ω0, where ω ∈ TG is the parent of α. By the construction, a big
vertex u of ω is already determined (including the possibility that ω has no big
vertices, which may happen when the size of C(ω) is 4), and other vertices of ω
are colored by colors {1, 2, 3} repeatedly using the pattern 1, 2, 1, 3.

We consider the following three cases, depending on the position of the big
vertex in α (and the coloring of the vertices of A), respectively called 0-, 1- and
2-position, and extend the function f to all vertices of α ∩ A in each of these
cases, referred to as a 0-, 1- and 2-coloring, respectively.
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α
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u z
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Figure 1: 0- 1- and 2-position in face α (circle: vertex of A; square: vertex of
B, i.e. big vertex).

• 0-position: suppose that the big vertex u of ω coincides with one of the
two vertices belonging to α ∩ ω. In this case, the big vertex of α is also
determined, notably, u ∈ B∩α. Let u′ be the other vertex belonging to α∩
ω. (See Figure 1.) Thanks to property (i), u′ is already colored by 1. The
corresponding 0-coloring of the vertices of C(α) is obtained by starting
with the uncolored neighbor of u, and repeatedly using the pattern 1, 2, 1, 3
along the cycle (or, as mentioned before when describing the setting with
the pattern 1, 2, 1, 3, the actual pattern may also be 1, 3, 1, 2 depending
on the color of the neighbor of u′ belonging to ω \ α), ensuring that the
neighbors of u′ get different colors; note that their colors will be k, 2 and
3, respectively, k being the color that u will get in step 2.

• 1-position: suppose that the big vertex of ω is not one of the vertices
belonging to α∩ω and, in addition, not adjacent to any of the two vertices
belonging to α ∩ ω. (In other words, the four vertices of C(ω) that are
closest to C(α) are colored by colors 1, 2, 1 and 3.) Let v′ be the vertex
belonging to α ∩ ω, for which f(v′) = 1. And thus other big vertices in ω
are at distance at least three from v′ by (i). In this case, we define the big
vertex v of α (i.e. the vertex v of α belonging to B) as the neighbor of v′,
which does not lie in ω. (See Figure 1.) The corresponding 1-coloring
of the vertices of C(α) is obtained by starting with the neighbor of v′

belonging to α ∩ ω, and repeatedly using the pattern 1, 2, 1, 3 along the
cycle.

• 2-position: suppose that the big vertex u of ω is not one of the vertices
belonging to α ∩ ω, but is adjacent to one of the two vertices belonging
to α ∩ ω. Let us denote by u′ the neighbor of u belonging to α ∩ ω, and
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let the other vertex belonging to α ∩ ω be called z. By (i), f(u′) = 1,
and f(z) ∈ {2, 3}. Now, if C(α) has 4 vertices, then we use only colors
1, 2 or 1, 3 ensuring that the neighbors of u′ in C(α) get distinct colors.
Otherwise, we define the big vertex v of α (i.e. the vertex v of α belonging
to B) to be the vertex at distance 2 from the vertex z, different from
a neighbor of u′. (See Figure 1.) The corresponding 2-coloring of the
vertices of C(α) is obtained by starting with u′, and repeatedly using the
pattern 1, 2, 1, 3 along the cycle, ensuring that the neighbors of u′ get
different colors in {2, 3}.

Clearly, for any of the three colorings (0-coloring, 1-coloring, 2-coloring) the
packing coloring condition holds for the vertices of A belonging to a face α
following ω in the BFS order of TG, and properties (i), (ii) and (iii) extend from
vertices colored so far to the vertices of α. We derive the following observation.

Lemma 4. Let B be the set constructed in Step 1 with A = V (G)\B, and let f
be the coloring of the vertices of A by colors {1, 2, 3} as described above. Then
f and B satisfy properties (i), (ii) and (iii), and for any two distinct vertices x
and y in A such that f(x) = f(y) we have dG(x, y) > f(x).

Step 2. In this step we need to determine the f -values of big vertices, and
prove that property (iv) holds for these vertices and that the packing coloring
condition holds for the set B. We determine the colors of big vertices following
a BFS order on TG; we start by determining the possible color of the big vertex
of ω0. If such a vertex exists (i.e., |V (ω0)| > 4), then we color it by 4.

A big vertex x that belongs to a face β will be called a big vertex arising
from α if the following two conditions are true:

i) β is a descendant of α with respect to TG;

ii) x is at distance at most two from C(α).

A step of the coloring construction consists in dealing with a face α that comes
next in the chosen BFS order (beginning with the face ω0), and coloring all the
big vertices arising from α. Let ω be the parent of the face α (if it exists). In
a step of the coloring construction, it is supposed that, if α 6= ω0, then both
the big vertex of ω and the big vertices arising from ω are already colored.
Consequently, the big vertex of α is already colored, because it arises from ω.
On the other hand, when α = ω0, only the big vertex of ω0 is already colored.

We assume that f satisfies the packing coloring condition for big vertices
colored in previous steps, and that property (iv) is satisfied for the big vertices
colored in previous steps. Consequently, we have to prove that the packing
coloring condition holds for big vertices and that property (iv) remains true
when we extend the function f in a new step. We distinguish three cases with
respect to the type of the position of the big vertex (0-position, 1-position, 2-
position) and the corresponding coloring, used to color the big vertex of α. We
will call the colors in {6, 7} very big.
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βk−1
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r
s

Figure 2: Big vertices arising from face α in 0-position (circle: vertex of A;
square: vertex of B, i.e. big vertex).

Case 1. α is in 0-position, see Figure 2.
Consider the face ω and its descendants with respect to TG, and note that

the color of their big vertices could already have been determined (with the
exception of big vertices arising from α). By property (i), all big vertices are
at even distance from vertex u, and they are at distance at least 4 from u by
property (iii). We distinguish two kinds of big vertices that were already colored,
namely those that are at a shorter distance from u than from u′, and those that
are at a shorter distance from u′ than from u. Those that are closer to u than
to u′ are at distance at least 8 from big vertices that arise from α. (As shown
in Figure 2, big vertices arising from α belong to faces β1, . . . , βk, which are
children of α with respect to TG, or to their children.) On the other hand, there
can be big vertices, which are at distance 3 from u′ (and 4 from u), and have
already been colored. More precisely, by using property (iii), and the fact that
the neighbor of u′ that is not in α has at most two other neighbors, we find
that there can be at most two such big vertices, which are at distance 3 from
u′. If they indeed exists, we denote them by r and s, and note that r, s and u
are pairwise at distance 4 from each other.

Next we analyze possible positions of vertices that arise from α. For every
vertex a in C(α), which is at an even distance from u, there can be a big vertex
a′ that arises from α such that there is an a, a′-path of length 2 outside α (there
is at most one such vertex by property (iii)). On the other hand, for every
vertex b in C(α), which is at an odd distance from u, there can be a big vertex
b′ that arises from α, which is adjacent to b (with the exception of the neighbors
of u in C(α), which cannot be adjacent to another big vertex due to property
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(iii)). The situation when all these big vertices exist is described in Figure 3.

u

r

s

Figure 3: Case 1 (α in 0-position).

In the most complex case when both vertices r and s exist and are already
colored, vertices u, r and s are pairwise at distance 4 from each other. By
property (iv), exactly one of these three vertices is colored by a very big color.
We consider two subcases, depending on the color of vertices u, r and s. Note
that we can easily modify our coloring function so that all vertices colored by
color 4 are colored by color 5 and vice-versa. Also, the same holds for the vertices
colored by color 6 and 7 (we can exchange the two color classes). A consequence
is that the way to deal with the case f(u) = 5, {f(r), f(s)} = {4, 7} is the same
as when f(u) = 4, {f(r), f(s)} = {5, 7} or when f(u) = 5, {f(r), f(s)} = {4, 6}
and that the way to deal with the case f(u) = 7, {f(r), f(s)} = {4, 5} is the same
as when f(u) = 6, {f(r), f(s)} = {4, 5}. Thus, it suffices to deal only with two
subcases: f(u) = 4, {f(r), f(s)} = {5, 7} and f(u) = 6, {f(r), f(s)} = {4, 5}.

Subcase 1.a. f(u) = 4 and {f(r), f(s)} = {5, 7}. We present three patterns
that define the coloring of the big vertices with respect to different lengths n
of the cycle C(α). The patterns give f -values of the big vertices following their
presentation in Figure 3 (from left to right); in the case when some of the big
vertices that arise from α do not exist, we simply skip the corresponding values
in the pattern.

If n = 4, there is at most one big vertex that arises from α, and we color it
by 5. Now, assume that n ≥ 6. Note that the numbers between vertical bars
are to be repeated k times (case k = 0 included).

Pattern for length n = 4k + 8:
7 6 7 4 5

5 4 5 6

Pattern for length n = 8k + 6:
5 5 5 5 5 5

6 4 7 4 6

Pattern for length n = 8k + 10:

9



5 5 5 5 5 5 5 5
7 4 6 4 7 4 6

Note that because f(u) = 4, the first and the last two values in the pat-
terns cannot be 4, and because {f(r), f(s)} = {5, 7}, the last two values in
the patterns cannot be 7. Also note that two vertices that correspond to two
successive values in the upper row of the pattern are at distance 6, two vertices
that correspond to two successive values in the lower row of the pattern are at
distance 4, and two vertices that correspond to two consecutive values in the
patterns (one in the upper and the other in the lower row) are at distance 4.

In each of the patterns, one can check that property (iv) holds, and that for
any two identical numbers, the distance between the corresponding vertices in
G is bigger than this number (i.e., the packing coloring condition is satisfied).
Note that for k = 0 one needs to omit the numbers that are between the vertical
bars in each pattern, which covers the lengths of cycles n, where n ∈ {6, 8, 10}.

Subcase 1.b. f(u) = 6 and {f(r), f(s)} = {4, 5}. If n = 4 we can use
color 4 for the only big vertex that possibly arises from α. Now, assume that
n ≥ 6. We present patterns that define the coloring of the big vertices in the
case f(u) = 6, and {f(r), f(s)} = {4, 5}. Note that it implies that the first and
the last four values in the patterns cannot be 6. Again the numbers between
vertical bars are to be repeated k times (including k = 0, where we omit the
numbers between vertical bars):

Pattern for n = 4k + 8:
5 7 6 7 4

4 5 4 5

Pattern for n = 4k + 10:
5 5 4 6 7 4

4 7 5 4 5

Pattern for n = 6:
4 4

5

Case 2. α is in 1-position, see Figure 4.
Consider the face ω and its descendants with respect to TG, and note that

the color of their big vertices could already have been determined (with the
exception of big vertices arising from α). Also, as the face α is in 1-position,
there can be a big vertex arising from α, which is at distance 2 from C(ω). If
this vertex exists, we denote it by p. By definition, p is a big vertex arising from
ω, hence it is already colored. Also, since v is a big vertex arising from ω, it is
also already colored.

By property (iii), the neighbors of v′, different from v, are not in B, and
there can be at most one big vertex different from v at distance 4 from p, which
is already colored. If such a vertex exists, we denote it by r. All other big
vertices that are already colored are at distance at least 8 from the vertices
arising from α.

Similarly as in Case 1 (considering the distance from v and using property
(iii)), we find the position of big vertices that possibly arise from α, and depict
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v
p
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ω

α

β1

β2

βk

βk−1

. . .

Figure 4: Big vertices arising from face α in 1-position (circle: vertex of A;
square: vertex of B, i.e. big vertex).

them in Figure 5. Note that some of the big vertices indicated in this figure
may not exist in G.

v′ v

p r

Figure 5: Case 2 (α is in 1-position).

Since, by property (iii), the vertices v, p and r (see Figure 5) are pairwise
at distance 4 from each other, exactly one of them has a very big color. Hence,
in a similar way as in Case 1, we only consider three subcases, depending on
the colors of the vertices v, p and r. These three subcases give the way to deal
with every possible color configuration for v, p and r. (Also, when r or p does
not exist and no vertex among v, p and r is very big, it is possible to deal with
this situation by considering that a non existing vertex among v, p and r is very
big.) The various cases are described in the following table:
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Subcase a b c
f(v) 6 4 4
f(p) 4 6 5
f(r) 5 5 6

Note that if the length n of C(α) is 4, there are no big vertices arising from
α, and this case is trivially resolved. Hence, we suppose that n ≥ 6.

Subcase 2.a. f(v) = 6, f(p) = 4 and f(r) = 5. We present patterns
that define the coloring of the big vertices with respect to different lengths n of
the cycle C(α). The patterns give f -values of the big vertices in order of their
presentation in Figure 5. As in Case 1, if some of the big vertices that arise from
α do not exist, we simply skip the corresponding values in the pattern. Note
that the numbers between vertical bars are to be repeated k times (case k = 0
included). Note also that the last value in the patterns represents f(p) = 4.

Pattern for n = 4k + 8:
4 7 6 7

5 4 5 4

Pattern for n = 4k + 10:
4 7 6 4 5

5 4 5 7 4

Note that because f(v) = 6, the first four and the last three values (including
the value of p) in the patterns cannot be 6. In each of the patterns, one can
check that property (iv) holds.

Cases k = 0, where the values between vertical bars are omitted, cover

n ∈ {8, 10}, while the pattern for length n = 6 is:
5

4

Subcase 2.b. f(v) = 4, f(p) = 6 and f(r) = 5. We present patterns that
define the coloring of the big vertices with respect to different lengths n of the
cycle C(α). Note that the numbers between vertical bars are to be repeated k
times (case k = 0 included). The last value in the patterns represents f(p) = 6.

Pattern for n = 4k + 6:
6 7 5

5 4 6

Pattern for n = 4k + 8:
7 6 7 4

5 4 5 6

Note that f(v) = 4 implies that patterns must avoid having the first two
values equal to 4. Cases n ∈ {6, 8} are covered by the above patterns with k = 0
(i.e., removing the values between vertical bars).

Subcase 2.c. f(v) = 4, f(p) = 5 and f(r) = 6. The following two patterns
define the coloring of the big vertices (the numbers between vertical bars are to
be repeated k times, with k = 0 included, covering n = 6 and n = 8). The last
value in the patterns represents f(p) = 5.

12
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u
u′ z

v

ω

α

β1

β2

βk

βk−1

. . .

Figure 6: Big vertices arising from face α in 2-position (circle: vertex of A;
square: vertex of B, i.e. big vertex).

Pattern for n = 4k + 6:
7 6 7

5 4 5

Pattern for n = 4k + 8:
7 6 5 4

5 4 7 5

In the above patterns, in particular, the first two values cannot be 4, as
f(v) = 4, and the last three values cannot be 6, as f(r) = 6.

Case 3. α is in 2-position, see Figure 6.
Again we consider the face ω and its descendants with respect to TG, and

note that the color of their big vertices could already have been determined
(with the exception of big vertices arising from α). Also, by the definition of
2-position of the face α, u and v are already colored. There can be at most one
additional vertex, which is already colored and is at distance 6 to a big vertex
arising from α that is not yet colored; if this vertex exists, we denote it by r,
see Figure 6.

Similarly as in Case 1 (considering the distance from v and using property
(iii)), we find the possible positions of big vertices that arise from α, and depict
them in Figure 7. Note that some of the big vertices indicated in this figure
may not exist in G.

Since the vertices u, v and r (see Figures 6 and 7) are pairwise at distance
4 from each other, exactly one of them has a very big color. Hence, in a similar
way as in Case 1, we only we consider three subcases, depending on which vertex
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u v

r

Figure 7: Case 3 (α is in 2-position).

among u, v and r is very big. These three subcases give the way to deal with
every possible color configuration for u, v and r. (Also, in the case r does not
exist and no vertex among u and v is very big, it is possible to deal with this
situation by considering that r is very big.) The cases are described in the
following table:

Subcase a b c
f(u) 4 6 5
f(v) 6 4 4
f(r) 5 5 6

If n = 4 there are no big vertices arising from α. Hence, we suppose that
n ≥ 6.

Subcase 3.a. f(u) = 4, f(v) = 6 and f(r) = 5. The following two patterns
define the coloring of the big vertices (the numbers between vertical bars are to
be repeated k times, including k = 0).

Pattern for n = 4k + 8:
7 6 7 4

5 4 5

Pattern for n = 4k + 10:
7 6 5 5 5

5 4 7 4

Note that because f(v) = 6 and f(u) = 4, the last four values in the patterns
cannot be 6 and the first two values in the patterns cannot be 4 or 6. In each
of the patterns, one can check that property (iv) holds.

For n = 6, there can be at most one big vertex arising from α, and we can
color it by 5. For n = 4 there are no big vertices arising from α.

Subcase 3.b. f(u) = 6, f(v) = 4 and f(r) = 5. The following two patterns
define the coloring of the big vertices (the numbers between vertical bars are to
be repeated k times, including k = 0).

Pattern for n = 4k + 8:
4 7 6 7

5 4 5
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Pattern for n = 4k + 10:
5 7 6 7 6

4 5 4 5

Note that because f(u) = 6 and f(v) = 4, the first four values in the patterns
cannot be 6 and the last two values in the patterns cannot be 4. In each of the
patterns, one can check that property (iv) holds.

For n = 6, there can be at most one big vertex arising from α, and we can
color it by 5. For n = 4 there are no big vertices arising from α.

Subcase 3.c. f(u) = 5, f(v) = 4 and f(r) = 6. Finally, the following two
patterns define the coloring of the big vertices (the numbers between vertical
bars are to be repeated k times, k = 0 included).

Pattern for n = 4k + 6:
7 6 7

4 5

Pattern for n = 4k + 8:
7 6 4 5

4 5 7

Note that because f(r) = 6, f(v) = 4 and f(u) = 5, the first two values in
the patterns cannot be 5 or 6 and the last two values in the patterns cannot be
4. In each of the patterns, one can check that property (iv) holds.

It is straightforward to see that in all of the above patterns property (iv)
is satisfied, and that the resulting coloring f is a packing coloring that uses 7
colors. This completes the proof.

We complete this section by showing that the upper bound of 7 on the
packing chromatic number of 2-connected bipartite subcubic outerplanar graphs
is sharp.

Proposition 5. There exists a 2-connected bipartite subcubic outerplanar graph
G such that χρ(G) ≥ 7.

Proof. Let T be the infinite binary tree. Sloper [23] has proven that χρ(T ) = 7.
A consequence is that there exists a finite subcubic tree T such that χρ(T ) = 7.
Let d be the depth of T . Finally, let k = 2d+ 2.

Let x and y be two adjacent vertices of degree 2 in a graph G. Adding a
k-cycle on x and y is an operation that consists in adding a path of k−2 vertices
to G and joining one endvertex of the path to x and the other endvertex to y.
Let G1 be a cycle of order k. Let Gi+1, i ≥ 1, be the graph obtained from Gi

by adding a k-cycle on every adjacent pair of vertices of degree 2 in Gi, where
we arrange these pairs in such a way that each vertex of degree 2 belongs to
one adjacent pair; this can be done by adding k-cycles on adjacent vertices of
degree 2 following the outer cycle of Gi. In this way, in Gi+1 there does not
remain any vertex of degree 2 from V (Gi). Note that, by construction, Gi is a
2-connected bipartite subcubic outerplanar graph for every integer i ≥ 1.

Let u be a vertex that belongs to G1 in the construction of Gk. Note that
the set {v ∈ V (Gk)| d(u, v) ≤ d} induces a subcubic tree containing T as an
induced subgraph. Thus, since every graph has a packing chromatic number
larger than or equal to the packing chromatic number of any of its (induced)
subgraphs, we derive χρ(Gk) ≥ 7.
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4 (1, 3, . . . , 3)-packing coloring of bipartite outer-

planar graphs

In this section, we need to extend the definition of TG in order to have an under-
lying tree even if the outerplanar graph is not 2-connected. For an outerplanar
graph G, let D = {u ∈ V (G)| u /∈ C(v), v ∈ V (TG)} and let A = V (G) \ D.
Note that the graph with vertex set V (TG)∪D and edge set E(TG)∪E(G[D]) is
a forest. We construct LG from the forest with vertex set V (TG) ∪D and edge
set E(TG) ∪E(G[D]) as follows. First, for each bridge uv of G such that u ∈ A
and v ∈ D, we add an edge to LG between v and an arbitrary face α containing
u. Second, for each bridge uv of G such that u ∈ A and v ∈ A, we add an edge to
LG between an arbitrary face α containing u and an arbitrary face β containing
v. Third, let G′ be the graph obtained from G by removing the bridges. For a
cut vertex u of G′, let B1, . . ., Bk be the maximal 2-connected components of
G′ containing u and let αi(u) be a face chosen arbitrarily among the faces from
Bi containing u, 1 ≤ i ≤ k. For each cut vertex u and each integer i between 2
and k, we add an edge to LG between α1(u) and αi(u).

It is easily seen that the graph LG is a tree for any outerplanar graph G.
Figure 8 illustrates an example construction of the tree LG for an outerplanar
graph G.

Figure 8: The graph LG for an outerplanar graph G (circle: vertex of G; square:
vertex of TG; line: edge of G; dashed line: edge of LG).

First, we prove Theorem 2, which states that a bipartite outerplanar graph
with maximum degree ∆ bounded by k is (1, 3, . . . , 3)-colorable, where 3 appears
k times in the sequence, k ≥ 3.

Proof of Theorem 2.
In the construction of the S-packing coloring, the vertices with color 1 will

form an independent set and the vertices with color ai, i ∈ {1, . . . , k} will form
a 3-packing. The proof is by induction on the order of LG. If G has more than
one vertex, vertices colored by 1 will correspond to one part of the bipartition
of G.

For the induction, suppose that LG contains only one vertex u. If u ∈ D,
then it suffices to color u with color 1. If u ∈ V (TG), then we have to color the
cycle C(u). We can clearly color it with colors 1, a1, a2 and a3 by (repeatedly)
using the pattern 1, a1, 1, a2, and using the color 1, a3 for the last two vertices
when the length of the cycle is not divisible by four.
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Now, consider a graph G such that LG has order n+ 1, n ≥ 1. Let u be a
leaf of LG and let G′ be the following graph:

G′ =

{

G− u if u ∈ D
G−B(u) if u ∈ V (TG);

where B(u) is the set of the vertices of V (G) \D, which belong to C(u) but no
other inner face of G. By induction, we can color the vertices of G′, since LG′

has order n, and it suffices to extend the coloring of G′ to the uncolored vertices
of G. Let v be the neighbor of u in LG′ .

Case 1 u ∈ D.

Let v′ denote the neighbor of u in C(v) if v ∈ TG, and v′ = v if v ∈ D. If v′

is not colored by 1, then we can color u by 1 and we are done. Otherwise,
when v′ is colored by color 1, then note that v′ has at most k − 1 colored
neighbors, whose neighbors are all colored by 1. Therefore, we can color
u by a color ai, which is not given to any vertices of NG(v

′), since other
vertices with color ai are at distance at least 4 from u.

Case 2 u ∈ V (TG) and v ∈ D.

Let u′ be the neighbor of v in C(u). Firstly, if v is colored by 1, then,
since ∆(G) ≤ k, at most k− 1 neighbors of v are colored in G, and we can
color u′ by a color ai not used in other neighbors of v. We can color the
remaining uncolored vertices of C(u) by using the color 1 and three more
colors (proceeding in the same way as in the coloring of a cycle described
in the initial step of the induction). Secondly, if v is not colored by color
1, then we color u′ with color 1. We can again extend the coloring to
the remaining vertices of C(u) using color 1 and three more colors in an
analogous way as in the initial step of the induction. We just need to
avoid that a neighbor of u′ is assigned the same color as v, which is always
possible since k ≥ 3.

Case 3 u ∈ V (TG) and v ∈ V (TG).

Subcase 3.a |V (C(u)) ∩ V (C(v))| = 0.

In this case, a vertex u′ ∈ C(u) is adjacent to a vertex v′ ∈ C(v). For the
proof of this case, we follow the same steps as in Case 2, where the vertex
v′, defined in the previous sentence, plays the role of v in Case 2.

Subcase 3.b |V (C(u)) ∩ V (C(v))| = 1.

Let {w} = V (C(u))∩V (C(v)). Suppose w is colored by color 1. Since w is
in the uncolored facial cycle C(u), at most k−2 neighbors of w are colored
so far in G. Thus, we can give two (distinct) colors not used by neighbors
of w to the two neighbors of w in C(u) and easily extend the coloring to
the remaining uncolored vertices of C(u) using these two colors, color 1
and possibly a third color ai (that will be given to a vertex at distance at
least 4 from any vertex with color ai of another cycle). Now, if w is not
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colored with color 1, then every neighbor of w can be colored with color
1. It is again easy to color the remaining uncolored vertices of C(u) by
using color 1 and three more colors, applying the pattern as in the initial
step of the induction.

Subcase 3.c |V (C(u)) ∩ V (C(v))| = 2.

Let {w1, w2} = V (C(u)) ∩ V (C(v)). Since G is outerplanar, w1 and w2

are adjacent in G. Without loss of generality suppose w1 is colored by
color 1. By the induction hypothesis w2 is already colored. Let x be the
neighbor of w1 (which is not w2) in C(u). Since the vertex w1 has at most
k− 1 colored neighbors, we can color the vertex x by a color ai that is not
used in any of the neighbors of w1. The remaining vertices of C(u) can
be colored by using color 1 and three more colors (that of w, of x and a
third one) in the same way as in the previous cases.

In the following proposition, we prove that Theorem 2 does not hold if in S
an integer 3 is replaced by an integer 4.

Proposition 6. There exists a bipartite outerplanar graph G with ∆(G) ≤ k,
which is not S-packing colorable for the list S = (1, 3, . . . , 3, 4) containing k− 1
times the integer 3.

Proof. Let T be the complete k-ary tree of depth 5 and root r, and suppose
there exists an S-coloring c of T , using S = (1, 3, . . . , 3, 4) as in the statement of
the proposition. Note that there exists a vertex x ∈ {r} ∪N(r) that is colored
by 1. Since x has k neighbors, all must receive distinct colors, different from 1.
In particular, there exists a neighbor y of x such that c(y) = 4. Let z be any
neighbor of x different from y. Clearly, z must be colored by a color ’3’, while
all neighbors of z are colored by 1. Finally, the neighbors of the vertices in N(z)
must receive all colors different from 1. In particular, there exists a vertex u
with d(u, y) = 4, such that c(u) = 4, which is a contradiction.

5 (1, 2, 2, 2)-packing coloring of subcubic outer-

planar graphs

In this section, we first prove that a subcubic outerplanar graph G is (1, 2, 2, 2)-
packing colorable when G is triangle-free outerplanar.

Proof of Theorem 3.
Let G be a subcubic outerplanar graph and let D and LG be defined as in

Section 4. In this proof, the vertices with color 1 will form an independent set
and the vertices with color ai, for each i ∈ {1, 2, 3} will form a 2-packing.

By induction on the order of LG, we prove that there is an S-packing coloring
of G. Suppose LG has only one vertex u. If u ∈ D, then it suffices to color u
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with color 1. If u ∈ V (TG), then we have to color a cycle of order n. We color
it with colors 1, a1, a2 and a3 using the pattern 1, a1, 1, a2 and using the color
a3 for the last vertex if n ≡ 1 (mod 4), colors 1, a3 for the two last vertices if
n ≡ 2 (mod 4) or colors 1, a3, a2 for the three last vertices if n ≡ 3 (mod 4).

Now, consider a graph G such that LG has order n+ 1, n ≥ 1. Let u be a
leaf of LG and let G′ be the following graph:

G′ =

{

G− u if u ∈ D
G−B(u) if u ∈ V (TG);

where B(u) is the set of the vertices of V (G) \D, which belong to C(u) but no
other inner face of G. By induction, we can color the vertices of G′, since LG′

has order n, and it suffices to extend the coloring of G′ to the uncolored vertices
of G. Let v be the neighbor of u in LG′ .

Case 1 u ∈ D.

Let v′ denote the neighbor of u in C(v) if v ∈ TG and v′ = v if v ∈ D. If v′

is not colored by 1, then we can color u by 1 and we are done. Otherwise (v′

is colored by 1), since G is subcubic, v′ has at most two colored neighbors.
Therefore, we can color u by a color not given to vertices from NG(v

′).

Case 2 u ∈ TG and v ∈ D.

Let u′ be the neighbor of v in C(u). First, if v is colored by color 1, then,
since ∆(G) ≤ 3, at most two neighbors of v are colored in G and we can
easily color u′. We can color the remaining uncolored vertices of C(u) by
the color 1 and the three remaining colors (by proceeding as in the coloring
of a cycle described in the initial step of the induction). Second, if v is
not colored by color 1, then we color u′ with color 1. Since u′ is in C(u)
which is uncolored, exactly one neighbor of u′, namely v, is colored in G.
Thus, we can give two different colors from {a1, a2, a3} to the neighbors
of u′ in C(u). We now extend the coloring to the remaining vertices of
C(u) using color 1 and the three remaining colors (by proceeding as in the
coloring of a cycle described in the initial step of the induction).

Case 3 u ∈ TG and v ∈ TG.

Since G is subcubic, |V (C(u))∩V (C(v))| = 0 or |V (C(u))∩V (C(v))| = 2
(if |V (C(u)) ∩ V (C(v))| = 1, then the common vertex would have degree
at least 4).

Subcase 3.a |V (C(u)) ∩ V (C(v))| = 0.

In this case, a vertex u′ ∈ C(u) is adjacent to a vertex v′ ∈ C(v). For the
proof of this case, we follow the same steps as in Case 2, where the vertex
v′, defined in the previous sentence, plays the role of v in Case 2.

Subcase 3.b |V (C(u)) ∩ V (C(v))| = 2.

Let {w1, w2} = V (C(u)) ∩ V (C(v)). Since G is outerplanar, w1 and w2

are adjacent in G. By the induction hypothesis, w1 and w2 are already
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colored. Let x1 be the neighbor of w1 (which is not w2) in C(u) and let
x2 be the neighbor of w2 (which is not w1) in C(u). If w1 has no neighbor
with color 1, then we recolor it with color 1. If after this, w2 has no
neighbor with color 1, then we recolor it with color 1.

Suppose that 4 ≤ |C(u)| ≤ 5. First, if one of wi is colored by 1, say w1,
we can extend the coloring to C(u) as follows. In this case, x1 receives
the color ai, which is not used in the neighborhood of w1, and we can
color x2 by 1. In the case |C(u)| = 5, the common neighbor of x1 and x2

receives the color that was given to the neighbor of w1, which is not w2,
in C(v). Second, assume without loss of generality that wi received color
ai for i ∈ {1, 2}. Note that by the above recoloring condition, w1 and w2

have neighbors, which are given color 1. If |C(u)| = 4, we can color x1

and x2 by colors 1 and a3, respectively. Otherwise, if |C(u)| = 5, we give
color 1 to vertices x1 and x2, and the common neighbor of x1 and x2 gets
color a3.

So, let |C(u)| > 5. We color the uncolored vertices of C(u) starting by
coloring the vertex x1. We color x1 by using a color not given to w1 and
the colored neighbors of w1. If w2 is not colored by 1 we color x2 by
1. Otherwise, we color x2 by a color not given to w2 and the colored
neighbors of w2. The remaining vertices of C(u) can be colored by the
pattern described in the initial step of the induction, alternating 1, ai, 1, aj,
and possibly completing the coloring of the cycle with the third color ak,
depending on the length of C(u).

We next present two examples, which show that Theorem 3 is best possible.
First, we prove that the result does not hold if the graph contains triangles.

Proposition 7. There exists a subcubic outerplanar graph, which is not (1, 2, 2, 2)-
packing colorable.

u

u1

x
u2

y

u3 u4

v

Figure 9: A non (1, 2, 2, 2)-packing colorable graph.

Proof. Let G be the graph depicted in Figure 9. We suppose that a (1, 2, 2, 2)-
packing coloring uses the colors 1, a1, a2 and a3, the meaning of which should
be clear. Suppose, on the contrary, that G has a (1, 2, 2, 2)-packing coloring.
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Clearly, one vertex among u and v should be colored by a color different from
1. Suppose, without loss of generality that u has a color in {a1, a2, a3}, say a1.
Note that at least one of the vertices u3 and u4 is not colored by color 1, and
assume without loss of generality that u3 is colored with a2. Consequently, we
can only use colors 1 and a3 for the three vertices u2, u4, y (forming a triangle),
which is not possible.

Second, we prove that Theorem 3 cannot be improved by replacing in (1, 2, 2, 2)
an integer 2 by an integer 3, when G is in the class of subcubic triangle-free
outerplanar graphs.

Proposition 8. There exists a subcubic triangle-free outerplanar graph, which
is not (1, 2, 2, 3)-packing colorable.

Proof. Let G25 be the graph obtained from six copies of the 5-cycle, one of
which we distinguish and denote by C; and to each vertex x of C we add an
edge between x and a vertex of its own copy of C5. Note that in a (1, 2, 2, 3)-
packing coloring of C5 one must color two vertices by color 1, and each of the
other three vertices receives its own color among {2, 2′, 3}. Each vertex x of the
central cycle C is at distance at most 3 from all vertices in the 5-cycle, which
is attached to x. Thus, the assumption that G25 is (1, 2, 2, 3)-packing colorable
implies that a vertex x in C is colored by color 3. However, distances from x to
vertices of the 5-cycle attached to x prevent the use of color 3 in that copy of
C5, which is in contradiction to the existence of a (1, 2, 2, 3)-packing coloring of
G25.

6 Concluding remarks

Theorem 1 gives a partial (affirmative) answer to the question posed in several
papers concerning the boundedness of the packing chromatic number in the
class of planar subcubic graphs. Instead of repeating the question, we propose
two problems that lie between Theorem 1 and this question. In one of them, we
consider a non-bipartite extension of the theorem, and in the other we replace
outerplanar graphs with planar graphs.

Question 1. Is the packing chromatic number bounded in the class of 2-connected
subcubic outerplanar graphs?

Question 2. Is the packing chromatic number bounded in the class of 2-connected
bipartite subcubic planar graphs?

While we do not dare to suggest an answer to the above questions, we
strongly believe that Theorem 1 could be extended from the 2-connected case
to all bipartite subcubic outerplanar graphs.

In Section 5, we proved that a subcubic triangle-free outerplanar graph is
(1, 2, 2, 2)-packing colorable, and it is not (1, 2, 2, 3)-packing colorable in general.
A similar proof as in Theorem 3 can be used to prove the following result.
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Theorem 9. If G is a subcubic triangle-free outerplanar graph, then G is
(1, 1, 2)-packing colorable.

The above result can be viewed as an extension of the 3-colorability of out-
erplanar graphs. We cannot omit the triangle-free condition from Theorem 9,
as demonstrated by the following example. Take four copies of the triangle C3,
one of which we distinguish and denote it by C; and to each vertex x of C we
add an edge between x and a vertex of its own copy of C3. It is easy to see that
the resulting graph G is not (1, 1, 2)-packing colorable (clearly, G is outerpla-
nar and subcubic). In addition, Theorem 9 cannot be improved in such a way
that the integer 2 be replaced by 3 in (1, 1, 2)-packing colorability of subcubic
triangle-free outerplanar graphs. To see this, take the graph G25 from the proof
of Proposition 8 as an example.
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