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Abstract 

Spatiotemporal data, and more specifically origin-destination matrices, are critical inputs to mobility studies for 
transportation planning and urban management purposes. Traditionally, high-cost and hard-to-update household travel 
surveys are used to produce large-scale origin-destination flow information of individuals’ whereabouts. 
In this paper, we propose a methodology to estimate Origin-Destination (O-D) matrices based on passively-collected 
cellular network signalling data of millions of anonymous mobile phone users in the Rhône-Alpes region, France. 
Unlike Call Detail Record (CDR) data which rely only on phone usage, signalling data include all network-based 
records providing higher spatiotemporal granularity. The explored dataset, which consists of time-stamped traces from 
2G and 3G cellular networks with users’ unique identifier and cell tower locations, is used to first analyse the cell 
phone activity degree indicators of each user in order to qualify the mobility information involved in these records. 
These indicators serve as filtering criteria to identify users whose device transactions are sufficiently distributed over 
the analysed period to allow studying their mobility. Trips are then extracted from the spatiotemporal traces of users 
for whom the home location could be detected. Trips have been derived based on a minimum stationary time 
assumption that enables to determine activity (stop) zones for each user. As a large, but still partial, fraction of the 
population is observed, scaling is required to obtain an O-D matrix for the full population. We propose a method to 
perform this scaling and we show that signalling data-based O-D matrix carries similar estimations as those that can 
be obtained via travel surveys. 
 
Keywords: Passive cellular signalling data, Big data analysis, travel survey, home detection, trip extraction, origin-
destination matrix 

1. Introduction 

Spatiotemporal data are extremely valuable to study human mobility for transportation and urban planning 
purposes (Arentze and Timmermans 2000; Giannotti and Pedreschi 2008). At large scale (e.g. regional level), 
traditional approaches rely on household travel surveys to collect mobility data that typically record one day of travel 
diaries per household. While travel surveys provide highly useful data to formalize and estimate behavioural transport 
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models (e.g. route and transportation mode choice models), they are much less useful for constructing origin-
destination (O-D) matrices due to limited sample sizes, which result in empty cells in the matrix estimation. Indeed, 
surveys are increasingly confronted by issues during the sample construction phase (Stopher and Greaves 2007), by 
declining response rates (Bonnel 2003) and by unreported trips (Wolf et al. 2003), which reduce even further the 
quality of the resulting matrices. Additionally, travel surveys typically involve high costs that restrict their frequency 
(once or twice per decade) and prevent to follow the dynamics of population mobility over time. 
Several kinds of sensor data dealing with the position and mobility of individuals have become recently available due 
to the wide deployment of pervasive computing equipment. Hence, large volumes of data are being produced 
automatically and passively from different technologies, such as GPS based-devices, smart cards and mobile phones, 
which make it possible to identify the presence of individuals in both space and time (Feng and Timmermans 2014; 
Munizaga and Palma 2012). In particular, data collected from cell phones have become one of the most important 
new data sources to study travel behaviour (Wang et al. 2017). Their proper attributes, such as large coverage of 
geographic area, significant penetration in population and high detailed location information have attracted researchers 
to analyse them to support transportation studies. A number of researches have been conducted to use different types 
of mobile phone data (e.g., Call Detail Records (CDR), cellular network data); but, few have attempted to validate the 
results with external sources due to the different nature of mobile phone footprints. Yet, the validation process allows 
to identify possible biases and to gain a clearer idea of their potential. Moreover, the quality and accuracy of data is 
essential to ensure that investment or transport policy decisions are based on reliable analyses. Therefore, considerable 
efforts are needed to pre-process mobile phone data and to validate the related research outputs. 
 

 The aim of this paper is to explore cellular signalling data from 2G and 3G networks to produce origin-destination 
matrices. Although the potential of these data is promising due to the involved large amounts of individual 
spatiotemporal traces comparing to CDR data, there is still a remarkable lack of studies based on them.   
Our primary goal is to test whether these massive signalling data could act as cheap and reliable data source to capture 
individual trips. Therefore, we propose, as the main contribution of this paper, a full workflow to transform cell phone 
network logs into origin-destination flow matrices supported by a validation step using travel survey data. Our 
approach is evaluated in a case study related to the Rhône-Alpes region, France, for which we were able to analyse 
recent mobile phone signalling data (June 2017) provided by Orange, the largest French mobile operator, and compare 
them with the data obtained from the latest travel survey performed by the local authority in the same region. 

This paper is structured as follows. Section 2 describes the related work. In Section 3, an overview of the data used 
in our analysis is presented. In Section 4, the methodology applied to estimate the O-D matrix from signalling data is 
discussed. While in Section 5, our results are summarized and validated with respect to travel survey data. Section 6 
discusses our study contribution to the traditional survey methods and with respect to the existing works as well as 
our signalling data-based approach challenges. Finally, Section 7 concludes the paper and identifies several 
suggestions for future research directions. 

 

2.  Related works 

2.1. Mobile phone data for travel behaviour research 

The wide adoption of mobile devices (mobile phones, smartphones and tablets) and the rapid related advancements 
make the mobile phone data a good candidate for the study of human mobility for transportation research. Indeed cell 
phone networks have existed for three decades, and mobile phones have achieved a high rate of penetration: there 
were 75 million active SIM (Subscriber Identity Module) cards in France in 2018, for a total population of 66 million 
(ARCEP 2018). The exploration of the large and passive datasets generated from cellular networks seems to have 
enormous potential in the field of travel behaviour studies.  

Hereby, mobility modelling has experienced rapid developments in recent years thanks to these new sensor data. 
González et al. (2008) have proposed one of the first studies of large-scale mobility using a Call Detail Records (CDR) 
sample of over 100,000 users to explore the universal laws of individual human mobility. This study demonstrated 
that the distribution of users’ trips is well approximated by a truncated power-law distribution. More recently, mobile 
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phone data have been explored for mobility pattern extraction (Asgari et al. 2013; Calabrese et al. 2013; Wang et al. 
2012), traffic and mobility flows inference (Calabrese et al. 2011a; Huang et al. 2018) , population estimation (Frias-
Martinez et al. 2010; Ricciato et al. 2016) and route choice modelling (Tettamanti and Istvan 2014). 

Moreover, terminal logs have been explored to detect individual activities. Widhalm et al. (2015) have developed 
activity program typologies based on duration analysis, trips and activity location and frequencies combined with 
spatial typologies. They applied the method in the cities of Vienna and Boston showing similarities between 
conurbations but also some local specificities. Xu et al. (2015) have studied spatial distribution of individual activity 
area from home in Shenzen, China. Jiang et al. (2016) applied the stay extraction method defined in (Jiang et al. 2013)  
to infer stay location type. They were able to identify home locations for 75% of users based on the record start time 
and the frequency of visits to each stay location. Accordingly, Jiang et al. (2017) used CDR data to model activity 
patterns of identified resident subscribers in Singapore. In a study using simulated sample from device-based location 
data and household travel survey, Chen et al. (2014) suggested a set of methods to detect activity locations and their 
types. In this way, they have shown that the presented procedure reproduces individuals’ home and work with fairly 
high degree of accuracy, and, with less accuracy the location of the places they visit. 

Data from the mobile phone network can also be used to estimate individual trajectories. Schlaich et al. (2010) 
developed an algorithm that was able to identify precisely a user’s trajectory between the cities of Karlsruhe and 
Stuttgart in Germany, considering mainly the “location-area-sequences” events. Similarly, road traffic monitoring, i.e. 
route detection, has been investigated using signalling data by (Fiadino et al. 2012). In 2014, other research effort has 
focused on human trajectory extraction using the interpolation methods (Hoteit et al. 2014). 

As an additional challenge, mobile phone signalling data has been applied to infer travel modes by estimating 
coarse speeds according to the change rates of connected cells and the fluctuations of signal strength (Feng and 
Timmermans 2014).The estimation accuracy is quite high. However, the identifiable travel modes are still rather 
limited with this kind of data. Furthermore, cell network traces were used to help deriving critical transport-related 
measures such as mean speeds, travel distance and journey times. Among recent studies, Calabrese et al. (2013; 
2011b), working in the Boston conurbation, used triangulated mobile phone data collected by a telecom operator to 
study mean speed, mean trip length and the distribution according to the time of day. The very recent research 
conducted by Janzen et al. (2018) concerns particularly the analysis of the long-distance trips carried out over the 
entire area of France. It illustrates the considerable potential of mobile phone CDR data for the analysis of long-
distance trips.  

GPS (Global Positionning System) data represent an alternative form of mobile phone data largely leveraged in 
active travel research. Owing to their ubiquity, GPS-enabled mobile phones can be used to collect GPS records 
(Gonzalez et al. 2010; Nitsche et al. 2014; Nour et al. 2016; Widhalm et al. 2012) and largely decrease the data 
collection cost comparing to the dedicated GPS loggers used in GPS-based surveys (Bohte and Maat 2009; Deutsch 
et al. 2012; Stopher et al. 2008; Wolf et al. 2004). As for typical GPS data, different methods for different purposes 
could be adopted (Shen and Stopher 2014). Rule-based algorithms have been mostly used to extract stays and trips by 
setting an activity duration threshold (e.g. 120 seconds) between consecutive records (Choujaa 2009; Feng and 
Timmermans 2014). Rule-based approaches have also been used to impute activities and trip purposes from GPS 
traces using GIS (Geographic Information System) land use data (Bohte and Maat 2009; Chen et al. 2010; Stopher et 
al. 2008) by considering several measures such as information about surrounding point of interests (Huang et al. 2010). 
Classification techniques and learning-based systems have been primarily applied for travel mode detection: the main 
feature used for these approaches is travel speed supplemented with transport network information. (Reddy et al. 
2010) used built-in GPS and accelerometer data from cell phones to train a classifier system consisting in a decision 
tree followed by a discrete Hidden Markov Model. In the experiment, 16 volunteers were asked to carry six phones 
positioned on different places for 15 minutes for each mode.  The proposed approach is able to identify transportation 
modes, including stationary, walking, running, biking, or motorized modes with an accuracy of 93.6%. In (Gonzalez 
et al. 2010), the authors use GPS data recorded via a custom mobile phone application to investigate the feasibility of 
automatic travel mode detection with neural networks (NNs). The focus is to provide a convenient technique that uses 
a minimum set of GPS fixes in order to save device resources (e.g. battery life, data transfer costs etc.) during the data 
collection process. Although GPS data successfully allow to reduce the number of underreported trips and to improve 
the estimation accuracy of traditional surveys, they still have major limitations. First, this kind of data is either 
collected from specific smartphone applications (e.g. using built-in GPS receiver) developed for research purposes or 
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from dedicated GPS devices (e.g. person-based GPS logger) resulting in additional burden to the participant. This 
widely restricts the sample size since it is not easy to recruit a sufficient number of participants (from tens to few 
hundred surveyed individuals in existing studies). Second, these data suffer from significant sampling bias due to the 
selected random group of persons (Nitsche et al. 2014). Moreover, GPS data collection suffers from technical issues 
such as signal noise and signal loss as well as the well-known data storage problem (in case of on-device storage) and 
data transfer cost which are still challenging the quality and relevance of GPS fixes. Thus, unlike cellular network 
data, these survey methods appear to be not well suited for longitudinal travel surveys and large-scale mobility 
behavior studies. 

An illustrative overview of some state-of-the-art works in the field of urban and travel behaviour analysis using 
mobile phone traffic data is summarized in (Calabrese et al. 2014; Blondel et al. 2015; Naboulsi et al. 2016; Wang et 
al. 2017). 

2.2. Origin-Destination estimation using cellular network-based data 

Transport planners mostly rely on transport demand models for the understanding of mobility behaviour and the 
planning of network infrastructure (Bonnel 2004; Ortúzar and Willumsen 2011). These transport travel demand 
models are heavily relying on high-cost and hard-to-update travel surveys as a data source. Indeed, these traditional 
collection methods result in an overview of the mobility of one weekday; thereby they only provide a snapshot of 
people movement since they cover a limited sample of population and small time window (Nitsche et al. 2014). 
Therefore, demand models could not be updated regularly and so might not reflect real mobility behaviour which 
results to the need of new data sources. 

 The last years have witnessed a surge of studies using passively generated traces from cellular devices to estimate 
origin-destination flows. Furthermore, there have been several limited-scale researches aimed at analysing the 
potential of these emerging data for origin-destination matrix construction. In 2002, a small sample from one morning 
has been used to study traffic O-D matrices on specific roads in the county of Kent in the UK (White and Wells 2002). 
Authors revealed the potential of billing data and suggested that more research was needed to infer consistent O-D 
matrix. Later in 2007, Caceres et al. (2007) calculated an O-D matrix with four possible O-D pairs to study the road 
traffic in the highway between the cities of Huelva and Seville in Spain. They employed simulated mobile phone data 
and compared the results with those obtained from traffic counts showing again the potential of such cost-effective 
method. Both of these studies are based on too small samples of CDR covering very limited areas.  

More recently, Calabrese et al. (2011b) were the first to produce an O-D matrix from a detailed mobile phone 
dataset (e.g. including more internet connections), for the Boston region in Massachusetts, showing encouraging 
comparison results with O-D flows from census data taking account of only weekday morning trips. Mellegard et al. 
(2011) adapted an algorithm method to the available database of mobile device records that covers a large territory of 
Sweden to generate O-D flows. No detailed comparison for the entire matrix has been performed in this work.  
Moreover, to derive travel demand and routes, CDR data have been explored to generate “transient O-D matrices” 
and to convert them into intersection-to-intersection O-D flows in the road network of Boston and San Francisco 
(Wang et al. 2012) and in Dhaka, Bangladesh (Iqbal et al. 2014). To calibrate the derived O-D trips, (Wang et al. 
2012) have used available travel data, vehicle usage rate and population statistics. High correlation was identified 
when validating the up-scaled flows with probe vehicle GPS data. Using limited traffic counts and a microscopic 
simulation, (Iqbal et al. 2014) have scaled up the generated OD patterns (from calling data). They have validated the 
assignment results with additional traffic counts (different to those for calibration) and found that the prediction error 
was about 13%. The limited availability of high resolution GIS travel data and sufficient amount of traffic counts (e.g. 
due to their collection cost) makes these methodologies less applicable especially in case of large-scale studies (e.g. 
regional or national). Alexander et al. (2015) have conducted analysis on triangulated CDR data (with estimated (x, 
y) device coordinates) to infer O-D individual trips per purpose (home, work or other) and time of the day. After a 
filtering process, they kept only about 16% of users to extract trips. Results evaluation, in particular for home-work 
trips, presented strong similarities against travel survey and census data on the Boston metropolitan area. Gundlegard 
et al. (2016) proposed a process for travel demand and route travel flow estimation as well as for mobility metrics 
extraction. Their analyses were based on CDR datasets provided from Ivory Coast and Senegal territories. In this 
work, derived O-D matrix and developed methods were not evaluated due to the lack of validation data. 
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Although CDR data have supported interesting findings for O-D extraction, their limited temporal granularity could 
introduce biases (on geographic and demographic levels) since the location of a mobile phone owner is recorded only 
when the user calls, sends a message or makes data connexion, which means that user’s movements are unknown 
when he/she does not use his/her phone (White and Wells 2002; Calabrese et al. 2011a; Zhao et al. 2016). To alleviate 
this limitation, some published works combined CDR data with other urban transportation data sources like GPS data 
(e.g., from taxi ,private car or mobile phone application)  (Huang et al. 2018; Widhalm et al. 2012; Hoteit et al. 2016), 
smart-card data (Huang et al. 2018),  travel survey and existing transport model (Wismans et al. 2018). Meanwhile, 
(Fiadino et al. 2017) have shown that the situation has changed and that new CDR data quality has improved thanks 
to the high penetration of “always connected” terminals. Furthermore, Toole et al. (2015) have combined CDR data 
with route information from crowd sourced geospatial data, census and travel survey in order to impute missing 
attributes like transport mode or purpose and to more accurately estimate O-D matrix in three metropolitan cities. 
Results are promising even if some differences might be important.  

  Cellular network signalling data are another form of passive mobile phone traces collected from providers for 
technical management purposes. User location is recorded regularly in time, independent of whether the user is using 
his/her phone or not and until the phone is turned off. Therefore, mobile signalling data are more likely to be 
appropriate for O-D matrix estimation and show enormous potential for travel demand modelling since they capture 
all network-based events providing higher spatiotemporal granularity. Few existing works applied these data for traffic 
modelling. Fiadino et al. (2012) presented data-driven approach using signalling traffic of a 3G cellular network to 
extract vehicular trajectory patterns. Tettamanti et al. (2012) used 2G signalling data to estimate the route choice using 
traffic assignment macroscopic simulation and evaluated the method for one O-D pair in the test area. More recently, 
in a study conducted in the Paris region (Bonnel et al. 2015), authors used signalling data collected from 2G network 
in 2009 to produce O-D matrix of individual travels and compared them with the local household travel survey. They 
obtained similar estimations for O-D pairs with high traffic. Same form of data have been analysed in (Ni et al. 2018) 
to explore the impact of several factors such as population and transport accessibility on urban travel flow in Hangzhou 
(China). Huang et al (2018) proposed a data-driven real-time mobility model for the city of Shenzhen (China) that 
combines the advantages of 2G mobile phone signalling records (of one day) and urban transportation data. The model 
validation was performed by comparing the predicted mobility flows and the travel demands obtained from the same 
signalling data used to build the model, as no other data were available for evaluation. Hence, although they showed 
promising results, using the same data for modelling and validation may have an impact on the validation process. 
None of the previous works appears to have achieved reliable complete O-D matrices using only 2G signalling data. 

Overall, there is a wide variety of literature available about techniques and methods to generate origin-destination 
flows using mobile phone location data. However, there are still several limitations to be considered in future studies. 
First, the majority of researches have focused on CDR data which are characterized by a low temporal resolution since 
they rely only on mobile phone communications as mentioned earlier. The impact of this data feature is not very well 
discussed in these studies and the corresponding results would be highly biased especially for those people   who do 
not frequently use their mobile phones. Other researchers have investigated also the triangulated CDR data (e.g. in 
US cities) which consist of CDR records with estimated cell phone coordinates rather than cell tower location. It shall 
be noted that although these data have a higher spatial resolution, an additional complex pre-processing module is 
required in the collection infrastructure to estimate the mobile phone’s coordinates based on a set of measurements 
(e.g. number of surrounding cell towers, signal strength). Hence, CDR data-based approaches (for both forms) could 
not support rigorous applications such as long-term and real-time dynamic O-D estimation. Moreover, few studies 
have addressed the validation of the outcome and the accuracy of results and some of them have used the same data 
for the matrix estimation and validation. Indeed, conventional validation methods are still missing to fully verify the 
consistency of estimations and should take into account that the validation or ground truth datasets attributes do not 
often match with those of massive data (Bonnel et al. 2018; Chen et al. 2016). Such evaluation is critical as mobile 
phone data are emerging as a new, promising data source for policy makers to guide transportation development and 
especially if it is envisaged to use the inferred knowledge for transport network optimisation or for planning and 
decision making purposes. Furthermore, representativeness of the analysed data is of prime importance when dealing 
with population mobility modelling in a territory. Existing works employ different types and volumes of mobile phone 
data but they rarely discuss their proper attributes, the effect of data processing and the actual representativeness of 
the findings. For instance, by exploring CDRs, only a partial amount of individuals’ whereabouts is captured as the 
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location details perceived from CDRs are biased by the actual terminals’ activity patterns. Accordingly, it is required 
to delve into the hidden characteristics and issues of these network operation–based data. Additionally, in numerous 
published studies, authors have evaluated only travel flow structure and trip distribution instead of trip volumes 
(Graells-Garrido and Saez-Trumper 2016; Wismans et al. 2018) since trip extrapolation to absolute level is not 
straightforward. Therefore, adequate methods to expand inferred O-D matrices still need to be investigated to exhibit 
the whole population. 

 
The aim of this research is to advance the state-of-the-art on the potential of network-based signalling data for 

origin-destination flow matrix extraction. To that aim, our method explores a recent mobile network-based signalling 
dataset, collected in 2017 from both 2G and 3G cellular networks in the Lyon French region area (about 44,000 km2). 
By using such dataset, we will intend to reduce the gap on the various cited limitations of using CDR data and 2G or 
3G signalling data separately. Besides, we present a different convenient process to derive O-D matrix after pre-
processing the raw data. We introduce new techniques in each step by considering the specific positioning information 
included in our signalling dataset. Our method includes a novel indicator-based filtering which helps to extract 
consistent mobility information from signalling traffic in addition to an extensive validation step using the 
conventional O-D matrix generated from a local travel survey. An application of the proposed method in a French 
region shows the capability of the by-product signalling logs to reproduce reliable trip flows in a large-scale area 
without introducing additional high-cost travel data. The following section describes in details the used dataset and 
the study area. 
 

3. Data sets and study area description 

3.1. Cellular Signalling Data 

Mobile network data are continuously collected by telecom operators for billing and technical measurement 
purposes. Among mobile network technologies, we focus on the traditional GSM2 network, which provides 2G 
services, and the UMTS3 network for 3G ones. Both GSM and UMTS networks have different infrastructures, but 
they still work with the same coverage concept. Each antenna covers a cell, which belongs to a larger Location Area 
(LA)4. Typically, tens or even hundreds of cells share a single LA. In many studies on mobile networks, the theoretical 
coverage area of the cells is represented by means of Voronoi polygons. 

In this paper, we present analyses of mobile phone signalling data collected from the cellular network of Orange. 
The explored dataset consists of 2G and 3G signalling records of over two million anonymous mobile phone users in 
June 2017. For legal privacy restrictions, data from only one day are used and include a total of about 300 million 
records of device transactions. Concerning the spatial dimension, this dataset covers the whole extent of the Rhône-
Alpes region in France, thus allowing for estimating origin-destination flows within this territory. Fig. 1a presents the 
cellular network coverage within the Rhône-Alpes region and the aggregation in 3G Location Areas. There are about 
2,230 cell towers in the study area and each cell tower may handle several antennas. 

The employed data represent the signalling traffic transiting through the 2G and 3G networks. Records include all 
the events that are generated by mobile devices or by the network itself (Smoreda et al. 2013). 3G traffic captures 
more logs than 2G traffic as a result of the extra internet services it is able to monitor. Each record in the dataset 
includes: the anonymised user ID, the event type, the coordinates of the cell tower serving the mobile phone and the 
assigned timestamp. Different types of signalling events are then captured in the explored dataset including:  

i) communication events (i.e., calls and SMS);  
 

 

 
2 Global System for Mobile communications 
3 Universal Mobile Telecommunication System 
4 A “Location Area” is a set of cells (antennas) that are grouped together to optimise signalling. 
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ii) itinerancy events: handovers (i.e., cell changes during a communication) and Location Area Updates 
(LAU) (i.e., when crossing a LA or in idle mode); 

iii) attachment/detachment events ;  
iv) data/internet connections.  

The above-mentioned event types constitute a larger set than those traditionally observed with event-driven data 
(e.g. CDR), thus explaining the higher temporal granularity of the network-driven data leveraged in this study.  

3.2. Travel Survey Data 

The Rhône-Alpes region authorities have conducted a travel survey for the first time, at the level of the whole 
region, between 2012 and 2015 (called EDR 2015). 37,450 individuals, aged over 11 years, have been surveyed, and 
143,000 trips have been identified. Data have been collected by phone interviews using a representative sample of the 
region population. The Rhône-Alpes region has a total of 5.2 million population aged over 11 years and covers an 
area of 43 700 km2. The survey sample has been constructed using geographical stratified random sampling. The 
geographical stratification corresponds to a zoning system of 77 zones (denoted as EDR-sectors) for the whole region 
(Fig. 1b shows the 77 EDR-sectors (codes from 101 to 177) and, with different colours, their aggregation in 14 macro-
zones). Each EDR-sector involves at least 450 surveyed individuals. The largest metropolitan area in the territory is 
the city of Lyon, which concentrates nearly 25% of the inhabitants of the region. 

The survey collects socio-demographic characteristics of the individuals and of the household, as well as 
information about all the trips that were made the day before the survey (from 3:00am to 3:00am next day). The most 
important attributes characterizing a trip are: transport mode, start and end time of the trip at minute-level granularity, 
activity at the origin and activity at the destination, location of the origin and location of the destination. Data has 
been collected through three waves in 2012/2013; 2013/2014 and 2014/2015 from late autumn to early spring 
gathering only working day trips. Survey methodology is similar to other travel surveys conducted in urban areas in 
France (CERTU 2008). 

 

  

Fig. 1 (a) Cell tower distribution and cellular network coverage. (b) Aggregation of EDR sectors into 14-zone zoning system in the Rhône-Alpes 
region 

a b 
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4. Methodology  

In previous work (Bonnel et al. 2018), we introduced a first simple approach to generate an O-D matrix from 
signalling data. In that approach, only 3G data were considered in the analyses. All observed users in the dataset have 
been involved to study travel flows and hence one generic expansion factor has been applied to the entire region to 
expand extracted trips. In this paper, a more complete and flexible workflow is presented in order to transform mobile 
phone signalling data into comprehensible O-D flow matrices (Fig. 2), supported by extensive validation step. The 
proposed workflow consists of : 

i) identifying users’ home locations;  
ii) analysing the cell phone activity indicators to better characterize and understand the dataset;  
iii) filtering the detected residents based on their activity indicators to only retain users whose device traces 

appear pertinent to study their typical daily trips;  
iv) extracting and scaling up trips according to estimated expansion factors to aggregate them at the travel 

survey zoning level (EDR-sectors) and infer the O-D matrix. 
 

It is worth to remark that our approach solely leverages cellular signalling data for user filtering and trip extraction, 
while it depends on travel survey and census data in relation to zoning (for spatial aggregation) and trip scaling (for 
determining the set of expansion factors), respectively. 

Due to user’s privacy protection regulations, mobile phone data analyses are only allowed within a study period of 
maximum 24 hours. Hence, we have analysed the data of June 1st, 2017. It is a working day –Thursday-, which is 
traditionally considered (in transportation surveys) as representative of an average weekday. In order to be comparable 
to EDR, cellular network-based data are collected from 1st June 3:00 am to 2nd June 2017 3:00 am.  

 
 

 

Fig. 2 Workflow of Origin-Destination matrix construction from cellular network signalling data 

 

4.1. Home Location Detection 

Cellular network-based data do not contain any socio-demographic information that characterizes the users due to 
privacy concerns. However, a plethora of works have investigated basic mining solutions to detect users’ home 
location (Calabrese et al. 2011b; Ricciato et al. 2016) in combination with home activity identification (Frias-Martinez 
et al. 2010; Jiang et al. 2017). 
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In our study, the focus is on the detection of users’ home locations by considering only those that reside in the 
region of interest and expanding the obtained estimations to the whole region based on population census data. The 
adopted method to compute home location consists of the following steps: 

 
1. Filter user traces to select only those occurring at night time from 3:00am to 7:00am and from 10:00pm to 

3:00am; 
2. Filter user traces to keep only device events that could be generated in a stationary state such as (video) Call, 

SMS, Attachment, Detachment, Data, and periodical events (e.g. LAPU); 
3. For each user, extract all observed cell towers to which the user’s cell phone has been connected; 
4. For each user, derive the most frequent observed cell tower, assign it to the corresponding sector and consider 

it as the home location zone of the user. 
 

In order to detect home location, the study period has to be divided between day and night time windows. In the 
first step, day period records have been excluded. This time allocation choice takes into account the mobility behaviour 
of the involved users in the dataset. Fig. 3a and 3b show the temporal distribution, during the observed period, of LAU 
and LAPU events, which can be reasonably considered as representative of the mobile/stationary and active/idle 
behaviours, respectively. Both distributions show the typical life-cycle of individual movement with high observed 
mobility (frequent LAU) approximately between 7am and 10pm and less active, therefore more stationary, devices 
during night time (high LAPU). Also, the presented method differs from the existing home detection methods by the 
inclusion of an event filtering step (step 2) that considers the existence of more kinds of events than those that can be 
found in traditional CDR datasets, thus excluding mobility-related events such as handover and LAU. Hence, a new 
approach is introduced to adapt existing algorithms to signalling data. By applying this method, 1.27 million resident 
users are identified in our mobile phone dataset related to the Rhone-Alpes region. This corresponds to 62% of all 
mobile phone users that are observed in our dataset, and about 25% of the total region population.  
 

  

Fig. 3 Temporal distribution of signalling events (a) Location Area Update (LAU) and (b) Location Area Periodic Update (LAPU) 

4.2. Cell Phone Activity Indicators 

Given that mobile phone data describe the communication traffic monitored by cellular networks, it is worth to 
highlight that such data may not always reveal expected individual behaviours (Wang and Chen 2018). Particularly, 
the signalling data consist of a massive amount of record streams that are passively generated for operation and 
technical purposes by the telecom provider. For that reason, it is of utmost importance to leverage the hidden data 
attributes and understand the potential intrinsic anomalies (e.g. noise) to properly conduct a signalling data-based 
mobility research and avoid estimation errors. Accordingly, relevant mobile phone activity indicators are introduced 
in this study in order to measure the amount of logs per user, to examine the uniformity of traces distribution over the 
study period, and to identify the outlier devices, which should not be included in the O-D flow estimation process. In 
the following, we make the assumption that each mobile phone (terminal) corresponds to one user.  
 

a b 
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• Number of observations (NO):  
This indicator measures the number of records (logs) for each terminal over the observed day. Fig. 4a shows 
that records frequency on the dataset widely varies among observed devices. Specifically, in relation to our 
case study, around 99% of users have less than 450 events (which is considered as a high value comparing 
to CDR data) and about 10% have less than 7 records. It is possible to consider a variety of reasons why some 
users are rarely observed. For instance, users might be travelling on the specific observed day, thus either 
leaving the region at early morning or entering the region at late night. This is especially true in our case 
study of the Rhone-Alpes region as it is characterized by an important number of major transit station areas 
(e.g. regional transportation hubs such as airports, important train stations, major highways, etc…). Besides, 
terminals that are turned off or left inactive for a long time (e.g. during the observed day period) should 
naturally generate only a few records. A small amount of devices (1%) seems to be extremely active with a 
very high number of observations (more than 1,000), which is not imputable to a typical human behaviour, 
but very likely caused by device anomalies (e.g., buggy terminals continuously sending messages). 

 
• Average Inter-event Time (AIT): 

This measurement is largely used when dealing with individual temporal data. It gives an overview of the 
average time between users’ successive observations. Fig. 4b shows that AIT values range from 1 minute to 
1372 minutes (22 hours), and the average value is about 40 minutes (while in previously studied datasets the 
average time would typically be longer than four hours (González et al. 2008; Calabrese et al. 2011b)). The 
large majority of users (99%) are characterized by an AIT lower than 200 minutes. Obviously, those terminals 
(3%) with AIT smaller than 1 minute (few seconds) represent devices generating a lot of records. 

 
• Maximum Inter-event Time (MIT): 

Since with AIT the entire 24 hours are covered, this could have an impact on its values given that, during 
night-time, devices are typically less active than the rest of the day. Therefore, in order to select the users for 
our study, we propose to examine the maximum inter-event time during an interval of time (7:00am-
10:00pm) that excludes deep night and early morning. The MIT distribution is more skewed to the right (Fig. 
3c), showing that 70% of users present a MIT lower than 180 minutes. In particular, Fig. 4c shows a steep 
increase on 180 minutes that corresponds to the typical time period (3 hours) at which the mobile phone 
automatically generates Location Area Periodic Update (LAPU) during idle (inactive) mode. Consequently, 
the remaining observed users (30%) having MIT larger than 180 minutes are either not present in the study 
area during the whole [7:00am-10:00pm] time window or were disconnected from the network (e.g. mobile 
phone switched off) for a certain time longer than 3 hours.  

 
• Entropy (H): 

This metric consists in measuring the uniformity of the number of signalling events per user over the 24 
hours. It gives more precise information about the temporal distribution. 
Entropy is defined as: 𝐻(𝑋) = 	−∑ 𝑝(𝑥!) log(𝑝(𝑥!))"

!#$ . For our case, we consider X as the distribution of 
the records of a user over 24 hours and 𝑝(𝑥!) as the fraction of the records in the 1-hour time slot 𝑥!. Entropy 
values were normalised to get value range between 0 and 1. Fig. 4d shows that about 5% of the devices have 
all observed traces in only one hour time-slot, which is described by an entropy value of 0. While 99% of 
devices have an entropy value lower than 0.9 (more uniform behaviour). Those mobile phones with entropy 
close to 1 have extremely uniform generated records that could depict machine behaviour. 
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Fig. 4 Cumulative distribution function (CDF) per user of (a) number of observations (b) Average Inter-event Time (c) Maximum Inter-event 
Time [7am-10pm] and (d) Entropy 

 

4.3. User Filtering based on Cell Phone Activity Indicators 

As previously mentioned, processing mobile signalling data without proper understanding of their content can lead 
to important estimation errors. For instance, due to increasing pervasiveness and wide adoption of embedded 
connected devices, 2G and 3G telecom networks do not only capture human mobile phone communications, but also 
transactions from devices and sensors that use the same technology (e.g., Internet of Things) for different purposes 
(e.g., performing batch operations, continually collecting and uploading data to servers, etc.).  
Thus, before using the signalling data, it is fundamental to clean the data in order to properly select human-related 
tracks. To this end, we propose to leverage the cell phone activity indicators introduced in Section 4.2 to further filter 
the retrieved set of resident users (i.e., those for whom home location was detected (Section 4.1)) as not all of them 
are necessarily captured and/or have sufficient observations during the study period. Our filtering approach requires 
the definition of thresholds associated to the indicators’ values and consists in a pipeline of selection rules. Based on 
the explanations given in Section 4.2, a rationale for identifying each rule is presented below: 

 
• Maximum Inter-event Time (MIT) £ 180 minutes: the studied original dataset include all traces of 

observed mobile phone users in the Rhone-Alpes region over a 24-hour period. For multiple reasons 
such as travelling, there might be a fraction of users who are only observed in few hourly slots (e.g. one 
hour). Since the identification of residents is performed based on night period (Section 4.1), it is required 
to check whether these user residents are observed during the day period to be able to extract their typical 
mobility patterns within the region. This allows also to keep common daily behaviours. According to 
the network system if a mobile phone remains inactive during 3 hours, a periodic event LAPU is 

a b 

c d 
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generated (as explained in Section 4.2) to maintain its location updated within the cellular infrastructure. 
Theoretically speaking, it follows that each user should have at least 8 observations if his mobile phone 
is switched on during the 24 hours. We consider this network-based measure (i.e. 3 hours) to set up the 
maximum time allowed between consecutive observations in order to ensure the presence of the detected 
residents in the region during the day period;  
 

• Entropy (H) £ 0.9: as stated before, newly collected signalling data involves also Machine-to-Machine 
communications between objects equipped with SIM cards, which should not be considered in our 
analyses. In the dataset, 1% of devices generate a very high number of records and according to entropy 
distribution 1% of devices have an entropy higher than 0.9. Thus, devices with entropy higher than 0.9 
are filtered out as they are extremely active and have too much uniformity in their observations’ 
distribution during the 24-hour period. This fraction of devices are not considered to be handled by 
individuals and hence do not reflect regular human mobility patterns; 
 

• Number of observations (NO) ³ 4: this rule is set according to the stationary activity (i.e. stay location) 
and trip definitions. A necessary condition to detect a stationary activity location from signalling data is 
the time spent in that location (i.e. the duration of consecutive observations in the same zone). 
Consequently, to identify that an activity has undertaken, at least two observations are needed. Since two 
activity locations (origin and destination) are required to determine a trip, 4 observations at least must 
be recorded for each user. This condition is set to ensure the minimal requirements of trip detection. 
Section 4.4 explains in detail the activity and trip definitions used in this study. 

The combination of these indicator-based rules implies indirectly the exclusion of detected residents who are not 
captured in day period (e.g. they might be visitors) and whose travel patterns cannot be representative.  After the 
filtering process, a large sample of 985,483 users is still retained. This represents approximately 77.3% of the total 
users for whom a home location could be attributed, and around 50% of observed users in the original dataset. The 
resulting distributions and average values of the different cell phone activity indicators for the selected resident users 
are reported respectively in Fig. 5 and Table 1. 
It is worth to note here that we apply a “soft” filtering process that aims to guarantee the representativeness of the 
detected residents and to filter out devices that are not suitable to study the individual travel behaviour. Indeed, our 
main concern is to keep the sample as large as possible to ensure the relevance of results. We also remark that it is not 
appropriate to perform a very restrictive filtering to keep only (highly) active users, as done in (Alexander et al. 2015; 
Fiadino et al. 2017), since that could affect the representativeness of the users’ sample (e.g. overestimation of frequent 
users) and could lead to estimation biases.  
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Fig. 5 Cumulative distribution function (CDF) per user of (a) number of observation (b) Average Inter-event Time (c) Maximum Inter-event 
Time [7am-10pm] and (d) Entropy after filtering process 

Table 1 Average cell phone activity indicator values for filtered resident users 

Indicator Average value 
Maximum Inter-event Time [7am-10pm] (MIT) in min 143.12 
Entropy (H) 0.67 
Number of observations (NO) 85 
Average Inter-event Time (AIT) in min 54.38 

 

4.4. Trip Detection 

After identifying and filtering the resident users who are potentially appropriate to study the origin-destination 
matrices, trips can be finally extracted. Recently, some researchers (e.g. Chen et al. 2016) have raised the issue of the 
unclear trip definition in various mobile phone data-based studies. Thereby, we aim in this paper to use an appropriate 
definition of the trip which is applicable to signalling data and, at the same time, coherent with what has traditionally 
been used in travel surveys, towards a meaningful and relevant comparison of results. 
A trip has been defined by CERTU (the French agency for transport network and urban planning) for the purposes of 
the EDR as follows (CERTU 2008): a “trip is the movement of one person conducted for a certain purpose on a 
transport infrastructure open to the public, between an origin and a destination with a departure time and an arrival 
time using one or more means of transport”. Hence, to apply this definition for trip extraction, it is necessary to 
identify an origin and a destination and therefore a stationary activity in both locations. 
With the huge amounts of footprints and high spatiotemporal resolution, signalling data collected from mobile devices 
provides an unprecedented scale of observation. These proper characteristics allow quantifying user’s trips at a higher 

a b 

c d 
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level of geographical detail (e.g. cell area) for which travel surveys cannot provide accurate estimations. Since the 
scope of this paper is to generate an O-D matrix and to be able to validate it at the same level for which EDR data are 
available, the trip extraction method is presented in the following at the EDR-sector level. The detailed experiments 
and additional data processing steps needed to study signalling data at a more fine-grained spatial level will be matter 
of future work. 

To extract trips, stationary activities need to be identified first. Thus, consecutive observations of a user in EDR-
sector zone within a minimum stationary time threshold are considered. However, the size of the zones (average area 
of EDR-sector is 582 km²) and the fact that the user is travelling should be taken into account. In case of large areas, 
consecutive observations might be in the same zone even while the user is traveling: this grounds some lower bounds 
on the time threshold that can be applied. Therefore an activity assumption has been defined as follows: if an individual 
is present for at least a given time threshold in a sector, she/he performed a stationary activity there and the origin or 
the destination of a trip is located in that sector (the choice of the time threshold and its impact are discussed in the 
result section). 
Based on the previous hypotheses, the following pipeline is proposed to identify users’ trips: 
 

For each user i : 

- Extract all the observed location points and associate to each location an EDR sector with the help of a 
conversion table.  

Cell tower à Sector  

- Sort the sequence of extracted locations by timestamp , denoted by:  Si={si(1), si(2),...,si(n)},  
   where si(k) = (t(k), l(k)) for k = 1,…,n, and  t(k) and l(k) are the time and location of the kth observation. 
- Extract only locations for which the EDR sector is consecutively the same for a time duration t,  

   where t ³ thresholdmin (minimum stationary time): we obtain activity locations. 

Trips are then evaluated as paths between user‘s activity locations at sector level. Each trip (U, O, D) is characterized 
by user id U, origin location O and destination D. 
 

4.5. Expansion Factors Definition 

Albeit large, the analysed mobile phone user sample does not represent the full population. Therefore, extracted 
trips need to be properly scaled in order to be representative of the mobility of the full population. After performing 
home detection, an expansion factor can be applied for each filtered user as the ratio of the census population and the 
number of residents estimated by the cellular signalling data in his home sector. It follows that residents with the same 
home sector have the same scaling factor. Accordingly, all resident users living in a particular home sector are equally 
weighted. The expansion factors are therefore calculated on a sector-basis as in equation (1): for all mobile phone 
users whose home is detected in a given sector 𝑠!, the expansion factor corresponds to the ratio between the sector's 
population (from census data) and the number of resident users identified in that sector. Hence, each trip of a given 
resident user is scaled according to the same expansion factor of his home sector. 

 
𝐹%&'(𝑠!) = 	

()'*+,-!)"	)/	0!	()2%3	$$	4%,30)
67	)/	8)9%	+):,-!)"0	;%-%:-%;	!"	0!	

    where nb of home locations means number of resident users (1) 
 

Fig. 6a and 6b illustrate the probability distribution of the expansion factors through sectors before and after the 
resident user filtering step. The 1st, 2nd and 3rd quartiles of the expansion factors after filtering are 4.32, 5.39 and 6.71 
respectively.  
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Fig. 6 Probability distribution of sector expansion factors (a) before and (b) after filtering (c) the spatial distribution of expansion factors after 
user filtering 

The spatial distribution of home expansion factors (Fig. 6c) shows that the sectors in the metropolitan regions of 
the study area tend to be more heavily weighted. One of the potential reasons is that actually in these areas the number 
of subscribers using the 4G cellular network –not covered by our study- is expected to be higher than in the other 
zones. Thus, a lower fraction is observed in the available dataset (i.e. 2G and 3G data), which yields a larger expansion 
factor. 

 

5. Results and validation 

After identifying the users’ home, filtering the residents, extracting and expanding the trips, the origin-destination 
matrix can be constructed over all the 24-hour period. As stated in Section 4, the definition of a trip leads us to the 
assumption of the minimum activity stationary time. Considering the size of a sector, most trips between two zones 
are made by motorized transport mode, except for pairs of adjacent zones. According to EDR data, the average 
duration of a trip to cross a sector with motorized mode is estimated to be lower than one hour. Also, the fact that 
consecutive observations might be in the same sector even while the user is traveling grounds some lower bounds on 
the time threshold. Meanwhile, the sampling rate of events in mobile phone footprints should be considered. As stated 
in section 4.3, the measured average inter-event (AIT) time after user filtering was about 54 min for the 24-hour period 
and about 50% of the users has AIT more than 30min. Also, the AIT is calculated for only day period [7am-10pm] as 

a b 
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the AIT measured on the basis of 24 hours could be affected by the long night period inactivity of mobile phones. It 
was found that half of users have AIT of the day period [7am-10pm] less than 19min. Therefore, it was decided to 
apply different stationary time thresholds to test the impact of such parameter on the number of generated trips, as the 
produced O-D matrix elements are expected to change according to this threshold. Hence, thresholds are tested 
between 30 minutes and 60 minutes to show the sensitivity of the trip estimation at different levels. It does not appear 
recommendable to consider time thresholds which are lower than 30 minutes, as multiple false-positive stationary 
detections may occur, yielding false-positive trips. 

5.1. Trip frequency distribution 

In this section, we present the distribution of the number of trips on a typical weekday with respect to the users 
before expansion. The idea is to study how this distribution behaves without the additional assumption of scaling, as 
the latter could impact the trip distribution on individual and spatial level. 

The frequency of total trips per user for two stationary thresholds (30min and 60min) is shown in Fig. 7. The two 
distributions have a long tail, with first, second, and third quartiles of 1, 2 and 3 trips per user per day, respectively, 
demonstrating that the large majority of users have a reasonable small number of trips. As expected, a higher threshold 
of 60 minutes tends to give a lower number of trips (the threshold impact will be analysed in more details in Sections 
5.2 and 5.3).    
 

  

Fig. 7 Probability distribution of total trips per user, before expansion, with a stationary threshold of 30min and 60min 

5.2. Origin-Destination matrix at sector level 

The overall shape of the origin-destination matrix inferred from signalling data at EDR-sector level has been 
investigated and compared with the travel survey-based matrix.  

The data from the EDR contain all the trips reported by residents of the Rhône-Alpes region irrespectively of the 
purpose and the duration of the activity collected on working days. However, the assumption of the minimum 
stationary time in a sector has been considered in order to identify an origin or a destination in the case of mobile 
phone data. Therefore, we do extract information from the EDR data and apply time thresholds to avoid considering 
false activities and therefore false trips when dealing with the comparison. 

 To have an overview of the generated O-D flows based on the mobile phone sample, we considered the number 
of O-D pairs for which a number of trips is estimated in the cases of EDR and mobile phone signalling matrices, 
respectively (note that the total number of possible O-D pairs is 5,929). In Fig. 8, we observe that in the travel survey 
matrix, less than the half (about 40%) of O-D sector pairs are assigned to trips, while in the mobile phone-based 
matrix, we obtain a yield of 95%, for all thresholds that were considered. This confirms the sampling bias that is 
inevitably present in O-D matrices that are constructed based on travel surveys. Indeed, it is cost prohibitive to obtain, 
via surveying, sufficient observations to produce an O-D matrix at reasonable level of geographic detail. On the other 
hand, it is relatively cheap to get a large sample from cellular network-based data, which reduces the zero-cell problem 
for such geographical level, and which enables the investigation at a higher geographical level.  
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Moreover, signalling data can more easily cover large-scale geographic areas as the collection is not dedicated but 
rather an operational by-product. 

 

 

5.3. Origin-Destination flow matrices comparison  

In this study, the aim is to test the potential of network signalling data to infer reliable origin-destination matrices 
and to investigate similarities and differences of the results with the traditional survey estimations. Therefore analysis 
is performed to compare both the structure and flows of O-D matrices from the two data sources.  

While travel survey data can be representative of the population at sector level, combining origins and destinations 
typically leads to the fact that they are not representative anymore since the number of observed O-D pairs is too small 
, as explained in Section 5.2 and shown in Fig. 8. The confidence intervals are very wide for many O-D pairs. 
Therefore, the 77 EDR sectors are aggregated into 14 macro zones (Fig. 1b) in order to produce a relevant origin-
destination matrix, which gives a sufficient number of trips for most of the origin-destination pairs in the EDR matrix. 
This enables a comparison with the mobile phone data matrix, which has also been aggregated to correspond to the 
14-zone zoning system. The analyses are presented regarding the correlation between the two matrices after expansion 
and at macro-zone level by removing the intra-zone pairs since the focus here is on inter-zone flows. Table 2 
summarizes the total number of trips from signalling data and the EDR. 

Table 2 Total number of inter –zone trips from signalling data and the EDR (aggregation into 14 macro-zones) 

Stationary activity time threshold    60 minutes 50 minutes 40 minutes 30 minutes 
EDR (in thousand) 2,211 2,260 2,344 2,448 
Mobile phones (in thousand) 1,607 1,743 1,905 2,108 
 
The amounts of trips from the two sources are much closer when a stationary time around 30 and 40 minutes is 

considered. With such an interval, the majority of the sectors can be crossed by travellers: these thresholds identify 
activities which do not have short durations, but, on the other hand, they are still large enough to limit the number of 
false-positive trips due to excessively high travel time between sectors. Therefore, in the following analyses, we retain 
these values for activity threshold. 

 
In order to highlight the weight of each O-D pair in the cellular data and travel survey-based matrices, the structure 

of the both matrices is visually compared in Fig. 9. 
 

Fig. 8 Distribution of number of observed O-D sector pairs according to the stationary threshold 
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Fig. 9 Distribution of signalling data and EDR trips over the 14 macro-zones of Rhône-Alpes region for (a) 30min and (b) 40min 

 
According to the distribution of O-D trips from mobile phone and EDR data with a stationary time of 30 and 40 

minutes (Fig. 9a and 9b), the two flow matrices show very similar shapes even though the total numbers of trips are 
different. To see how different our results are with respect to the EDR, the Spearman’s rank correlation is calculated 
at macro-zone level, and the result is ρ= 0.95 (p <0.0001) for both thresholds. Hence, although both signalling data 
and survey-based matrices are developed using different techniques and technologies, they appear to resemble well. 

 
We further investigate our results by means of a regression analysis aimed at supporting the comparison of the 

amount of flows corresponding to each O-D pair. That helps us to identify a coefficient of proportionality between 
the numbers of trips in each cell of the two matrices after the scaling step.  
In addition to the total amount of trips, the coefficient of determination R2 with value 0.96 between macro-zone trips 
gives a high-level indication that the distributions of O-D flows are similar with the following regression equations: 

 
yij = 0.70 ´ xij + 2,193, R2 = 0.96 (Fig. 10a, related to a 30-minutes threshold), 

 
yij = 0.66 ´ xij + 1,964, R2 = 0.96 (Fig. 10c, related to a 40-minutes threshold) 

 
where yij is the number of trips from signalling data for the O-D pair ij and xij is the number of trips from EDR. Clearly, 
using large aggregation zones has a significant impact on correlation and results in a notable improvement in accuracy 
due to the reduction of sampling bias as a result of the aggregation. Results are much more satisfactory than the first 
studied approach (Bonnel et al. 2018) where we obtained R2=0.87 for the same thresholds at macro-zone level. 

As visually reported in the regression plot, two O-D pairs (see the two right-most points in Fig. 10a and 10c) have 
very high number of trips in comparison to all other O-D pairs. They correspond to flows between the Lyon 
conurbation (zone 1) and its suburban area (zone 2); the greater metropolitan area in the Rhone-Alpes region (see 
section 3.2). That is also shown in Fig. 9 for the O-D pairs 1-2 and 2-1. These two O-D pairs could have a strong 

a 

b 
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effect on the slope of the regression line. Therefore, a second regression analysis has been performed without 
considering the O-D flows between zones 1 and 2 in order to check the impact of such outlier on the regression results 
(Fig. 10b and 10d). 

 
The regression line of the new model fits well for most of the O-Ds and provides slightly better parameters with 

the following regression equations: 
 

yij = 0.85 ´ xij + 877, R2 = 0.95 (Fig. 10b, related to a 30-minutes threshold), 
 

yij = 0.80 ´ xij + 788, R2 = 0.95 (Fig. 10d, related to a 40-minutes threshold). 
 

The slope is closer to one (0.85 and 0.8), and the constant (877 and 788) is relatively small compared to the mean 
number of observed trips on the O-D pairs (11,500) and the constant of the first regression (2,193 and 1,964). 
According to R2 value, 95% of the variance is explained by the fitted model. This means that, the majority of the O-
D pair flows over the region match well irrespective of the travel demand volume.  

Overall, the obtained Spearman coefficients and regression models show very encouraging results by the high-
level of correlation between mobile phone and travel survey-based matrices in terms of both structure and volumes. 
This strong correlation is significant, given that users’ trips were expanded based only on their home sector. Thus, 
these outcomes illustrate that the applied methodology based on the proposed pipeline of home detection, user filtering 
and expansion process could serve as a proper tool to extract accurate travel patterns from cellular signalling data 
passively collected over a limited period of observation (e.g., 24-hour period in our case). Moreover, results prove 
that the model is robust and could be applied throughout different socio-demographic profile areas; a crucial aspect 
when dealing with large-scale demand modelling. 

 

  

  
Fig. 10 Regression plots between the two matrices from signalling and EDR data with (a,c) all inter-sector pairs and (b,d) with all inter-sector 
pairs except Lyon O-D pairs 

a b 

d c 
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In addition to the previous analyses, the O-D matrices were explored to estimate, for each O-D pair, the percentage 
disparity between mobile phone counts and those from EDR to investigate the distribution of flow differences within 
the region. As a result, some of these percentages were very high and represent under-estimation cases with regard to 
EDR data. In most cases, these correspond to low (or very low) flows (less than 200 trips for EDR), and they mainly 
concern non-adjacent zones with similar percentage differences for both directions (4-6, 6-4, 12-7, 7-12, 7-10, 10-7, 
3-9, 9-3). Also some remarkable flows of long distance trips between dense zones and suburban/rural zones seem to 
have more consistent estimate with signalling data. For instance, Fig. 11a and 11b show percentage differences of trip 
flows to and from  Lyon suburban area (macro-zone 2) , respectively, obtained from the two data sources. It is clear 
that inflows and outflows of zone 2 towards distant zones such as 7, 8, 9, and 10 are significantly underreported (blue 
flow lines) in the survey-based data as more than 100% of EDR flow volumes are estimated with cellular data. In 
these cases, mobile phone data generate higher flows, which illustrates that travel surveys may not reliably estimate 
trips due to the representativeness of surveyed people sample and the sampling coverage.  
However, the under-estimation cases with regard to signalling data mainly concern very high trip volumes (more than 
60 thousand trips for EDR) between high population density zones, such as between the Lyon conurbation and its 
suburban areas. We suggest that this is caused by the minimum stationary time assumption, as a threshold of more 
than 30 minutes seems to be extremely large for those small sectors of the metropolitan area (e.g., the average sector 
area of Lyon city is about 9km2). Thus, more investigation is required on this parameter which depends subsequently 
on the geographical stratification. 
 

  
Fig. 11 Percentage difference of trip volumes estimated from signalling data and EDR data of the (a) inflows and (b) outflows of Lyon suburban 
area (macro-zone 2) 

6. Discussions 

For decades, traditional approaches such as travel surveys have been the major source of information for 
transportation planners to estimate origin-destination flows necessary for calibration and simulation of transport 
models. These travel surveys, although providing rich demographic details about the respondent and his/her trips, 
suffer from several drawbacks such as estimation bias due to the limited sample size of involved individuals, the high 
deployment costs and, subsequently, the low frequency of the gathered information making them rapidly out-dated 
and inappropriate for dynamic travel behaviour studies. 

 
This study has demonstrated the feasibility of a large-scale Origin-Destination survey based on alternative passive 

real-world data. It depicts a first step towards building a complete and convenient framework to leverage rich cellular 
signalling data for individual mobility and travel flow modelling purposes.  

a b 
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In this direction, it appears however worth to report the major differences between conventional travel surveys and 
these emerging massive data as well as the key advantages of this study regarding previous work to fully clarify the 
potentials and challenges of the proposed approach. A first difference to highlight is related to the underlying 
population. The travel surveys normally consider only residents during the data collection process and select a small 
sample often representing much less than 1% of the whole population (Stopher and Greaves 2007) (e.g. in the EDR 
survey , the sample size is about 0.7%). Conversely, thanks to their higher penetration rate, mobile phone signalling 
data offer not only the possibility to involve significantly larger sample size but also to represent individuals from 
different groups (e.g. residents, visitors) who are present in the territory at a given time period. Hence, cellular data 
can help discover more relevant human travel patterns as well as the inter-individual variation considering persons 
with different profiles. In this work, we have focused on residents’ behaviour to extract a typical O-D matrix. In 
particular, we have shown that due to the sampling bias, the travel survey-based matrix clearly suffers from the zero-
cell problem as less than the half (about 40%) of O-D pairs are captured at sector level, while in the signalling-based 
matrix, we obtain a yield of 95%. Even after aggregation, signalling data depict significantly higher trip counts for 
those O-D pairs with very low flows in low population density areas (e.g. tens to few hundreds of trips) or those 
missing O-Ds from EDR. Additionally, EDR data appears to underreport flows for those long distance trips between 
dense zones and suburban/rural zones. In these cases, we expect that signalling data could produce more consistent 
estimations, since in large-scale areas, individual movements could be successfully observed and the threshold activity 
assumption seems to have very marginal effects on those long-distance flow estimations. Besides, datasets used in 
previous works, such as CDR data, do not capture the same population as in signalling data. As CDRs contain only 
event-driven logs (e.g. incoming and out coming call/SMS), the observed individual sample at a given period represent 
only a subset of the one observed via signalling traces. 

Most importantly, from a temporal perspective, unlike the cross-sectional and non-frequent travel survey data, the 
main advantages of signalling data are: i) the higher temporal granularity and ii) the longitudinal nature. Indeed, our 
methodology presents a proof of concept showing that we can obtain travel survey-level accuracy based on one day 
signalling data. This incites to go further with the temporal dimension and to apply our approach for extended time 
periods at the region-scale in order to capture how mobility behaviours evolve over time. Especially, the intra-regional 
variability of the O-D matrix pattern, such as the weekly or seasonally patterns, are highly relevant for strategic 
planning whereas very hard and expensive to investigate with traditional travel surveys. Moreover, it is worth to note 
that the achieved high correlation results of the proposed framework have been obtained with limited-period data (i.e. 
24 hours) against several continuous months of data in most existing studies. It follows that our methodology requires 
much less storage constraints and especially less computational resources (e.g. CPUs, memory, etc.), which represent 
key aspects for massive data analytics. Hence, that makes our approach more efficient and easier to put into practice 
for travel demand modelling applications including real-time dynamic O-D estimation taking into account the reduced 
processing complexity and the long-term applicability of the proposed method.  

To the best of our knowledge, the origin-destination matrices generated with signalling data have not been validated 
at the scale of a territory like Rhône-Alpes region (about 44,000km2), which contains different socio-demographic 
and economic territory profiles. Existing works usually focus on cities, small suburban areas or particular transport 
network roads. Thus, by providing a unique framework valid to a variety of territories (urban and non-urban) and 
suitable for large-scale mixed environments, our study presents a good trade-off between accuracy and data processing 
complexity.  

Regarding the limitations of our approach, a first challenge to consider, when using mobile phone data, is that they 
do not include demographic and socio-economic attributes, generally for privacy concerns issues. Although signalling 
data are characterised by high population coverage, they still lack for complete user information which are required 
in traditional modelling (e.g. for calibration). Instead, we have shown in this study that the scaling method based solely 
on census data was sufficient to reveal consistent estimations as the incorporated huge samples may compensate this 
limitation and the sampling bias in terms of socio-demographic profiles is expected to be marginal with signalling 
data as they do not strictly depend on the phone usage (as explained earlier). Nevertheless, integrating socio-
demographic information within this process would give the opportunity to control the representativeness of different 
demographics and the result accuracy. In addition, the validation of researches based on cellular data analysis still 
raises some questions. In our case study, we have used travel survey data as comparable reference to evaluate the 
empirical analyses. It is our view that, based on the currently available reference data, the methodology outcomes can 
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only be compared with those of EDR travel survey at an aggregated level. Yet, the two datasets represent different 
samples and have different attributes. Therefore, additional new methods and tools should be investigated for 
validation purposes and to better verify the inferred results. In order to give solid interpretations of signalling data-
based analyses, it would be relevant to create a set of ground truth data. This could be done by performing a specific 
controlled experiment (e.g. in some selected zones) aimed to check, with high accuracy and at a disaggregated level, 
which trips are reported and which ones are missed when using cellular network  signalling data. 
Furthermore, it shall be noted that the accuracy of the presented approach could be improved by involving longer 
periods of observations and also by including traces collected from other mobile phone technologies such as the 4G 
network. That allows to track more detailed movement information about individual trajectories and to support more 
reliable travel indicators. 

 

7. Conclusions 

In this paper, a data-driven modelling approach with novel i) mobile phone massive dataset ii) data pre-processing 
and iii) validation results is presented. We introduce a full comprehensive workflow of steps to generate origin-
destination (O-D) matrices from 2G and 3G cellular network signalling data, which is continuously collected by 
telecom providers. The proposed method was applied to a dataset of about 2 million cell phone users collected in the 
Rhône-Alpes region, France. By analysing passive signalling data over a 24-hour period, we show that it is feasible 
and compelling to use such data in order to estimate O-D matrices that are similar to the ones produced via the travel 
survey-based method, which provides accurate information about interviewees’ trips, but is costlier and time-
intensive. An extensive evaluation and validation process with the available travel survey (EDR) data for the Rhône-
Alpes region have been performed to deal with the potential of the inferred O-D matrix. Results demonstrate strong 
similarities with a R2 coefficient of 0.95 at an aggregated geographical level. This illustrates on one hand the efficiency 
of our method, as only one day of signalling data has been explored thus reducing considerably its execution time. It 
shall also be noted that the process can be automated, and then the full workflow could be processed within a few 
days (e.g., one day) which is significantly faster than conventional travel surveys, leveraging more dynamic 
applications. On the other hand, our findings show that cell network signalling data can capture unknown and more 
reasonable flow patterns specifically for low density areas where accurate travel data are either not available or not 
representative enough. For these reasons, signalling data can be used to support and complement conventional travel 
surveys as a valuable cost-effective data source for origin-destination estimation, thereby presenting an opportunity 
to improve significantly and revolutionize the travel demand and traffic flow modelling field. 

Signalling data are collected for network management purposes by the providers, thus they are not 
straightforwardly applicable for mobility and transportation purposes. Pre-processing and filtering of signalling data 
are essential to make them useful, and this aspect is not very well reported in the literature. In this paper, we propose 
a pipeline of cell-phone activity indicators-based filtering which ensures a qualitative and large dataset. Indeed, it 
could be considered as a preliminary guideline to properly process signalling data that could be adapted according to 
the specific case study. 

In addition to the suggested data filtering and processing steps, it will be very interesting to explore how the location 
accuracy of signalling data,  which depends on cell network coverage, can affect different components such as home 
location and trip detection. Another interesting aspect is to investigate on activity travel patterns such as travel time 
and how they align with travel survey data. Hence, signalling data temporal resolution needs to be investigated in 
detail in order to properly define the data potential in terms of spatiotemporal accuracy. As future work, we aim to 
generate dynamic O-D matrices in order to investigate the travel patterns evolution during different periods of the day 
based on the same signalling dataset used in this study. 

Potential improvements of the proposed workflow will consist in investigating in more detail the assumed 
hypothesis related to the stationary time threshold and the trip expansion method based on identified home locations 
from signalling data of a single operator. If an average stationary time could be estimated for each EDR-sector instead 
of considering one generic threshold, the estimation of movement flows can be further refined. This requires indeed 
reviewing the trip definition. Although the expansion method gives consistent results, if an accurate penetration rate 
of 2G and 3G users as well as market share distribution of the data provider within the region are available in the 
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future, this will allow not only to get more robust estimation of origin-destination matrices but also to infer information 
at a higher spatial resolution, which can be leveraged for transport planning applications. 

Furthermore, with the increasing usage of mobile phones, cell network-based traces are expected to produce even 
higher-frequency data that will cover a growing number of people, thus allowing for estimating movements at a finer-
grained temporal granularity than those provided by travel survey estimations. As a consequence, these emerging 
individual-based big data could be explored to advance the understanding of less addressed mobility patterns such as 
during special periods/events. Additionally, signalling data are expected to be available at a national level (e.g.; 
country level) which depicts a great opportunity to leverage much larger scale patterns. As a result, practical 
applications relying on recent massive data during long periods and covering unprecedented large areas become 
feasible. 

  
Exploring cellular network signalling data, together with big data analytics tools for travel demand modelling and 

transportation planning purposes brings new insights for practitioners, planners and policy-makers to fully benefit 
from the new promising massive datasets at a low cost, especially with the rising transport networks complexity. They 
enable to provide prompt response to mobility-related problems and help to keep transport and traffic models updated. 
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