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Abstract

In this paper, we present two deterministic leader election algorithms for programmable
matter on the face-centered cubic grid. The face-centered cubic grid is a 3-dimensional 12-
regular infinite grid that represents an optimal way to pack spheres (i.e., spherical particles
or modules in the context of the programmable matter) in the 3-dimensional space. While
the first leader election algorithm requires a strong hypothesis about the initial configu-
ration of the particles and no hypothesis on the system configurations that the particles
are forming, the second one requires fewer hypothesis about the initial configuration of the
particles but does not work for all possible particles’ arrangement. We also describe a way
to compute and assign `-local identifiers to the particles in this grid with a memory space
not dependent on the number of particles. A `-local identifier is a variable assigned to each
particle in such a way that particles at distance at most ` each have a different identifier.

1 Introduction

Programmable matter consists of modular robots (called modules or particles) able to fix to
adjacent modules and send (receive) messages to (from) other modules fixed to the entity.
Thus, the different modules form a geometric shape which is a network. Usually, a module can
fix to another module with a finite number of ports (see Figure 1 for an example of spherical
modules). Also, the modules know the ports that are in contact with other modules and have
a knowledge about the geographic position of their ports. Moreover, the ports are supposed
to be homogeneously distributed along the surface of each module. Such assumptions imply
that the way how the modules are connected can be modeled by a two or three dimensional
grid (depending if you consider the modules on a two dimensional plane or in the 3-dimensional
space). The geometric amoebot model [6, 7, 8, 9, 10, 11, 12, 13, 14] aims to specify the
properties of a network for programmable matter on a plane. In the geometric amoebot model,
the considered grid is the regular triangular grid. In the three dimensional context, another
grid should be considered. One natural choice of grid is the face-centered cubic grid.

The face-centered cubic (FCC) grid is a grid containing multiple copies of triangular and
square grids and can be an alternative to represent objects in the three dimensional space
using Z2. This grid has been studied in different scientific areas including crystallography and
visualization [3]. It can be noted that this grid is also called cannonball grid since it represents
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Figure 1: Five spherical particles forming a simple structure (circle: port of the particle).

one way to fill the three dimensional space with cannonballs (spheres) of the same size, while
optimizing the density (the vertex set being the cannonballs and the edge set being the physical
contacts between cannonballs). Analogously, in a 2-dimensional space, the regular triangular
grid also represents a way to fill, in an optimal way, the space with spheres (or disks) of the
same size (the graph is obtained from the 2-dimensional space using the same construction).

Since programmable matter is a scientific and technological challenging area, several projects
aim to build programmable matter prototypes. One of such projects [17, 19], financed by the
French National Agency for Research, aims to build quasi-spherical particles able to deform
them-selves in order to move. These particles have a kind of cuboctahedron’s form with twelve
ports. The way how the ports are distributed among the surface of a particle implies a face-
centered cubic structure for the network of particles. The final goal of this project is to sculpt
a shape-memory polymer sheet with programmable matter. In the continuity of the algorithm
phase of this project [15, 17], we propose algorithms for the self-configuration for these types
of prototypes.

In the context of programmable matter inducing a face-centered cubic grid, we make the
following hypothesis. We suppose that each particle is manufactured in the same way and
consequently that every particle has, initially, its ports labeled in the same way. However, since
the particles can be displaced, it is possible that some particles have been rotated since their
conception. Thus, we consider two different models depending on the fact that particles have
been rotated or not. In the homogeneous case, we consider that the particles have their ports
labeled exactly in the same way, i.e., ports number i of any two particles are oriented in the
same cardinal direction for every i. In the heterogeneous case, we consider that the particles
have their ports labeled differently but for every two particles p and p′ there exists a spatial
rotation on the particle p such that the two particles have their ports labeled exactly in the
same way.

Distributed algorithms aim to give a theoretical algorithmic framework in order to model the
execution of an algorithm running on a network of computational elements that can cooperate
in order to solve network problems. In distributed algorithm frameworks, it is often supposed
that the different elements of the network do not have a unique identity, i.e., the network is
anonymous. In anonymous networks, a natural question is how to perform a leader election, i.e.,
how to determine a singular element in an anonymous network. It is well known that for some
network structures, the ring for example, there is no deterministic leader election algorithm [1].
However, since in the field of programmable matter the ports of the particles are supposed to
be labeled following some hypothesis, the class of graphs for which there exists a deterministic
leader election in the context of programmable matter is larger than in the general context.
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Related work. Leader election is a classical and well studied problem in distributed systems
(see [1, Section 3]). In the context of programmable matter, the contributions are less numer-
ous, more recent and only concern (to our knowledge) 2-dimensional shapes. Derakhshandeh
et al. [9] proposed a randomized leader election algorithm in the geometric amoebot model.
Recently, Daymude et al. [6] have improved the algorithm from Derakhshandeh et al. [9] by
giving stronger theoretical guarantees. Also, very recently, Di Luna et al. [13] have introduced a
leader election algorithm called consumption algorithm that consists, like in [15], in successively
removing the candidacy of the particles on the border. This algorithm works for hole-free sys-
tem configurations. Moreover, Bazzi and Briones [4] have recently established a stationary and
deterministic leader election algorithm for the geometric amoebot model in which the system
forms a simply connected shape working if and only if the leader election is possible under
their assumptions. Concurrently with Bazzi and Briones’s paper, Emek et al. [14] have also
proposed a deterministic leader election algorithm for the amoebot model, using the ability
of the amoebots to move. Their paper also contains a useful comparison of existing leader
election algorithms for the amoebot model. Also, D’angelo et al. [5] have recently established
a deterministic leader election in the case the particles are not able to communicate but know
the particles present in their neighborhood and their states (they suppose that the particles can
only be in two different states).

Contributions and organization of the paper. In this paper we consider two main prob-
lems for programmable matter in the 3-dimensional space. The first one is leader election and
the second one is local identifiers assignment. For leader election, we propose two deterministic
algorithms (Algorithms 1 and 2). The first one requires an initial configuration of the particles
such that they all have their ports numbered in the same directions and no hypothesis on the
shape that the particles are forming. The second one requires no system configurations but
works only for some shapes. Also, the first algorithm requires a O(|S| log(|S|)) memory space
(|S| being the number of particles) whereas the second algorithm only needs a constant memory
space.

The first algorithm consists, for each particle, in computing a local description of the ge-
ographical structure formed by the particles and, then, by electing the particle which has a
maximum position, considering the lexicographical order.

The second algorithm consists in successively removing, from a set S of potential leaders,
some particles which are both on the geographical border of the subgraph of the FCC grid
induced by S and not an articulation of it (an articulation is a vertex whose removal split the
network in two connected components).

As concerning the problem of assigning `-local identifiers, i.e., identifiers such that particles
at distance at most ` have distinct identifiers, we propose an algorithm (Algorithm 4) that
assigns identifiers based on a leader election algorithm and a coloring of the `-th power of the
FCC grid. This algorithm requires a memory space of O(log(`3)) for each particle (hence not
dependent on the number of particles).

The rest of the paper is organized as follows. Notation and definitions related to graphs and
particles and the description of the algorithmic framework used are given in Section 2. Section
3 presents the two leader election algorithms along with the associated correctness proofs.
In Section 4, algorithms for assigning global and `-local identifiers are presented. Section 5
concludes the paper.
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Figure 2: Neighborhood in the face-centered cubic grid F

2 Notation, definitions and our programmable matter al-
gorithmic framework

2.1 FCC grid

The face-centered cubic grid, denoted by F , is the graph with vertex set {(i, j, k)| i ∈ Z, j ∈
Z, k ∈ Z2}∪{(i+0.5, j+0.5, k)| i ∈ Z, j ∈ Z, k ∈ Z1}, where Z2 is the set of the even integers
and Z1 = Z \ Z2 is the set of odd integers, and edge set {(i, j, k)(i′, j′, k′)| (|i − i′| = 1 ∧ j =
j′ ∧ k = k′) ∨ (i = i′ ∧ |j − j′| = 1 ∧ k = k′) ∨ (|i− i′| = 1/2 ∧ |j − j′| = 1/2 ∧ |k − k′| = 1)}. A
subgraph of this grid is illustrated in Figure 2, showing the neighborhood of a vertex.

Note that by considering a triplet (x, y, z) of V (F ) as the cardinal position of the vertex in
a 3-dimensional space, we obtain a representation of the whole grid in the 3-dimensional space
as in Figure 2.

The layer k of the grid F is the subset of vertices {(i, j, k)| i ∈ Z, j ∈ Z}, if k is even or the
subset of vertices {(i+ 0.5, j + 0.5, k)| i ∈ Z, j ∈ Z}, if k is odd. Note that the graph induced
by the vertices of layer k is isomorphic to a square grid, see Figure 2. We denote by Fk, the
subgraph induced by the vertices of layer k.

By hypothesis, any structure the different particles can form is a subgraph of F . In this
graph, the vertex set V (F ) represents all the possible positions that the particles can occupy and
the edge set E(F ) corresponds to the possible connections between particles (and consequently
possible communications). The following two paragraphs present the notation and definitions
we use for graphs.

We denote by dG(u, v), the usual distance between two vertices u and v in a graph G.
If we consider the distance in a subgraph H of G, the distance will be denoted by dH(u, v).
We denote by diam(G), the diameter of graph, i.e., the minimum integer k such that any two
vertices u ∈ V (G) and v ∈ V (G) satisfy dG(u, v) ≤ k. The set NG(u) = {v ∈ V (G)| uv ∈ E(G)}
is the set of neighbors of u. Finally, we denote by G[S], for S ⊆ V (G), the subgaph induced by
the vertices from S and by G−S the subgraph of G induced by the vertices from V (G) \S. In
this paper, we use the notation NS(u), for S a set of vertices of F , to denote the set NF [S](u).

Let p+ be the function such that p+(k) = k if k ≥ 0 and p+(k) = 0 otherwise. The distance
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between two vertices (i, j, k) and (i′, j′, k′) of F is given by the following formula [16]:

dF ((i, j, k), (i′, j′, k′)) = p+

(
|i− i′| − |k − k

′|
2

)
+ p+

(
|j − j′| − |k − k

′|
2

)
+ |k − k′|.

2.2 Algorithmic framework

The remaining part of this subsection is dedicated to the presentation of our programmable
matter algorithmic framework.

Particles and ports. Our main assumption is that each particle occupies a single vertex
of F and that each vertex is occupied by at most one particle. The set of particles will be
denoted by S and, for sake of simplicity, we will interchangeably consider a particle in S or the
corresponding vertex in F . Thus, it allows us to write NS(p) for the set of neighboring particles
of a particle p and F [S] for the subgraph induced by the set of particles S. In all the paper,
this subgraph F [S] is supposed to be connected. The ports of a particle are the endpoints
of communication. Each particle has 12 ports in F , each labeled by a different integer from
{0, . . . , 11} (since each vertex of F has twelve neighbors). The ports of a particle occupying a
vertex u are represented by the edges incident with u. An edge between two vertices represents
a possible communication between two particles p1 and p2 occupying these two vertices using
each one a possibly different port. Particle have the following properties:

• each particle is anonymous, i.e., it does not have an identifier;

• each particle knows the labels of the ports in contact with particles from its neighborhood;

• each particle knows, for each pair of particles q and q′ from its closed neighborhood, which
ports of q and q′ are in contact with a same particle.

We recall that the closed neighborhood of p is the neighborhood of p in which we have
added the particle p. We consider that the above three properties are reasonable. Specifically,
for the last property, we can assume that before the execution of the algorithm, for each pair
of particles q and q′ from its neighborhood, a particle p can send a message containing the port
labels of p in contact with q and q′ to q and q′ which will be re-transmitted to the neighbors of
q and q′ and see if a particle receives two messages. If that is the case, this particle is a common
neighbor of q and q′. However, although the removing of this last property as hypothesis does
not change the correctness of Algorithm 2, it can decrease the performance of Algorithm 2 in
term of required number of rounds to finish (see the definition at the end of the section). More
precisely, the required number of rounds can be t+ 1 times more than without this hypothesis,
t being a constant representing the required number of rounds to compute, for a particle p and
for each pair of particles q and q′ from its closed neighborhood, which ports of q and q′ are in
contact with a same particle.

In this paper, we consider two distinct hypothesis on the orientation of the particles that
we call the heterogeneous and homogeneous cases (the choice of hypothesis will influence the
way to do the leader election):

• In the homogeneous case, each two particles are labeled exactly in the same way, i.e., the
ports i of all particles are all in the same direction for all i ∈ {0, . . . , 11}.
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• In the heterogeneous case, for each two particles p and p′ there exists a rotation function
such that p and p′ are labeled exactly in the same way.

Note that the homogeneous case is a particular case of the heterogeneous case, i.e., any
algorithm which solves the leader election problem in the heterogeneous case also solves the
problem in the homogeneous case. We also remark that in the other works [4, 6, 9], the authors
make assumptions (in the 2-dimensional space) using the terms of common chirality of a globally
consistent circular orientation of the plane shared by all particles. In this paper, we consider
that the particles of a layer do not have a common chirality (the ports of the particles are
labeled following the clockwise order or the counter clockwise order). We do this assumption
in order to consider that a particle may have been turned upside down since its conception.

For a particle p, we denote by N±S (p) the set of particles in S which are in the neighborhood
of p but in a different layer of F than p. We use the notation N0

S(p) to denote the set of
particles in S which are in the neighborhood of p but in the same layer. Hence, NS(p) =
N0

S(p)∪N±S (p). For a particle p occupying the position (0, 0, 0), the neighbors of p form the set
{(1, 0, 0) , (−1, 0, 0) , (0, 1, 0) , (0,−1, 0), (0.5, 0.5, 1), (−0.5, 0.5, 1), (0.5,−0.5, 1), (−0.5,−0.5, 1),
(0.5, 0.5,−1), (−0.5, 0.5,−1), (0.5,−0.5,−1), (−0.5, −0.5,−1)}. Note that no matter which
rotation from NF (p) to NF (p) has been done on p, a port which has been initially labeled in
the direction of (1, 0, 0) , (−1, 0, 0) , (0, 1, 0) or (0,−1, 0) will be in the direction of either (1, 0, 0)
, (−1, 0, 0) , (0, 1, 0) or (0,−1, 0). This is a consequence of the fact that only one plane contains
exactly four neighbor of p (this plane is the one containing the particles of the layer 0). Due
to this fact, in our algorithmic framework, we suppose the following, that is only important in
the heterogeneous case:

• each particle p knows the labels of the ports by which it can communicate with particles in
N0

S(p); and we assume without loss of generality that these ports form the set {0, 1, 2, 3}
and that these port numbers are consecutive following the clockwise or counter-clockwise
order around the particle;

• each particle p knows the labels of the ports by which it can communicate with particles
in N±S (p); these ports form the sets {4, 5, 6, 7} and {8, 9, 10, 11}, with ports in {4, 5, 6, 7}
allowing to communicate with particles in one of the two layers (below or above) and ports
in {8, 9, 10, 11} allowing to communicate with particles in the other layer. In other words,
p knows if two particles in N±S (p) are in the same layer or not. Moreover, it is supposed
that ports 4, 5, 6, 7 are in the opposite direction with ports 10, 11, 8, 9, respectively and
that both ports 4, 5, 6, 7 and ports 10, 11, 8, 9 are consecutive following the clockwise or
counter-clockwise order around the particle.

Note that, as it is supposed that the particles are manufactured the same way (with initially
the same numbering of ports), then the above assumptions are natural.

Computation model. The proposed algorithms in our algorithmic framework are results of
successive local computations [2, 18]. In particular, the leader election algorithm in the hetero-
geneous case can be described by a graph relabeling system [2] which is a local computation
system.

We suppose the following:

• each particle contains the same program and begins in the same state;
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• the computation process is represented by successive local computations;

• no local computation occurs simultaneously on two particles at distance at most 2;

• during a local computation, a particle can perform a bounded number of computations
and can send messages to its neighbors;

• a round is a sequence of successive local computations for which each particle does at
least one local computation;

• an algorithm finishes in k rounds if after any k successive rounds the algorithm is finished.

We moreover suppose that the particles act asynchronously, hence with the possibility that some
particles act simultaneously. Note that the concept of rounds is used to bound the running time
of the algorithms. In general, it is possible to avoid that two particles at distance at most 2
do local computation simultaneously by using a probabilistic leader election algorithm on the
vertices at distance at most 2 of one of the two vertices, i.e., by computing a random value
on the vertices at distance at most 2 and doing the local computation following the increasing
order of the values.

3 Leader election in the face-centered cubic grid

We propose in this section two algorithms (one for the homogeneous case and one for the
heterogeneous case) for leader election, i.e., starting from all particles in state C (Candidate),
at the end of the execution of the algorithm, only one particle will be in state L (Leader) and
all the other will be in state N (Not leader).

3.1 Leader election in the homogeneous case

In a first part of this subsection, the hypothesis made about the positions and the ports of the
particles and the definitions that will be used in this subsection are given. In a second part, we
give details about the states and the behavior of our algorithm. The last part of this subsection
is dedicated to the proof of the correctness of our algorithm. Finally, results about the required
number of rounds and the space-complexity are given.

3.1.1 Hypothesis about positions and definitions

In the homogeneous case, we assume that all particles have their ports labeled in the same way.
Hence, we can assume without loss of generality that any particle p lying on vertex (i, j, k)
is connected through its ports 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 to the twelve neighbors (i− 1, j, k),
(i, j+1, k), (i+1, j, k), (i, j−1, k), (i−0.5, j+0.5, k−1), (i+0.5, j+0.5, k−1), (i+0.5, j−0.5, k−1),
(i− 0.5, j − 0.5, k − 1), (i− 0.5, j + 0.5, k + 1), (i+ 0.5, j + 0.5, k + 1), (i+ 0.5, j − 0.5, k + 1),
(i− 0.5, j − 0.5, k+ 1), respectively. In other words, p is able to know the coordinates of any of
its neighbors through any port: the coordinates of the particle to which a particle p lying on
vertex (i, j, k) is connected through port a is given by (I(i, a), J(j, a),K(k, a)), where I, J and
K are defined by:
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I(i, a) =


i− 1 if a = 0
i− 0.5 if a = 4, 7, 8 or 11
i if a = 1 or 3
i+ 0.5 if a = 5, 6, 9 or 10
i+ 1 if a = 2

J(j, a) =


j − 1 if a = 3
j − 0.5 if a = 6, 7, 10 or 11
j if a = 0 or 2
j + 0.5 if a = 4, 5, 8 or 9
j + 1 if a = 1

K(k, a) =

 k − 1 if a = 4, 5, 6 or 7
k if a = 0, 1, 2 or 3
k + 1 if a = 8, 9, 10 or 11

For two lists of triplets L and J , we define the condition c(L, J), by c(L, J) = 1 if and only
if for every triplet (x, y, z) ∈ L and every triplet (x′, y′, z′) such that (x, y, z)(x′, y′, z′) ∈ F ,
(x′, y′, z′) ∈ L ∪ J . This condition will be used to check if the list O(p), for a particle p,
contains the relative position of every other particle of the system or not. More details about
this condition are given in the next two parts. Finally, let max(L), for L a list of triplets, be
the largest triplet of L in the lexicographical order. We recall that (i, j, k) > (i′, j′, k′), in the
lexicographical order if i > i′ or i = i′ and j > j′ or i = i′, j = j′ and k > k′. In algorithm 1,
by >, we mean that a list is larger than another list using the lexicographical order.

3.1.2 Details about Algorithm 1

In algorithm 1, we suppose that O(p) (O refers to occupied), U(p) (U refers to unoccupied) and
O′(p) are three lists of triplets being computed by each particle p. These three lists are pairwise
different, for each pair of particles. However, the lists O(p), U(p) and O′(p) are constructed in
such a way that, for every particle p, they represent the three same (global) lists translated by
a different vector.

Basically, Algorithm 1 consists in two main phases. In the first phase, each particle p
computes a list O(p) of the positions of all the particles relatively to itself and in the second
phase, the particle p which has the largest max(O(p)) is elected. For example, if there are
only three particles p1, p2 and p3, then for a possible configuration of the particles, the three
computed lists can be O(p1) = {(1, 0, 0), (2, 0, 0)}, O(p2) = {(−1, 0, 0), (1, 0, 0)} and O(p3) =
{(−2, 0, 0), (−1, 0, 0)}. The maximums of the three lists are then (2, 0, 0), (1, 0, 0) and (−1, 0, 0),
respectively. The elected particle will be p1 (since (2, 0, 0) is larger than both (1, 0, 0) and
(−1, 0, 0)).

The intermediate states defined in Algorithm 2 are: Lis (List construction) that corresponds
to the state where the listsO(p) and U(p), for a particle p, are constructed; the state I (Initializa-
tion) when an initial message (containing max(O(p))) is transmitted to all the other particles
and the state Mcomp (Maximum comparison) in which a particle p checks if max(O(p)) is
larger than every other max. Before the execution of the algorithm both O(p), U(p) and O′(p)
are supposed to be empty and each particle is in state C (Candidate).

In the first phase (Cases 1 and 2), each particle p computes two lists O(p) and U(p) con-
taining the local positions of the particles of S and U(p) containing the local positions of the
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Algorithm 1 The leader election in the homogeneous case, for particle p.

Case 1: State C
For each port a of p:
if a is in contact with a particle then

send the message (I(0, a), J(0, a),K(0, a), 0) through port a.
else

send the message (I(0, a), J(0, a),K(0, a), 1) through all ports b in contact with particles.
end if
Set the state to Lis
Case 2: State Lis
if message (i, j, k, `) then is received through port a

if (i, j, k) /∈ O(p) and ` = 0 then
add (i, j, k) to O(p)
for each port a of p, send the message (I(i, a), J(j, a),K(k, a), 0) through port a

end if
if (i, j, k) /∈ U(p) and ` = 1 then

add (i, j, k) to U(p)
for each port a of p, send the message (I(i, a), J(j, a),K(k, a), 1) through port a

end if
end if
if c(O(p), U(p)) = 1 then

set the state to I
end if
Case 3: State I
For each port a, send the message (max(O(p)), I(0, a), J(0, a),K(0, a)) through port a
Set the state to Mcomp
Case 4: State Mcomp
Set i = 0
if message (m, (i, j, k)) is received through port a and (i, j, k) /∈ O′(p) then

Add (i, j, k) to O′(p)
if (m > max(O(p)) then

set the state to N and send the message (m, I(i, a), J(j, a),K(k, a)) through port a
end if

else
if |O(p)| = |O′(p)| then

set the state to L
end if

end if
Case 5: States N and L
Perform no further actions
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empty vertices adjacent to a particle of S. If a particle p is in state C, Lis or I, we suppose that
the messages received from particles in state Mcomp are buffered until p is in state Mcomp
and at this moment p deals with these buffered messages. In the list O(p), the position of p is
supposed to be (0, 0, 0) and, for example, a possible existing neighbor connected through the
port 0 of p will corresponds to the triplet (1, 0, 0) in the list O(p). This phase stops for a particle
when the condition c(O(p), U(p)) is equal to 1, i.e., when we are assured that any particle at
a local position in O(p) (relatively to p) has all its neighbors (occupied or not) either in O(p)
or U(p). This condition allows, for a particle p, to be aware if the list O(p) contains the local
position of every other particle of the system or not and, thus, if it still has to wait for a not
yet received message or not.

In the second phase (Cases 3, 4 and 5), each particle p computes the max of O(p) and
compares it with the value calculated by the other particles. In order to know when a particle
has compared its max with every other max computed by the other particles, each particle p
constructs a list O′(p) containing the position of the particles for which it has already did the
inequality test. We affect the state L (Leader) to the particle p for which max(O(p)) is larger
than every other max. In order to check this, we add a value to O′(p) each time max(O(p)) is
larger than an other max. When O′(p) is as large as O(p), we affect the state L to the particle
p.

3.1.3 Correctness, required number of rounds and space-complexity

Proposition 3.1. At the end of the execution of Algorithm 1, exactly one particle is in state
L.

Proof. Since the lexicographical order is a total order, there exists at least a particle p such
that max(O(p)) is larger or equal than the value max(O(p′)), for any other particle p′. Thus,
there is at least one particle in state L at the end of the execution of Algorithm 1. It remains
to prove that there are no more than one particle in state L.

Suppose, by contradiction, that two distinct particles p1 and p2 are in state L. It implies
that max(O(p1)) = max(O(p2)). Let (i1, j1, k1) be the vertex occupied by p1 and let (i2, j2, k2)
be the vertex occupied by p2. By construction there exists a particle p′1 at vertex (i′1, j

′
1, k
′
1)

such that max(O(p1)) = (i′1− i1, j′1−j1, k′1−k1) and a particle p′2 at vertex (i′2, j
′
2, k
′
2) such that

max(O(p1)) = (i′2−i2, j′2−j2, k′2−k2). Since p1 and p2 are distinct, either (i1, j1, k1) < (i2, j2, k2)
or (i1, j1, k1) > (i2, j2, k2), contradicting the fact that both (i′1 − i2, j′1 − j2, k′1 − k2) < (i′1 −
i1, j

′
1 − j1, k′1 − k1) and (i′2 − i1, j′2 − j1, k′2 − k1) < (i′2 − i2, j′2 − j2, k′2 − k2).
Note that a particle p such that max(O(p)) is larger than the value max(O(p′)), for any

other particle p′, is aware of this property (and, consequently, become leader) by adding the
position of each particle p′ such that max(O(p′)) < max(O(p)) in a list O′(p) and by checking
if O′(p) contains the positions of all the other particles, i.e., by checking if |O(p)| = |O′(p)|.

Note that, by definition of round and distance, and by the fact that each particle receiving
a message retransmits it on all its ports, we are sure that after d rounds a particle p should
have received all messages initially emitted by particles at distance d of p.

In Algorithm 1, it can be noted that each particle p has to check if c(O(p), U(p)) = 1
and has to compute the value max(O(p)). Thus, in order that Algorithm 1 works properly, it
requires that each particle is able to compute O(|S|2) operations (as the size of O(p) and U(p)
is O(|S|) ). The required number of operations to compute can be decreased by implementing
an incremental algorithm to check if c(O(p), U(p)) = 1. Moreover, about the required memory
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space and required number of rounds in order to guarantee the end of the execution, we state
the following.

Proposition 3.2. Whatever the structure of F [S], if F [S] is connected, then a particle will
be in state L after (at most) 2diam(F [S]) + 2 rounds since the beginning of the execution of
Algorithm 1. Moreover, for each particle, the memory space used by Algorithm 1 is bounded by
O(|S| log(|S|)) and the size of the messages is bounded by O(log(|S|)).

Proof. We begin by proving that after 2diam(F [S])+2 rounds a particle is in state L. We recall
that at the beginning of the execution, it is supposed that all particles are in state C. First,
after one round no more particle is in state C. Second, after diam(O(p)) rounds no particle
remains in state Lis. Third, after one round no more particle is in state Comp. Finally, after
diam(O(p)) we are sure that |O(p)| = |O′(p)| (if its own state has not been set to N), for any
particle p. Consequently, after 2diam(O(p)) + 2 rounds a particle is in state L.

Note that for any particle p and any (x, y, z) ∈ O(p)∪U(p), both |x|, |y| and |z| are bounded
by |S| + 1. This implies that the size of the messages is bounded by O(log(|S|)). Since, both
O(p), U(p) and O(p′) have at most 12|S| elements, the memory space used by Algorithm 1 is
bounded by O(|S| log(|S|)).

3.2 Leader election in the heterogeneous case

In the heterogeneous case, we cannot assume that all particles have their ports labeled in the
same directions, hence Algorithm 1 will not always produce a leader. In this subsection, our
motivation is to give a leader election algorithm (Algorithm 2) that works in the heteroge-
neous case. However, since our hypothesis are weaker that in the homogeneous case, finding an
algorithm working for every configuration of particles (if it exists) is more challenging. Con-
sequently, we give an algorithm where the correctness is proven for specific configurations of
particles. In contrast with the leader election algorithm that works in the homogeneous case,
the presented algorithm is easier to implement and only needs a constant size memory per
particle.

The key idea of the Algorithm 2 is, starting from the set S of particles in state C (Candidate),
to let the particles at the ’periphery’ of S to change their state to N (Not elected) until there
remains only one particle that will change its state to L (Leader) and will become the leader.
For this, we extend the definition of contractability that was used in our proposed algorithm
concerning the 2-dimensional case [15].

This subsection is organized in four parts. A first part concerns the definition of a con-
tractible particle, the main concept used in Algorithm 2. This part also contains a proposition
about the relation between isometric graphs and contractible particles. The second part con-
cerns the electable sets, i.e., some configurations of particles for which we are sure that Algo-
rithm 2 behaves correctly. A proof about the correctness of Algorithm 2 is given for electable
sets. A third part is dedicated to explain in some details how Algorithm 2 works. The last
part is about the required number of rounds and space-complexity of Algorithm 2. Also, in this
part, we prove the existence of a polynomial time algorithm to check if a set is electable.

3.2.1 Contractibility and isometricity

For a particle p occupying a vertex (i, j, k) of F , the four vertices (i+1, j+1, k), (i−1, j+1, k),
(i + 1, j − 1, k) and (i − 1, j − 1, k) are the corners of p (vertices at distance 2 from p on the
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Figure 3: A S-contractible particle p (at the left) and two non S-contractible particles p′ and
p′′ (at the middle and right), both of them being in the layer 0 of F (square: p; triangle: p′ or
p′′; circle: other particle of S).

same layer) and the set of corners is denoted by C(p). The extended neighborhood MS(p) of a
particle p is defined by MS(p) = N0

S(p) ∪ C(p) ∩ S.

Definition 3.1. For a set S ⊆ V (F ) of particles, a particle p in S is said to be S-contractible
if it satisfies the following three properties:

I) F [MS(p)] is connected;

II) |N0
S(p)| ≤ 2;

III) F [N±S (p)] is connected and either N0
S(p) = ∅ or N±S (p) = ∅ or there exits a particle

p′ ∈ N0
S(p) such that N±S (p) ∩N±S (p′) 6= ∅.

Remark that F [N±S (p)] is connected, for a particle p, (this property appears in condition
III) of the above definition) implies that p does not have neighbors in both the layer below and
above.

The left part of Figure 3 illustrates an S-contractible particle of F satisfying conditions
I), II) and III). In contrast with the left part, the middle part of Figure 3 illustrates a non
S-contractible particle of F satisfying condition II), but which does not satisfy conditions I)
and III) (since F [N±S (p′)] is not connected) and the right part of Figure 3 illustrates a non S-
contractible particle of F satisfying conditions I) and II), but which does not satisfy condition
III) (since there does not exist a particle q ∈ N0

S(p′′) such that N±S (p′′) ∩ N±S (q) 6= ∅ ). In
this figure (and also in Figures 4, 5 and 6), it is supposed that the neighbors of a vertex q in
F from Layer 0 are represented, in Layer 1, by the four vertices at the closest distance from
the geographical position that q would have in this layer and the same goes for Layer −1. For
example, the four neighbors of the particle p in Layer −1 of F (in the left part of Figure 3) are
the two vertices occupied by particles of S and the two unoccupied vertices which are in the
central square of this figure.

A particle p can detect if it is S-contractible or not by checking if it satisfies conditions I), II)
and III) as follows. Particle p can test if it satisfies conditions I) and II) by checking if there are
at most two different occupied ports from N0

S(p) and by checking, in the case there are two, that
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Figure 4: A set S of particles, which is electable (on the left) and a set S′, which is not electable
(on the right; circle: particle in S; square: particle in S′).

their labels are successive and that they have a common neighbor (except p). By hypothesis, a
particle can verify if its two neighbors have a common neighbor without computation. Moreover,
p can test if F [N±S (p)] is connected (see condition III)), by first checking if there are particles
of N±S (p) in at most one layer, and in the case |N±S (p)| = 2, it checks if the two particles
from this set are adjacent by checking if their labels are successive. Also, by hypothesis, p can
easily check if N±S (p) = ∅. Finally, p can check if there exits a particle p′ ∈ N0

S(p) such that
N±S (p) ∩N±S (p′) 6= ∅ by checking for each particle q of N±S (p), if there is (at least) a common
neighbor between p and q in N0

S(p).
For a given integer i, a subgraph G of Fi is said to be isometric if for any two vertices u, v

of G we have dG(u, v) = dFi
(u, v). Note that, by definition, an isometric subgraph of Fi is

connected.

Proposition 3.3. In any isometric subgraph G of Fi such that |V (G)| ≥ 2, there exist at least
two vertices u+ and u− satisfying conditions I) and II) of Definition 3.1, for S = V (G).

Proof. If there are two vertices of degree 1, they easily satisfy conditions I) and II) of Definition
3.1. Thus, we can suppose that there is at most one vertex of degree 1. Let u+ (u−, respectively)
be the vertex at position (xm, y+, i) (at position (xm, y−, i), respectively) such that (xm, y+, i)
maximizes y ( (xm, y−, i) minimizes y, respectively) in the set X = {(x, y, i) ∈ S| ∀(x′, y′, i) ∈
S, x ≥ x′}, i.e., the set of particles having a maximum (in the layer i) first coordinate. In the
case |X| = 1, we take u+ and u− the same way but in the set Y = {(x, y, i) ∈ S| ∀(x′, y′, i) ∈
S, x ≤ x′}, i.e., the set of particles having a minimum (in the layer i) first coordinate. Remark
that |X| = |Y | = 1 contradicts the fact that there is at most one vertex of degree 1. Hence
at least one of X and Y is not a singleton. Moreover, since G is isometric, both X and Y
induce paths in G and thus u+ and u− have degree 2. This implies that both u+ and u− satisfy
condition II).

For condition I), assume first that |X| ≥ 2. Suppose, by contradiction, that one vertex
among u+ and u− does not satisfy condition I) and suppose, without loss of generality, that
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this vertex is u+. It implies that (xm − 1, y+ − 1, i) /∈ S and (xm − 1, y+, i) ∈ S. Since u−
has degree 2, then (xm − 1, y−, i) ∈ S. But this contradicts the fact that G is isometric since
then we should have a path in S between (xm − 1, y+, i) and (xm − 1, y−, i) going through
(xm − 1, y+ − 1, i). Second, if |X| = 1, by symmetry, the same contradiction is obtained for Y .
Consequently, both u+ and u− satisfy condition I).

3.2.2 Electable sets and correctness for electable sets

Definition 3.2. For a set S ⊆ V (F ), the graph GS is the graph with vertex set the subsets
of vertices A such that A induces a connected component (maximal connected subgraph) of
F [S∩V (Fi)], for an integer i. There is an edge between two vertices A,B of GS if there exists
an edge in F between a vertex of A and a vertex of B.

We say that S is electable if the following three conditions are satisfied by S:

a) GS is a tree;

b) for every A ∈ V (GS), F [A] is isometric;

c) for every two adjacent sets A and B in GS , the sets {u ∈ B| ∃v ∈ A, v ∈ N(u)} and
{u ∈ A| ∃v ∈ B, v ∈ N(u)} both induce connected subraphs in F .

Figure 4 illustrates a set S of particles which is electable and a set S′ which is not electable.
Note that condition a) is not satisfied by S′ (GS′ is not a tree), but S′ satisfies both conditions
b) and c).

Algorithm 2 The leader election algorithm in the heterogeneous case for a particle p, with SC

being the set of particles in state C.

Case 1: State C
if p is SC-contractible then

if p has no neighbor in SC then
set the state to L

else
set the state to N

end if
else

stay in state C
end if
Case 2: States L or N
Perform no further actions

Proposition 3.4. If S is electable then there is always an S-contractible particle in S.

Proof. Let A be a leaf of GS and let B the neighbor of A in GS . Since A is a leaf, either no
particle in A is adjacent with particles from the layer below A or no particle in A is adjacent with
particles from the layer above A. We suppose, without loss of generality, that every particles
which is adjacent to a particle of A is either in A or in the layer above A. If A contains only
one vertex, then the only particle of A is S-contractible, since conditions I), II) and III) are
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satisfied for this particle. Otherwise, by Proposition 3.3, there exist two particles p+ and p−
satisfying both conditions I) and II).

If |N±S (p+)| ≥ 3, then F [N±S (p+)] is connected and, since |A| ≥ 2, there exists a neighbor
p′ of p+ in A such that N±S (p+)∩N±S (p′) 6= ∅ (note that for any neighbor q of p+ in A and for
any set of three particles of N±S (p+) ∩ B, there exists a particle q′ in this set adjacent to q).
Consequently, condition III) is satisfied by p.

If |N±S (p+)| = 2, then, F [N±S (p+)] is connected since, otherwise, F [B] would not be iso-
metric. The same fact holds for p−: if |N±S (p−)| = 2, then F [N±S (p−)] is connected.

Moreover, if |N±S (p+)| = 0 or |N±S (p−)| = 0, then, p+ or p− satisfies, by definition, condition
III).

Finally, we are left with the case that both 0 < |N±S (p+)| ≤ 2 and 0 < |N±S (p−)| ≤ 2
and both F [N±S (p+)] and F [N±S (p−)] are connected. Let q+ be a vertex in N±S (p+) and
let q− be a vertex in N±S (p−). Since F [B] is isometric, there should be an isometric path
between q− and q+ in B. Also, since S satisfies Property c), this path should be in the set
{u ∈ B| ∃v ∈ A, v ∈ N(u)}. Consequently, either there exists a neighbor p′+ ∈ A of p+ such that
N±S (p+)∩N±S (p′+) = ∅ or there exist a neighbor p′− ∈ A of p− such that N±S (p−)∩N±S (p′−) = ∅,
hence condition III) is satisfied.

Proposition 3.5. If S is electable, then S\{p} is also electable, for p an S-contractible particle.

Proof. Suppose that p is in a vertex A of GS . First, if there exits a vertex p′ ∈ N0
S(p) such that

N±S (p) ∩ N±S (p′) 6= ∅, then S \ {p} satisfies Property a) (GS\{p} remains a tree). Otherwise,

we have either N0
s (p) = ∅ or N0

s (p) 6= ∅ and N±S (p) = ∅. In both cases, it can be noted that
GS\{p} remains a tree and, consequently, that S \ {p} satisfies Property a).

Second, since F [MS(p)] is connected and |N0
S(p)| ≤ 2, every path passing by p will be as

short as previously in A\{p}. Consequently, A remains isometric and S \{p} satisfies Property
b).

Third, if there exits a vertex p′ ∈ N0
S(p) such that N±S (p)∩N±S (p′) 6= ∅, then S \{p} satisfies

Property c) since both F [N±S (p)] and F [MS(p)] are connected. Now suppose that there does
not exit a vertex p′ ∈ N0

S(p) such that N±S (p)∩N±S (p′) 6= ∅. If N0
s (p) = ∅, then since F [N±S (p)]

is connected, S \ {p} satisfies Property c). Finally, If N±s (p) = ∅, then, since F [MS(p)] is
connected, S \ {p} satisfies Property c)

We finish this part by giving the following result about correctness of our algorithm.

Theorem 3.6. Let S be the set of vertices occupied by particles. If S is electable, then at the
end of the execution of Algorithm 2, there is exactly one particle in state L.

Proof. By Proposition 3.4, there is always one S-contractible particle p in S. By Proposition
3.5, S \ {p} is also electable. Consequently, by combining theses two results we obtain that the
theorem holds.

3.2.3 Details about Algorithm 2

We begin with giving some intuition on how the algorithm works. Each particle p verifies
properties in its neighborhood which guarantee that p is not an articulation (the removing
of it does not split the network into two connected components) and p is no more candidate
to be leader if the properties are satisfied. In this algorithm, only the candidate particles are
considered. This implies that a particle p can become no longer an articulation in the case some
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Figure 5: An example of the execution of Algorithm 2 with successive rounds (r being the
number of finished rounds) going from left to right on an electable set S (circle and square:
particle in S; square: SC-contractible particle of S; triangle: particle which is no more in SC ;
pentagon: elected leader).

particles in its neighborhood are no longer candidate. The leader is the last remaining particle.
For example, if there are only three particles which are at positions (−1, 0, 0), (0, 0, 0) and
(1, 0, 0), then there is only one articulation which the particle at position (0, 0, 0). Algorithm 2
will then first remove the candidacy of one of the two particles at positions (−1, 0, 0) and (1, 0, 0)
and after will remove one of the two remaining particles and will elect the last one (which will
be candidate to be leader).

More precisely, let S be the set of particles in state C. Algorithm 2 consists in removing
from S some particles of the layer i which are both on the geographical border of G[S∩Fi] and
not articulations of F [S] (an articulation being a vertex which split, when it is removed, in two
connected components the vertices of F [S]). In this algorithm we never remove a particle of
the layer i which is an articulation of G[S∩Fi] and we never remove a particle having neighbors
in both the layer i − 1 and i + 1 (such particles could be articulations). The algorithm will
finish when there is only one particle in state C. The fact that S is electable implies that there
is always a contractible particle , i.e., a particle that we can remove (see Proposition 3.4).

Figure 5 illustrates an example of the execution of Algorithm 2 on the first five rounds on
a set S. In this figure, S is electable since it can be easily noticed that GS is a path of three
vertices and that every A ∈ V (GS) is such that F [A] is isometric. Also, it can be remarked
that another example of the execution of Algorithm 2 could lead to the exclusion from SC of
the particle in the top-left corner of the layer −1 or 1.

3.2.4 Required number of rounds, space-complexity and algorithm to check if a
set is electable

In Algorithm 2, it can be noted that each particle p has only to compute if it is S-contractible
or not and, as explained before Proposition 3.3, such verifications can be done by only using
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the labels of the ports of p in contact with particles of the neighborhood and, for each pair of
particles q and q′ in the closed neighborhood of p, the labels of the ports of q and q′ in contact
with a common neighbor. Thus, in order that Algorithm 2 works properly, it only requires that
each particle is able to compute O(1) operations. Moreover, about the required memory space
and required number of rounds for execution, we state the following.

Proposition 3.7. Whatever the structure of F [S], if F [S] is connected and S is electable,
then one particle is in state L after |S| rounds since the beginning of the execution of Algorithm
2. Moreover, the memory space used by Algorithm 2 is constant.

Proof. First, it can be noted, that by Propositions 3.4 and 3.5, there is always (at least) one
S-contractible particle p in S. Thus, after each round there is one less particle in state C.
Consequently, after |S| rounds, the last particle that was in state C will change its state to L.
Second, only the information to check if a particle is S-contractible are required in the memory.
These information consists in the labels of the ports of the particle in contact with particles
of the neighborhood and, for each pair of particles q and q′ in the closed neighborhood, in
the labels of the ports of q and q′ in contact with a common neighbor. Since the number of
neighbors is bounded, the required memory space is also bounded.

The vertices of S on a layer k are said to form a circle if there exist a vertex u ∈ S and
a positive integer d such that v ∈ S if and only if u is at distance at most d from v in F .
Analogously, the vertices on a layer k of S form a rectangle if there exist four integers i0, i1, j0
and j1 such that (i, j, k) ∈ S if and only if i0 ≤ i ≤ i1 and j0 ≤ j ≤ j1.

It can be easily noted that in the case the vertices of S on a layer k forms either a circle or a
rectangle, the graph induced by the vertices of S on a layer k is isometric (Property b)). If the
vertices of S form either a circle or a rectangle on every layer of F , then GS is a path (Property
a)) and since for every two adjacent sets A and B from GS , the sets {u ∈ B| ∃v ∈ A, v ∈ N(u)}
and {u ∈ A| ∃v ∈ B, v ∈ N(u)} both induce connected sets, it implies that S is electable in
this case. Thus, we obtain the following.

Corollary 3.8. Let S be the set of vertices of F occupied by particles. If the vertices of S form
either a circle or a rectangle on every layer of F , then Algorithm 2 allows to elect a unique
leader.

Finally, we end this section by giving a non distributed algorithm in order to check if a set
of particles S is electable or not.

Proposition 3.9. Given a set of particles S, there exists an O(|S|3) algorithm to verify if the
set S is electable or not.

Proof. Let L the set of the particles from S. This algorithm can be decomposed into three
steps, each step consisting in verifying one of the properties among properties a), b) and c).
The first step consists in separating the set L into subsets depending on the value of k, i.e., the
value of the third element of the triplets in L. Afterward, we split these subsets into connected
components and we denote by M this set of sets. We can easily build GS from M (since the
adjacency between two triplets is easy to compute). Finally, by checking if GS is a tree, we can
determine if S satisfy Property a) or not.

The second step consists in computing the distance in F [A] between every two triplets in a
same set A ∈M and compare it with the distance given by the formula of Section 2.1. If there
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exists two triplets for which there is a difference between the two distances, then S does not
satisfy Property b), otherwise, it satisfies Property b).

The last step consists, for every pair of sets (A,A′) from M such that there are two adjacent
triplets u ∈ A and v ∈ A′, in computing two sets B and B′ and in checking if B and B′ are
connected. The set B being the set of triplets of A adjacent to a triplet of A′ and the set B′

being the set of triplets in A′ adjacent to a triplet of A. If at least one constructed set is not
connected, then S does not satisfy Property c), otherwise, it satisfies Property c).

Since computing the distance between every two triplets can be obtained by an O(|S|3)
algorithm and since the other problems (number of connected component and cheking if a
graph is a tree) can be solved by faster algorithms, there exists an O(|S|3) algorithm to check
if the set S is electable or not.

4 Local and global identifiers

In this section, we propose distributed and deterministic algorithms to create global and `-local
identifiers of the particles. An `-local identifier is a variable affected to each particle of the
network, which is different for every two particles that are at distance at most `. Since particles
have limited capacities, the idea of using `-local identifier is to allow to spare less memory than
for global ones.

The results presented in this part are in the continuity of the work about `-local identifiers
in the context of programmable matter [15] (this work was using colorings of the `-th power
of the triangular grid). Here, we will use the same method as well as a recent result on the
combinatorial problem of coloring the `-th power of the face-centered cubic grid [16].

4.1 Local identifier

The main idea for computing local identifiers is to use a coloring of the `-th power of the
face centered cubic grid as identifiers. A k-coloring of a graph G is a map f from V (G) to
{0, 1, . . . , k− 1} which satisfies f(u) 6= f(v) for every uv ∈ E(G). The chromatic number χ(G)
of G, is the smallest integer k such that there exists a k-coloring of G. The d-th power Gd of a
graph G is the graph obtained from G by adding an edge between every two vertices satisfying
dG(u, v) ≤ d.

An upper bound on the chromatic number of the d-th power of F was given in [16]:

Theorem 4.1 ([16]). For any d ≥ 1, there exists a coloring of the d-th power of F using
(d+ 1)d(d+ 1)2/2e colors.

Moreover, the proof of the above theorem is constructive and the corresponding coloring is
periodic, i.e., a pattern of fixed size is repeated in the whole grid to assign a color (integer) to
each vertex of F . This pattern can be described as follows.

Let mod(`, k) be the integer i such that i ≡ ` (mod k) and 0 ≤ i ≤ k − 1. Let also

m` =

⌈
(`+ 1)2

2

⌉
,

and

f`(i, j, k) = mod(k, `+ 1)m` +

{
mod(i+ `j,m`) if k is even;
mod(i− 0.5 + `(j − 0.5),m`) if k is odd.
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We denote by N`(i, j, k) the triplet (i′, j′, k′), where i′ = mod(i,m`), j
′ = mod(j,m`) and

k′ = mod(k, `+ 1).
Then, giving the color f`(N`(i, j, k)) to each vertex at position (i, j, k), allows to obtain a

coloring of the `-th power of the face-centered cubic grid.
Our global algorithm for computing the local identifiers works by, first, running a leader

election algorithm to have a unique particle in state L and the other particles in state N
(Algorithm 1 or 2). Second, when there is a leader, a spanning tree can be easily computed
with a distributed algorithm (see [15]). Third, in our proposed port renumbering algorithm
(Algorithm 3), we change the way the port are numbered in order that every particle has its
ports numbered by the same number going in the same cardinal direction in F (it is needed
in the heterogeneous case). Finally (see Algorithm 4), we give the identifier (0, 0, 0) to the
particle in state L and, for a particle p receiving the message (i, j, k) as first message, the
inductive step consists in using messages to give the identifier f`(i, j, k) to p and to send message
N`(I(i, a), J(j, a),K(k, a)) to each neighbor of p connected through port a of p. At the end,
the variable id of each particle contains its local identifier.

Algorithm 3 The port renumbering algorithm for a particle p.

Case 1: State L
for each port a from child(p) send a message ma, containing a, through port a
Case 2: State N
if p receives the message mb, containing b, through port a then

change the port number a to r(b) and changes the port numbers of the other ports
following the same clockwise order

update both parent(p) and child(p)
for each port a from child(p) send a message ma, containing a, through port a

end if

Note that Algorithm 3 and Algorithm 4 both send messages along the previously computed
spanning tree. For this, it is assumed that for each particle p, we have two sets of ports parent(p)
and child(p) which contains the port numbers of the particles in communication with its parent
and with its children, respectively, in the spanning tree (parent(p) is a singleton).

The steps we use to compute the local identifiers are very similar with the ones of our
previous work [15] on the 2-dimensional grid.

Algorithm 4 The `-local identifier algorithm for a particle p.

Case 1: State L
Set i = 0, j = 0, k = 0 and id = 0
For every port a from child(p), send the message (I(i, a), J(j, a),K(k, a)) to the neighbor of
p connected through port a
Case 2: State N
if p receives the message (i′, j′, k′) through port a then

Set i = i′, j = j′, k = k′ and set id = f`(i, j, k)
For every port a from child(p), send the message N`(I(i, a), J(j, a),K(k, a)) to the neigh-

bor of p connected through port a
end if

The idea behind Algorithm 3 is to reproduce, in each particle, the way the ports are num-
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Figure 6: Edges of a spanning tree of particles, a possible numbering of the ports of the particles
before (Figure 6.a) and after the execution of Algorithm 3 (Figure 6.b) and the 2-identifier
obtained by executing Algorithm 4 (Figure 6.c) in F (square: leader; thick line: edge of the
spanning tree; small number: port number of a particle; big number: 4-identifier of a particle).

bered in the leader particle. To achieve this goal, each particle p receives a message from its
parent containing the port number of the parent connected to p and p renumbers its own ports
in order that its port numbers are coherent with the sent number. Figure 6.a and Figure 6.b
illustrate the port numbers of particles before and after the execution of Algorithm 3. The
function r used in Algorithm 3 is defined as follows: r(i) = (i + 2) (mod 4) if i ∈ {0, 1, 2, 3},
r(4) = 10, r(5) = 11, r(6) = 8, r(7) = 9, r(8) = 6, r(9) = 7, r(10) = 4 and r(11) = 5.

Figure 6.c illustrates the obtained 2-local identifiers after the execution of Algorithm 4. In
Figure 6.a , 6.b and 6.c , the edges of the spanning tree which are between vertices of different
layers have been omitted in order to increase readability.

Proposition 4.2. At the end of the execution of Algorithm 4, any two particles at distance at
most ` have two different `-local-identifiers.

Proof. We recall that the distance between two particles p and p′ at position (i, j, k) and
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(i′, j′, k′) of F is given by the following formula [16]:

dF ((i, j, k), (i′, j′, k′)) = p+

(
|i− i′| − |k − k

′|
2

)
+ p+

(
|j − j′| − |k − k

′|
2

)
+ |k − k′|.

Suppose that |k − k′| > `, by the given formula, we obtain that d(p, p′) > `. Thus, it implies
that any two particles p and p′ at distance at most ` are such that |k − k′| ≤ `.

First, suppose that k 6= k′. For any two layers k and k′, f`(i, j, k) has its value between
mod(k, `+1)m` and mod(k, `+1)m` +m`−1 and f`(i

′, j′, k′) has its value between mod(k′, `+
1)m` and mod(k′, `+ 1)m` +m` − 1. It implies that f`(i, j, k) 6= f`(i

′, j′, k′).
Second, suppose that k = k′ and suppose, without loss of generality, that k is even. Also, in

order to simplify the proof, we can consider that i = 0, j = 0, k = 0 (we can suppose this, since
we can translate the structure in order that p is positioned where the origin (0, 0, 0) is). Since p
and p′ are at distance at most `, we have |i′|+ |j′| ≤ `. Consequently, 0 < f`(i

′, j′, k′) ≤ `2 < m`

or −m` < −`2 ≤ f`(i
′, j′, k′) < 0 (`2 < m` being true when ` is a positive integer). Since

f`(0, 0, 0) = 0, we are sure that f`(i
′, j′, k′) 6= 0.

Moreover, about the behavior of Algorithms 3 or 4, we state the following.

Proposition 4.3. Whatever the structure of F [S], if F [S] is connected, then after diam(F [S])
rounds, both Algorithms 3 or 4 have finished their tasks. Moreover, the memory space used by
Algorithm 3 is constant and the memory space used by Algorithm 4 is at most O(log(`3)).

Proof. First, we state that both Algorithm 3 and Algorithm 4 finish after diam(F [S]) rounds.
That is the case since the height of a spanning tree of F [S] is bounded by diam(F [S]) and
the two algorithms consist in transmitting message through the spanning tree. Note that this
implies that the number of sent messages in each algorithm is bounded by |S|. Second, since
the maximum degree is bounded in F , the required memory space in order to store the ports
of the children and the parent is constant. However, a O(log(`3)) memory space is required to
store the `-local-identifier.

4.2 Global identifiers

Computing global identifier in a distributed way is easy as soon as a leader has been elected.
One can use the relative position of the particle to the leader as an identifier. To this end, we
re-use the functions I, J and K defined in Section 3.1. As for local identifiers, our algorithm
in order to compute the global identifiers works in four steps as follows: First, a leader election
algorithm is used to have a unique particle in state L and the others in state N (Algorithm
1 or 2). Second, computing a spanning tree with a distributed algorithm. Third, changing
the way the port are numbered in order that every particle has its ports numbered by the
same number going in the same cardinal direction in F , using Algorithm 3 (it is needed in
the heterogeneous case). Fourth, give the identifier (0, 0, 0) to the particle in state L and,
for a particle p having identifier (i, j, k), the inductive step consists in using messages to send
the identifier (I(i, a), J(j, a),K(k, a)) to the neighbor of p connected through port a of p (see
Algorithm 5).

Similarly than in algorithms 3 and 4, in Algorithm 5, we suppose that, for each particle p,
the set of ports child(p) contains the port numbers of the particles in communication with its
children in the spanning tree.
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Algorithm 5 The global identifier (i, j, k) algorithm for a particle p.

Case 1: State L
Set i = 0, j = 0 and k = 0
For every port a from child(p), send the message (I(i, a), J(j, a),K(k, a)) to the neighbor of
p connected through port a
Case 2: State N
if message (i′, j′, k′) is received through port a then

Set i = i′, j = j′ and k = k′

For every port a from child(p), send the message (I(i, a), J(j, a),K(k, a)) to the neighbor
of p connected through port a
end if

Proposition 4.4. Whatever the structure of F [S], if F [S] is connected, then after diam(F [S])
rounds, Algorithm 5 has finished to compute the global identifier. Moreover, the memory space
used by Algorithm 5 is at most O(log(|S|)).

Proof. First, Algorithm 5 finish after diam(F [S]) rounds since the height of a spanning tree of
F [S] is bounded by diam(F [S]) and the algorithm consists in transmitting message through
the spanning tree. Note that this implies that the number of sent messages is bounded by
|S|. Second, since the global identifier (i, j, k) is such that |i| ≤ |S|, |j| ≤ |S| and |k| ≤ |S|, a
O(log(|S|)) memory space is sufficient to store the global identifier.

Moreover, about the behavior of Algorithm 5, we state the following.

Proposition 4.5. After the execution of Algorithm 5, each particle has an unique global iden-
tifier.

Proof. Suppose that two particle p and p′ have the same global identifier. Since the global
identifier corresponds to the position of a particle relatively to the leader particle, and since
there is an unique leader particle, it implies that p and p′ have the same position.

5 Concluding remarks

In this paper, we have presented two new leader election algorithms based on local compu-
tation for programmable matter in the 3-dimensional space. The first one considers that all
particles have their ports distributed in the same directions (homogeneous case) but works with
arbitrary shape while the second one does not require any initial port direction configuration
(heterogeneous case) but works only for some shapes including the three dimensional sphere and
cube. We have also presented an algorithm, which affects identifiers to the particles such that
every two particles at distance at most ` have different identifiers. Finally, we have presented
an algorithm affecting a unique global identifier to each particle. Algorithms 2, 3 and 4 only
require a O(1)-space memory (for fixed `), hence are well suited for programmable matter in
which particles have constant memory capacities.

As future work, it would be interesting to extend our leader election algorithm in order it
works also for sets of particles forming more general shapes than the ones considered in the
heterogeneous case. Another interesting question could be to use our results for clustering the
set of particles in several sets, which induce subgraphs of small diameter.
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