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Abstract: A molecularly imprinted silica (MIS) coupled to a microwave sensor was used to detect three
fungicides (iprodione, procymidone and pyrimethanil) present in most French wines. Chemometric
methods were applied to interpret the microwave spectra and to correlate microwave signals
and fungicide concentrations in a model wine medium, and in white and red Burgundy wines.
The developed microwave sensor coupled to an MIS and to its control, a nonimprinted silica (NIS),
was successfully applied to detect the three fungicides present in trace levels (ng L™!) in a model wine.
The MIS sensor discriminated the fungicide concentrations better than the NIS sensor. Partial Least
Squares models were suitable for determining iprodione in white and red wines. A preliminary
method validation was applied to iprodione in the white and red wines. It showed a limit of detection
(LOD) lower than 30 ng L~! and a recovery percentage between 90 and 110% when the iprodione
concentration was higher than the LOD. The determined concentrations were below the authorized
level by far.

Keywords: molecularly imprinted polymers; microwave sensor; chemometric methods; pesticides;
wine; rapid detection

1. Introduction

Grapevines are vulnerable to a wide range of fungal pathogens, including Botrytis bunch rot
(Botrytis cinerea), powdery mildew (Uncinula necator), downy mildew (Plasmopara viticola), black rot
(Gugnardia bidwelli) and several others [1]. To fight them, fungicides are widely used in agriculture.
Vineyards represent 3.7% of the French agricultural surface but are responsible for about 20% of
pesticide consumption, 80% of which are fungicides [2]. In France, grapes are one of the most treated
fruits and therefore the most contaminated ones [3]. At the European level, a 2008 wide survey
(PAN-EURORPE) of 34 conventional wines from eight countries showed that 100% of conventional
analyzed wines contained between four and 10 different fungicide residues [4].
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To protect the consumer, the European Union has set Maximum Residue Limits (MRLs) for
pesticides in grapes at 0.02 mg/kg [5]. The grape MRL is used as a reference for wine since there is no
MRL for the latter.

The control of pesticide residues in wine, and more generally in beverages (including water),
requires sensitive, selective and inexpensive analytical methods. Currently, the detection methods
used are mainly based on mass spectrometry detection and are relatively expensive [6-8]. In addition,
these methods require a sample preparation step, which makes them time consuming. In parallel,
ELISA methods using an immunosorbent are used [9,10]. Other than their high cost, ELISA methods
cannot be used in extreme pH or temperature environments.

A cheap, fast and real-time analysis method that will improve food safety and quality is of great
necessity. It will also have great economic benefits in comparison with the currently used methods,
resulting in time saving and small equipment investment. In comparison with the chromatographic
methods, the in-situ method will allow for solvents to be saved and wastes to be reduced. For this
reason, in this study we used a microwave sensor coupled to molecularly imprinted polymers. The goal
was to monitor, at room temperature and in real-time, some fungicides in model, white and red
Burgundy wines.

Molecularly imprinted polymers (MIPs) are one of the most specific and selective materials.
For the analysis of small metabolites, MIPs mimic the high specificity of an antibody toward its antigen,
of an enzyme toward its substrate or of a receptor toward its hormone. MIPs are known to provide
a high selectivity of interaction, similar to biological materials [11]. They were used in this study to
interact with high specificity with the target fungicides. In addition, they showed an increased stability
under extreme conditions of pH and temperature [12]. Finally, the big advantage of MIPs is their low
cost of production [13].

Several transducing systems were already used in combination with molecularly imprinted
polymers, such as: electro-chemiluminescence-[14], fluorescence-[15], surface plasmon resonance-[16],
surface acoustic wave (SAW)-[17], electrochemical-[18], piezoelectric-[19], capacitance-[20] and
thermometric-based [21] sensors. For small molecules such as antibiotics, both SAW and electrochemical
sensors based on MIPs were successfully developed [22,23]. The use of a microwave signal in a broad
range of frequencies (10 MHz and 20 GHz) provides fruitful information and data on the interaction
between the target and the sensitive material in comparison with other transduction methods.
This allows for a better recognition and quantification of the target.

Microwave spectra are complex due to dielectric relaxation in liquids and solids. Chemometric
tools such as multivariate analysis can therefore be required for an improved interpretation of the
spectra. In general, a microwave spectrum is not perfect, and as such it must be preprocessed prior
to modelling. The main objective of data processing is to transform the spectrum into the best fit
condition and to ensure that an optimal performance can be achieved in later stages [24-26].

In a previous study [27], the feasibility of a microwave sensor based on a molecular sol-gel
polymer was demonstrated for the detection of iprodione fungicide in a hydroalcoholic medium. In this
study, for an optimal interpretation of the results, multivariate data analyses were used to reduce the
dimensionality of the experimental datasets. A microwave sensor coupled to molecularly imprinted
silica (MIS) was used for the simultaneous detection of iprodione, procymidone and pyrimethanil
fungicides in a model wine. Moreover, the detection of iprodione was demonstrated in white and
red wines.

2. Materials and Methods

2.1. Chemicals and Samples

Iprodione (97%, CAS number 36734-19-7), (3-Aminopropyl)trimethoxysilane (APTMS 97%,
CAS number 13822-56-5), tetraethoxysilane (TEOS > 99%, CAS number 78-10-4), ammonium hydroxide
(NH4OH 28-30%, CAS Number 1336-21-6), poly vinyl chloride (PVC, CAS Number 9002-86-2),
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tetrahydrofuran (THF 99.9%, CAS Number 109-99-9), absolute ethanol (>99.8%, CAS Number 64-17-5)
and acetonitrile for High Performance Liquid Chromatography (HPLC) (299.9%, CAS Number 75-05-8)
were purchased from Sigma Aldrich, France. Procymidone (>98%, CAS number 32809-16-8) and
pyrimethanil (>98%, CAS number 53112-28-0) were bought from Chemos GmbH, Regenstauf, Germany.
51813 photosensitive resin and MF319 developer were purchased from Chimie Tech Service. The water
used in all experiments was deionized and obtained from an Elga Ionic system PURELAB Option.
The model wine consisted of water/ethanol (90/10, v/v) solutions. A Chardonnay white wine from
Burgundy (Macon-Village 2011) and red wine from Burgundy (Domaine Sorin de France 2014) were
bought from a grocery store.

2.2. Preparation of the Molecularly Imprinted Sol-Gel Polymer

The molecularly imprinted polymer was synthesized using sol-gel polymerization respecting
a molar ratio of (iprodione, APTMS, TEOS, NH4OH, ethanol, water) of (1, 4, 50, 100, 1.15, 0.44).
This ratio was chosen based on the bibliography [28,29] and on some preliminary tests performed in the
laboratory. After the solubilization of iprodione in an ethanol/water mixture at 40 °C under magnetic
stirring, APTMS and then TEOS were respectively added. After addition of NH4OH, the solution
became cloudy. The mixture was left under stirring for 20 h at 40 °C. The polymer was recovered
as a powder after centrifugation. In order to eliminate iprodione, the polymer was washed several
times with ethanol until no trace of iprodione was detected by reverse phase high performance liquid
chromatography in the washing solution. After washing, the polymer was dried at 60 °C overnight
and stored in a desiccator at ambient temperature until use.

A nonimprinted silica (NIS) serving as the control polymer was prepared under the same
conditions as the molecularly imprinted silica (MIS) but without adding the template (iprodione) in
the ethanol/water mixture.

2.3. Microwave Sensor and Measurement Conditions

The microwave sensor coupled to MIS and NIS was described in a previous work [27] and is
presented in Figure 1. The MIS/NIS deposition on the antenna surface was done by spin coating using
a suspension of MIS or NIS in THF, after which the polymer layer was air-dried for 24 h. The spin
coating parameters were as follows: speed = 1000 rpm, acceleration = 4000 rpm and time = 40 s.
The polymer suspension was prepared as follows: 25 mg of MIS or NIS were transferred in 4 mL of
THF containing 8 mg of PVC and were stirred until obtaining a homogenous solution.

fungicide
L J - ? -
L
P >
P

Vector Network
Analyzer OPper
R s ~ )
: / glass
| / TS
N P ‘)# N 2
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. : E E/ Microwave .

antenna

MIS/NIS

Figure 1. Microwave sensor showing an antenna recovered by a layer of molecularly imprinted silica
(MIS) or nonimprinted silica (NIS). The VNA (Vector Network Analyzer) generates a wave between
10 MHz and 20 GHz and records the reflection coefficient (I'(f)) at each frequency. The W geometry of
the antenna was designed to enhance the microwave signal.

The microwave antenna was connected to the vector network analyzer. The antenna was immersed
in a beaker containing 100 mL (water/ethanol, 90/10, v/v) solution, 100 mL of white wine, or 100 mL of
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red wine, which was considered a blank. After successive addition of increasing volumes of a stock
solution of fungicides at 100 mg L™}, five measurements were taken for each fungicide concentration.
After each addition of the stock solution, the sample was stirred for two minutes with a glass rod and
was allowed to stand one minute before taking the measurement.

Before each experiment, the Vector Network Analyzer (VNA) was calibrated. The frequency
range varied between 50 MHz and 8 GHz with a span of 0.9 MHz. The microwave input power of the
measurement was defined by 0 dBm. The response of the microwave sensor is generated by the VNA
and is characterized by the reflection coefficient I'(f). It is a complex number representing the ratio
between the incident wave and the reflected wave and is described by the following equation:

I'(f) = Re(f) +iIm(f) Q)

Re represents the real part of the coefficient and Im the imaginary part. The exploited signals
were obtained from the relative variation of the reflection coefficient during the immersion in a
sample, in comparison with the immersion in a reference blank solution. It was calculated from the

following equation:

% = (I(sample) - I'(blank)) /T(blank) (2)

2.4. Chemometric Treatments

Transformation and logarithmic scaling was implemented on the I'(f) coefficient, giving:

A =20 log( JRe? + Imz) (3)

where A represents the amplitude.

It was possible to do the study using the real and imaginary part of the reflection coefficient
(Equation (1)). In order to allow the same study to be carried out using VNA or a less expensive device
such as an SNA (scalar network analyzer), we chose to use the amplitude in dB.

Raw data (two txt files per sample analysis) were first imported into Excel (Microsoft Office
2016) and merged using Equation (3). Data files were displayed in a matrix format, where rows were
observations or samples and columns were variables. All data files were then imported into The
Unscrambler® software (v10.5, Camo, Trondheim, Norway) and treated with the same software.

Exploring data, and examining observations and variables one by one, is usually time consuming
and often precludes meaningful conclusions. This problem is addressed by using multivariate
(multidimensional) analyses, which additionally provide summarizing charts. In general, unsupervised
learning such as principal component analysis (PCA) is used to find hidden structures in unlabeled data
and seeks to discover natural groupings in the data. PCA was performed on the normalized spectral
data (normalization on unit vectors) [30] in order to investigate if the whole signal was useful for
discriminating different samples (differences coming from various parameters such as concentration,
type of polymer and measurement medium).

PCA allows a reduction of variables and mostly provides projections of data in a new space related
to explained variances among the dataset. The new obtained axes are called principal components
(PCs) and are constructed with linear combinations of the original variables, in order to keep most of
the variance in the first PCs. Here, the data came from spectroscopic analyses. Variables are continuous
in nature, so the loadings are not represented in the same way as for discontinuous variables such as
physicochemical data. In spectroscopic cases, the values of the loadings of each PC are represented in a
plot, where the values of the loadings of component PCs are on the Y-axis and the scale corresponding
to the experimental unit is on the X-axis. Thus, they can be interpreted as a spectrum [31].

Partial least squares regression (PLSR) was also performed to find relations between the microwave
signals and concentrations of the compound of interest. PLS is of particular interest because it is able to
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analyze data with strongly collinear (correlated), noisy and numerous X-variables, and simultaneously
to model several response variables Y. PLS generalizes and combines features from principal component
analysis and multiple regression.

It is also essential to determine the correct complexity of the model. With numerous and correlated
X-variables, there is a substantial risk for over-fitting, i.e., getting a well-fitting model with little or no
predictive power. Hence, a strict test of the predictive significance of each PLS component is necessary,
followed by stopping when components start to be nonsignificant. Cross-validation is a practical and
reliable way to test this predictive significance. It is performed by dividing the data in a number of sets
and then by developing a number of parallel models from the reduced data with one of the deleted
sets [32].

PLS performances were evaluated based on the random full cross-validation coefficient of
determination (R?) and root mean square error (RMSE) for calibration and validation groups
(RMSEC and RMSEP).

3. Results and Discussion

The aim of this study was the use of a microwave sensor covered with a molecularly imprinted
polymer layer to monitor three fungicides (iprodione, procymidone and pyrimethanil) in model wine
and in white wine. Those three molecules were chosen for their structural homology (chlorobenzyl
structure or amino group, see supplementary data Scheme S1) and because of their intensive use in
agriculture, especially in the wine industry. Iprodione was chosen as a target fungicide because it is
present in most European and world wines. An evaluation carried out by the French Agency for Food
Environmental and Occupational Health and Safety [33] has shown that iprodione is an endocrine
disruptor. Given its dangerous nature, the use of iprodione was banned in June 2018 according to the
European Commission (EU) 2017/2091 regulation concerning the nonrenewal of the approval of this
active substance [5]. A study carried out in 2005 by the French Ministry of Agriculture in wine-growing
regions in France over 14 years (1990-2003) showed that the active substance with the highest transfer
rate from grapes to wine was iprodione [34]. The latter was detected in 100% of the wine samples.
Procymidone (93%) and pyrimethanil (85%) also showed a strong presence among wine samples made
from contaminated grapes.

The molecularly imprinted silica (MIS) and its control (NIS) were contacted with increasing
iprodione concentrations ranging from 107 to 7-107* mol/L in a hydro alcoholic solution.
Binding isotherms and Scatchard plots are given in the supplementary data (Figure S1). The binding
affinity constant of MIS (K = 13.4 mL/umol) was lower than the corresponding NIS value (19.6 mL/umol).
However, the number of interaction sites was higher for the MIS (94.2 umol/g) in comparison with the
NIS (9.6 umol/g). The binding kinetic experiment showed that equilibrium was rapidly reached after
20 min.

The microwave sensor coupled to MIS was used to detect iprodione in the model wine medium
(water/ethanol, 90/10, v/v). Iprodione concentrations varied from 5 to 100 ng L~=!. The corresponding
microwave spectra are presented in Figure 2A. The slight differences between curves required the use
of chemometric tools to analyze the obtained results.

The PCA scores and loadings resulting from the analysis of the iprodione replicates at different
concentrations are shown in Figure 2B,C. Each iprodione sample was analyzed five times for each
concentration, i.e., 5, 10, 25, 50, 75 and 100 ng L~! (named C5, C10, C25, C50, C75 and C100).
At C75, there was one outlier (due to a measurement error), and it was not considered for the
multivariate analysis (only four replicates instead of five). Each spectrum was normalized by unit
vector normalization. The first two principal components (PC1 and PC2, respectively) accounted for
98% of the total variance in the data.

From the score plot (Figure 2B), it can be seen that all concentrations are well separated and
distinguished. The plot also shows that the measurements are repeatable. Differences between C5
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and higher concentrations come mainly from the 1.2-1.8 GHz area (Figure 2C). This frequency band
corresponds to the strongest contributions of PC-1.

The microwave sensor is able to differentiate solutions at 5 ng L™ from others at higher
concentrations. The detection of fungicides in the ng L™! range is very important because it occurs at
lower concentrations than the authorized limits in wine (2000 pg L~1) and in water (100 ng L.
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Figure 2. (A) Detection of iprodione in model wine medium (water/ethanol, 90/10, v/v). Representative
average microwave spectra (100 MHz-3 GHz) generated by a microwave sensor coupled to MIS.
Iprodione concentrations varied from 5 to 100 ng.L~!. (B) Detection of iprodione in model wine
medium (water/ethanol, 90/10, v/v) using the microwave sensor coupled to MIS. PCA scores plot of
29 iprodione samples. Each spectrum was normalized by unit vector normalization. (C) Detection of
iprodione in model wine medium (water/ethanol, 90/10, v/v) using the microwave sensor coupled to
MIS. Loading plot for the first principal component (PC1). Characteristic bands are highlighted by a
double arrow.

In the same way, the detection of the two other fungicides (procymidone and pyrimethanil) was
carried out in a model wine medium using the microwave sensor coupled to the MIS. Results similar
to those obtained with iprodione were found (supplementary data: Figure S2a,b for procymidone and
Figure S3a,b for pyrimethanil). For pyrimethanil, differences between the lower concentration (C5)
and higher concentrations (200 and 250 ng L™!) come mainly from 1.0-1.3 GHz. For procymidone,
the separation between concentrations comes from a larger range of frequencies, between 0.9 and
1.5 GHz (several bands could be distinguished), and the higher contribution is from 0.6 to 0.8 GHz.
The part of the target molecule that forms the recognition unit with the monomer corresponds mainly
to the carbonyl groups. They interact with the amine group of the monomer through hydrogen
bonds. Similarities of interactions are expected for iprodione and procymidone because they have
close chemical structures.

In order to study the effect of molecular imprinting, the sensor coupled to the Molecularly
Imprinted Silica (MIS) was compared to the sensor coupled to the Nonimprinted Silica (NIS). The PCA
of Figure 3a shows a separation along PC1, between MIS and its control NIS sensors, at each
concentration of procymidone in the model wine medium. The effect of molecular imprinting is
obvious, and the PC2 separates the procymidone concentrations better in the case of the MIS sensor.

The separation between MIS and NIS is mainly due to the 0.4 GHz and 0.7 GHz bands (Figure 3b).

Separations between MIS and NIS are also observed for the two other fungicides, iprodione
and pyrimethanil, in the model medium (supplementary data: Figure S4a,b for pyrimethanil and
Figure S5a,b for iprodione).
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Figure 3. (a) PCA model of data presented in the two-dimensional space for the two principal
components PC1 and PC2 explaining 91% of the total variance in the data. Example of procymidone
detection in model wine medium (water/ethanol, 90/10, v/v) using the microwave sensor coupled to
MIS or NIS. 29 samples from the MIS sensor and 30 samples from the NIS sensor. The procymidone
concentration varied from 5 to 250 ng L™!. (b) Detection of procymidone in model wine medium
(water/ethanol, 90/10, v/v) using the microwave sensor coupled to MIS or NIS. Loading plot for the first
principal component (PC1).

One important application of the microwave sensor is the simultaneous detection of several
fungicides in the same sample. The PCA combining the datasets from the three fungicides
(iprodione, procymidone and pyrimethanil) at 5 ng L~! in the model wine medium is presented
in Figure 4a. These data were obtained by the microwave sensor coupled to MIS. The first principal
component (PC1) was clearly able to separate iprodione from the two other fungicides.
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Figure 4. (a) PCA scores plot of datasets from the three fungicides at 5 ng L~! analyzed with the
microwave sensor coupled to MIS in a model wine medium (water/ethanol, 90/10, v/v). PC1 and PC2
account for 100% of the total variance in the data. (b) Loading plot for the first principal component
(PC1) of three fungicides datasets at 5 ng L~! in the model wine medium (water/ethanol, 90/10, v/v).
Spectra were acquired using the microwave sensor coupled to MIS. Characteristic bands are highlighted
by arrows.

The loadings (Figure 4b) show how the variables (frequencies) are taken into account by the model
components. Three bands are observed at definite frequencies. The discrimination between iprodione
and the two other fungicides can be attributed to these bands. The discrimination between the three
fungicides was also obtained for both concentrations of 50 and 100 ng L~! (see supplementary data:
Figure S6a,b for 50 ng L~! and Figure S7a,b for 100 ng L™1).

Once the detection of fungicides in a model wine medium was demonstrated, the microwave sensor
was used for the detection of iprodione in a real white wine medium. Figure 5 shows representative
microwave spectra of a Chardonnay white wine sample for different added concentrations of iprodione,
detected by the microwave sensor coupled to the MIS. For each added concentration, five replicates
were measured, and the average spectrum is shown.
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Figure 5. Detection of iprodione in a white wine sample using the microwave sensor coupled to
MIS. Representative average microwave spectra. Added iprodione concentrations varied from 5 to
250 ng L~!. The two major bands (which contribute mostly to the model) are symbolized by * and **.
The red spectrum corresponds to the white wine without any iprodione added.

The PCA scores and loadings resulting from the analysis of the white wine replicates for different
added concentrations detected by the Molecularly Imprinted Silica (MIS) microwave sensor are shown
in Figure 6(A,B1,B2). Each white wine sample was analyzed five times for each added concentration,
ie., 5,50, 100, 150, 200 and 250 (named C5, C50, C100, C150, C200 and C250). The first two principal
components (PC1 and PC2, respectively ng L™!) account for 95% of the total variance in the dataset.

From the score plot (Figure 6A), it can be seen that all concentrations were well separated.
Differences between samples come mainly from the 0.65-0.85 GHz and 1.3-1.9 GHz areas
(Figure 6(B1,B2)) corresponding to the two major bands in the spectrum, symbolized by * and
** in Figure 5. The application of chemometric tools to the microwave spectra of the white wine
samples enables the detection of iprodione at very low concentrations, lower than the maximum limit
authorized in wine.

A comparison between white wine and model wine media was evaluated for different
concentrations of iprodione. PCA scores and loadings for real and model wine samples spiked
with iprodione and detected by the microwave sensor coupled to the MIS sensor are shown in the
supplementary data (Figure S8a,b). Fungicide concentrations are well separated on the first principal
component. Besides the previously identified bands, another band near 6 GHz is responsible for the
distinction between the model and real wines.

In sensor applications, it is of primary importance to correlate the sensor signal to the fungicide
concentrations. For this reason, PLSR models with one y-variable (fungicide concentration: PLS1)
were developed on the spectral data. Signal data was mean-centered and standardized to the unit
variance prior to PLS modelling. The vector of the y responses was mean-centered.
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Figure 6. (A) Detection of iprodione in a white wine sample using the microwave sensor coupled to
MIS. Iprodione concentrations varied from 5 to 250 ng L~!. PCA scores plot of 30 white wine samples.
PC1 and PC2 account for 95% of the total variance in the data. (B1) Detection of iprodione in a white
wine sample using the microwave sensor coupled to MIS. Loading plot for the first principal component
(PC1). Characteristic bands are highlighted by arrows. (B2) Detection of iprodione in a white wine
sample using the microwave sensor coupled to MIS. Loading plot for the second principal component
(PC2). Characteristic bands are highlighted by arrows.

Figure 7A shows the results for iprodione in white wine with the MIS sensor. Concentrations
varied between 0 and 250 ng L.

PLS scores are interpreted the same way as PCA scores. They are the sample coordinates along
the model components. The only new feature in PLS is that two different sets of components can be
considered, depending on whether one is interested in summarizing the variation in the X- or Y-space.

In Figure 7A, the first two PLS components accounted for 94% (50% (PC1) and 44% (PC2)) of
the variability in the microwave spectra (x-variable) and 90% (61% (PC1) and 29% (PC2)) of useful
information in the y-variable (concentration of iprodione) in the white wine (MIS sensor) samples
contributing to the PLS regression model.

The coefficient of determination (R?) and the root mean square error of calibration (RMSEC) are
used to evaluate the performance of the model. To assess the feasibility of the calibration model,
cross-validation by segmentation (to avoid the influence of replicates) was applied because of the
limited number of samples. Moreover, the number of PLSR factors was chosen based on the minimum
root mean square error of cross-validation (RMSECYV to avoid an over-fitting of the model) [35]. A model
was considered satisfactory when it had the higher coefficient of determination (R?), the lowest root
mean square error of calibration (RMSEC) and validation (RMSEV), and the closer RMSEC and RMSEV
with the minimal number of factors [36,37].

The optimum number of latent variables (factors) was found to be 6. Errors are calculated
on test/train splits using a cross-validation scheme for the splitting. If the splitting of the data is
done correctly, it gives a good estimate on how the model built on the dataset at hand performs
for unknown cases. It is characterized by the number called RMSECV (see Table 1). The use of an
informative region in a spectrum yields a PLS model with a relatively small value of RMSECV and
small PLS dimensionality.
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Figure 7. (A) Score plot with the first and second PLS components of the PLS regression analysis
of iprodione in white wine with the MIS sensor. Iprodione concentrations varied between 0 and
250 ng L~!. (B) Regression coefficients versus frequency for iprodione in white wine with the MIS
sensor (on factor 6). (C) Observed and predicted values of iprodione concentrations in white wine
using six factors. Coefficient of determination R¢? for the calibration (blue) and Ry? for the validation
(red) datasets, root mean squared errors (RMSEC for the calibration set and RMSEV for the validation
set). Iprodione concentrations varied between 0 and 250 ng L.

Table 1. PLS results and estimation of LOD for iprodione using the MIS sensor in white and red wines.

PLS Model Characteristics LOD Estimation (ng L~1)
Slope R? RMSECV
White wine MIS 0.9997 0.9996 2.6 ~20-30
Red wine MIS 0.9574 0.9940 18.7 ~10-30

Figure 7B shows the regression coefficients versus the frequency for the factor 6. It can be seen
that the signal is noisier. If more than six factors are considered, more noise is introduced and the
model will give a poorer prediction.

As in PCA, several peaks and valleys at certain frequencies are more important for the
determination of the iprodione concentration in white wine.
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In Figure 7C, significant correlation coefficients (Rc? and Ry? > 0.99) were found. The results
revealed that the MIS sensor was able to discriminate samples at various fungicide concentrations and
that PLS models should be appropriate for determining low contents of iprodione in white wine.

A preliminary validation of the developed method was conducted in real samples in order to
estimate the limit of detection and the recovery percentages. The order of magnitude of the limit of
detection (LOD) of iprodione in red and white wines was estimated using a visual representation of the
mean relative error (MRE) increment evolution dependent on an analyte concentration from Oleneva’s
study [38].

MRE is calculated by the formula given by Equation (4):

MRE = M Pl

(4)

With M being the measured value (taken as actual) and P the predicted value. A plot of the
averaged MRE against averaged concentrations is used for the visualization of the measurement
system performance for various concentration intervals (shown in Figure S9 in the supplementary
material). The LOD of iprodione in white wine can be estimated to be between 20 and 30 ng L'
This value is in agreement with the estimated LODmin (21 ng L) and LODmax (21.5 ng L) from
equations given by Allegrini et al. [39].

The same procedure was applied to iprodione in red wine. Concentrations varied between 0 and
250 ng L~!. The PLS model was less accurate than in white wine (RMSECV was higher and the slope
and R? were lower, see Table 1). The LOD value can be graphically estimated to be between 10 and
30 ng L~!. This value is on the scale with LODyy, (9.6 ng L™!) and LODmax (19.9 ng L™!) obtained
by calculation.

The results obtained from the PLS models for iprodione detected by the MIS sensor in white and
red wine are summarized in Tables 1 and 2a,b:

In red wine, the PLS model is less efficient than in white wine, especially at low concentrations,
and this is likely due to matrix effects related to the high polyphenol content (see the supplementary
data: Figure S10a—c). The LOD was estimated using the graphical method only. It has to be mentioned
that the concentration ranges near the LOD are limited. A perspective to enhance the estimation is to
increase the concentration levels from 5 to 30 ng L.

For concentrations higher than the LOD, recovery percentages ranged between 90 and 110% for
white wine and between 99 and 100% for red wine. These values are acceptable for trace analyses.

Table 2. (a) Predicted vs. theoretical concentrations and recovery for iprodione using the MIS sensor
in white wine. (b) Predicted vs. theoretical concentrations and recovery for iprodione using the MIS
sensor in red wine.

(a)

Conc. Theoretical (ng L™) Conc. Predicted (Mean) (ng L™!)  Conc. Predicted (sd) (ng L™1) Recovery (%)
5 3.40 1.12 68
50 54.83 1.03 110
100 89.82 0.10 90
150 163.50 0.51 109
200 199.01 0.30 100
250 244.45 0.66 98
(b)
Conc. Theoretical (ng L™1) Conc. Predicted (Mean) (ngL™!)  Conc. Predicted (sd) (ng L™ Recovery (%)
5 7.32 6.72 146
10 7.22 4.54 72
25 30.36 6.76 121
50 49.79 13.71 100
100 100.10 9.87 100
250 247.75 6.82 99
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4. Conclusions

Microwave sensors coupled to a molecularly imprinted silica (MIS) and its control (Nonimprinted
Silica, NIS) were used to monitor three of the most common fungicides in French wines
(iprodione, procymidone and pyrimethanil). Iprodione was detected by the MIS sensor in a model
wine medium and in a Chardonnay white wine from Burgundy. The developed sensors were able to
differentiate hydroalcoholic solutions for different added concentrations of the three fungicides at low
levels of concentrations (ng L™!). The imprinting effect was demonstrated since the MIS sensor reacted
differently from the NIS sensor and separated the fungicides samples having different concentrations
better than the NIS sensor did. The developed MIS sensor was able to simultaneously detect all three
fungicides at concentrations down to 5 ng L~! in a hydroalcoholic medium and to detect iprodione at
concentrations as low as 20 ng L~! in white wine and 10 ng L~! in red wine.

The chemometric PCA and PLS methods were successfully used as exploratory methods for the
statistical analysis of microwave spectra. They demonstrated that the whole microwave spectrum was
useful for discriminating samples containing different fungicides at varying concentrations when both
MIS and NIS microwave sensors generated the data. PLS models applied to the microwave spectra
were able to monitor low concentration of iprodione in white and red wines.

Supplementary Materials: The following figures and tables are available online at http://www.mdpi.com/1424-
8220/20/21/6224/s1.
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