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Abstract

We study the distribution and the popularity of some patterns in k-ary faro
words, i.e. words over the alphabet {1, 2, . . . , k} obtained by interlacing the letters of
two nondecreasing words of lengths differing by at most one. We present a bijection
between these words and dispersed Dyck paths (i.e. Motzkin paths with all level
steps on the x-axis) with a given number of peaks. We show how the bijection
maps statistics of consecutive patterns of faro words into linear combinations of
other pattern statistics on paths. Then, we deduce enumerative results by providing
multivariate generating functions for the distribution and the popularity of patterns
of length at most three. Finally, we consider some interesting subclasses of faro
words that are permutations, involutions, derangements, or subexcedent words.

1 Introduction and notations
The faro shuffle is a well-known technique to shuffle a deck of cards. The deck is split
in two at the middle, and the cards from the two halves are combined back by taking
alternatively the bottoms of stacks. Certain mathematical questions about the faro
shuffle are considered for example in the works of Morris [23], Diaconis, Graham and
Kantor [15]. Inspired by these studies and a solid body of modern combinatorial literature
(see for instance Lothaire [21], Stanley [27], Bóna [10] and Kitaev [19] books) that explores
enumerative and bijective aspects of patterns in various discrete structures, the present
paper considers an unexpectedly overlooked combinatorial objects, which we call faro
words. They are special kind of word shuffles, which are important in several algorithmic
and combinatorial settings (see for example Barnes work [7] and references therein). In this
paper, we present enumerative results and show how faro words and patterns therein are
related to other structures such as Dyck paths, Motzkin paths and Dumont permutations.
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1.1 Faro words and permutations

We deal with k-ary words u1u2 . . . un over the integer alphabet [1, k] = {1, 2, . . . , k}
endowed with the usual total order. A k-ary word is called nondecreasing if ui 6 ui+1 for
all i ∈ [1, n− 1].

Definition 1.1. For two k-ary words u and v such that 0 6 |u| − |v| 6 1, the faro shuffle
of u and v is the k-ary word of length |u| + |v| obtained by interlacing the letters of u
and v as follows: u1v1u2v2u3v3 . . . A k-ary faro word is a faro shuffle of two nondecreasing
k-ary words.

Let Sn,k be the set of k-ary faro words of length n. Its cardinality equals the product
of two binomial coefficients

(bn/2c+k−1
k−1

)(dn/2e+k−1
k−1

)
, each of them being, respectively, the

number of m-multisets of [1, k] for m = bn
2
c and m = dn

2
e. For example, we have

S4,2 = {1111, 1112, 1121, 1122, 1212, 1222, 2121, 2122, 2222} and |S4,2| = 9.

Definition 1.2. A faro permutation of length n is an n-ary faro word of length n that
contains every letter in [1, n] exactly once.

Let Pn be the set of length n faro permutations. For instance, we have P3 =
{123, 132, 213}. Since a faro permutation is entirely determined by the choice of its
values on the odd indices, the cardinality of Pn is

(
n
bn/2c

)
.

A k-ary word w = w1w2 . . . wn avoids a classical pattern (resp. consecutive pattern)
p = p1-p2- · · · -pk (resp. p = p1p2 . . . pk) if there does not exist a strictly increasing sequence
of indices i1i2 . . . ik (resp. with ij+1 = ij + 1 for 1 6 j 6 k − 1) such that wi1wi2 . . . wik
is order-isomorphic to p (see [19] for instance). Obviously, any faro word avoids the
classical pattern 3-2-1. Let Avn(σ) denote the set of permutations avoiding a classical
pattern σ, then we have Pn ⊆ Avn(3-2-1) for n > 0, and Pn 6= Avn(3-2-1) for n > 3 since
(n− 1)n12 . . . (n− 2) ∈ Avn(3-2-1) is not a faro word. Note that a faro permutation can
contain all classical patterns of length 3 except 3-2-1 (e.g., 31425).

Remark 1.3. A k-ary word w = w1w2 . . . wn is a faro word if and only if wi 6 wi+2 for
any i ∈ [1, n − 2], which means that faro permutations are precisely those avoiding the
three consecutive patterns 231, 321 and 312.

1.2 Dyck and dispersed Dyck paths

In order to study the distribution of patterns in faro words, we will exhibit one-to-one
correspondences between these objects and some specific lattice paths in the first quadrant
of the plane. Hence, we provide basic necessary definitions on lattice paths.

Definition 1.4. Dispersed Dyck paths (see [17]) are lattice paths starting at (0, 0), ending
at (n, 0), consisting of level steps F = (1, 0), up step U = (1, 1) and down stepsD = (1,−1),
and never going below the x-axis and where all level steps are on the x-axis.

Let Bn be the set of dispersed Dyck paths of length n (or, equivalently, consisting of
n steps) and set B = ∪n>0Bn, where the empty path is denoted by ε. A Dyck path of
semilength n > 0 is a dispersed Dyck path of length 2n with no level steps. Let Dn be the
set of Dyck paths of semilength n and let D =

⋃
n>0Dn. Dispersed Dyck paths of length
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n are in straightforward bijection with prefixes of Dyck paths of length n, also known as
ballot paths [8, 28]. Indeed, we can obtain a ballot path from a dispersed Dyck path by
replacing all level steps with up steps. Dyck and dispersed Dyck paths are counted by
the Catalan and ballot numbers, respectively (see A000108 and A001405 in the Online
Encyclopedia of Integer Sequences of N.J.A. Sloane [26], where the general terms are
cn = 1

n+1

(
2n
n

)
and bn =

(
n
bn/2c

)
, respectively).

A path P avoids a pattern X if and only if P does not contain X as a sequence of
consecutive steps (see for instance [14, 22]). Note that other pattern definitions exist in
the literature where steps are not necessarily consecutive [3]. We also need some notations
similar to Kleene star and plus symbols of formal language theory. For a nonempty pattern
X, an occurrence of the pattern X+ in a path P is a maximal sequence of consecutive
repetitions of X, i.e. a maximal subword of the form Xk for k > 1. The pattern X∗ will
be either an empty pattern or a pattern X+. More generally, for two possibly empty
patterns Y and Z such that Y does not end with X and Z does not start with X, the
pattern Y X+Z (resp. Y X∗Z) corresponds to an occurrence obtained by concatenation of
Y , X+ and Z (resp. Y , X∗ and Z). For instance, the path FUDUDFFUDF contains
two occurrences of the pattern F (UD)+F and three occurrences of F (UD)∗F .

1.3 Statistics on words and lattice paths

Definition 1.5. A statistic s is an integer-valued function from a set A of words or paths.

To a given pattern p, we associate the pattern statistic p : A → N such that p(a)
is the number of occurrences of the pattern p in the object a ∈ A (we use the boldface
to denote statistics). For example, the statistic giving the number of occurrences of the
consecutive pattern 123 (resp. UDUD) in a word (resp. a lattice path) is denoted by 123
(resp. UDUD). We denote by 1̂ (resp. 2̂, n̂) the constant statistic returning the value 1
(resp. 2, n).

Definition 1.6. The popularity of a pattern p in A is the total number of occurrences of
p over all objects of A, that is p(A) =

∑
a∈A p(a) (see [5, 11, 18, 19]).

For instance, for a dispersed Dyck path P = FFUDFUUDUUUDDDD we have
FF(P ) = 1, DDD(P ) = 2, UD(P ) = 3, UUUU(P ) = 0 and 1̂(P ) = 1. Moreover, if
A = {UUDD,UDUD} then the popularity of the pattern UD in A is UD(A) = 3.

Let TA be the set of all statistics defined on a set A. For any pair of statistics s, t ∈ TA,
we define the statistic s + t by (s + t)(a) = s(a) + t(a) for any a ∈ A, which endows TA
with a Z-module structure. Let B be a set of combinatorial objects, and let TB be the
corresponding set of statistics. We say that two statistics s ∈ TA and t ∈ TB have the
same distribution, or are equidistributed, if there exists a bijection f : A → B such that
s(a) = t(f(a)) for any a ∈ A. In this case, with a slight abuse of the notation already
used in [4], we write shortly f(s) = t or s = t whenever f is the identity. As a byproduct,
for any constant statistic n̂, we have f(n̂) = n̂.

1.4 Outline of the paper

The paper is organized as follows. In Section 2, we present a constructive bijection f
between the set Sn,k of k-ary faro words of length n and the set of dispersed Dyck paths
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of length n+ 2k − 2 with k − 1 peaks. We show where pattern statistics are transported
by f , which provides a more suitable ground for studying the distribution of consecutive
patterns. Thus, we derive enumerating results on the distribution and popularity of
patterns in Sn,k by giving multivariate generating functions where the coefficient of xnykzt
is the number of k-ary faro words of length n having exactly t occurrences of a given
pattern. In Section 3, we present a similar study for faro permutations. More precisely,
we provide a bijection g between Pn and the set of dispersed Dyck paths of length n and
show how g acts on pattern statistics of length at most three. Consequently, we deduce
enumerative results for the distribution and the popularity of these patterns in Pn. We
also present a bijection between Pn and involutions avoiding the classical pattern 3-2-1.
Finally, in Section 4, we prove that the set of subexcedent words in Sn,n is related to
ternary trees and Dumont permutations of the second kind [13] avoiding the classical
pattern 2-1-4-3, and we show why faro involutions and faro derangements are respectively
enumerated by the Fibonacci and Catalan numbers.

2 Patterns in faro words
In this section we construct a bijection f between the set Sn,k of k-ary faro words of length
n and a subset of dispersed Dyck paths, and show how f transports pattern statistics.
Then, we deduce generating functions for the distribution and popularity of some patterns.

A pair in a faro word w is an occurrence wiwi+1 with wi > wi+1. Remark 1.3 implies
that a letter cannot be part of two pairs since a faro word avoids the consecutive pattern
321. A singleton in w is a letter wi not in any pair of w. Any faro word can be uniquely
decomposed as a sequence of pairs and singletons, which are called blocks of faro words.
For instance, the block decomposition of 111212131333 is 13(21)2(31)33.

Let Lk be the set of all possible blocks of a decomposition of a k-ary faro word, that is

Lk = {1, 2, . . . , k} ∪ {ji : 1 6 i < j 6 k}.

Definition 2.1. We define an order relation� on Lk as follows: for g, h, i, j ∈ {1, 2, . . . , k},
i � j, if i 6 j,

i � jh, if i 6 h < j,

ig � j, if g < i 6 j,

ig � jh, if g < i 6 j and g 6 h < j.

Remark 2.2. The order relation � can be defined less technically as follows: for p, q ∈ Lk,

p � q ⇐⇒ pq is a faro word different from a pair.

This order relation endows the set Lk with a poset structure, which we call faro poset.
See Figure 2.1 for an illustration of the Hasse diagram of (Lk,�).

A multichain in a poset is a chain, i.e. a totally ordered subset, with repetitions allowed.
Due to the simple structure of the faro poset, we easily deduce the following remarks.
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1 21 31 41 . . . k1

2 32 42 . . . k2

3 43 . . . k3

... . . . ...

k − 1 k(k − 1)

k

Figure 2.1: The faro poset (Lk,�). Red blocks represent the multichain associated to the
k-ary faro word 11313232343 = 12(31)(32)23(43).

Remark 2.3. There is a one-to-one correspondence between k-ary faro words and the
multichains of Lk. Indeed, Remark 2.2 implies that the block decomposition of a k-ary
faro word w into pairs and singletons w = b1b2 . . . b` unambiguously corresponds to the
multichain b1 � b2 � · · · � b` in Lk, and vice versa. For instance, the faro word
11313232343 = 11(31)(32)(32)3(43) corresponds to the multichain 1 � 1 � 31 � 32 �
32 � 3 � 43 (see Figure 2.1).

Remark 2.4. If a k-ary faro word w contains a singleton x in its decomposition into
blocks, then it satisfies the following property: the set of pairs of the form ab, b < a 6 x,
equals the set of pairs of the form cd, d 6 x− 1.

2.1 A bijection to the set of dispersed Dyck paths

As mentioned by E. Deutsch in [26] (see sequence A124428), the number of dispersed
paths of length n with k peaks (a peak is an occurrence of the pattern UD) is given by

|Bn,k| =
(⌊

n
2

⌋
k

)(⌈
n
2

⌉
k

)
.

Thus, we present a bijection f from the set Sn,k of k-ary faro words of length n to the
set Bn+2(k−1),k−1 of dispersed Dyck paths of length n+ 2(k − 1) with exactly k − 1 peaks.
For a given w ∈ Sn,k, we set

f(w) = F T0UT1DT2F T3 . . . F T3(k−2)UT3(k−2)+1DT3(k−2)+2F T3(k−1) ,

where Ti is defined for 0 6 i 6 3(k − 1) as follows:

– if i = 3(x− 1) then Ti is the number of occurrences of the singleton x in w;

– if i = 3(x− 1)− 1 then Ti is one plus the number of pairs xy, y < x, in w;

5



– if i = 3(x− 1) + 1 then Ti is one plus the number of pairs yx, y > x, in w.

It is worth noting that the image of a faro word w ∈ Sn,k depends on the arity k that we
consider. Indeed, the image of the empty word ε is UD when k = 2, while f(ε) = UDUD
for k = 3. We refer to Figure 2.2 for one detailed example of this bijection, while Figure 2.3
provides more additional examples. For instance, the images by f of the 5-ary words
ε, 12345, 3141, 111111212222 are, respectively, UDUDUDUD, FUDFUDFUDFUDF ,
UUUDUDDUDDUD and FFFFFFUUDDFFFFUDUDUD.

w = (1)(1)(31)(32)(32)(3)(43)

T 2 2 1 0 3 4 1 2 2 1 1 00
i 0 1 2 3 4 5 6 7 8 9 10 11 12

f(w)

Ti counts occurences of
these kinds of blocks (1) (•1) (2•)(2) (•2) (3•) (3) (•3) (4•) (4)(•4)(5•)(5)

+1 +1 +1 +1 +1 +1 +1 +1

Add 1 to Ti
when i 6= 0 mod 3

Figure 2.2: The image by f of the 5-ary faro word w = 11313232343 is f(w) =
FFUUDUUUDDDDFUUDDUD.

Remark 2.5. Clearly, the values Ti, 0 6 i 6 3(k− 1), can be obtained from w by reading
it from left to right and by determining if the current entry x belongs to either a pair
xy or yx, or a singleton x. Moreover, values of T at indices i = 0 mod 3 correspond
to the lengths of maximal runs of consecutive level steps, and values at indices i = 1
mod 3 (resp. i = 2 mod 3) correspond to the lengths of maximal runs of consecutive up
(resp. down) steps, which means that the sequence T = T0T1 . . . T3(k−1) is a run-length-like
encoding of the path f(w). Thus, f(w) can be constructed from w using a linear time
algorithm.

Lemma 2.6. The path f(w) is necessarily a dispersed Dyck path of length n+ 2(k − 1)
with exactly k − 1 peaks.

Proof. Since for any i 6= 0 mod 3, 1 6 i 6 3(k − 1) − 1 we have Ti > 1, the path w
contains exactly k − 1 peaks UD. Interpreting Remark 2.4 on the path f(w), the number
of up steps before a given level step equals the number of down steps before the same level
step, which implies that any level step belongs to the x-axis. Let dx =

∑x+2
i=2 T3(i−1)−1

(resp. ux =
∑x+1

i=1 T3(x−1)+1) be the total number of down steps (resp. up steps) in the
first x + 1 maximal runs of down steps (resp. up steps). Due to the definition of f , dx
equals the number of pairs ij, 1 6 j < i 6 x+ 2, in w, and ux equals the number of pairs
ij, 1 6 j 6 x + 1, i > j + 1, which implies that dx 6 ux. Also by definition, the total
number of up steps (resp. down steps) in f(w) equals the total number of pairs in w,
which completes the proof.
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Theorem 2.7. The map f is a bijection from Sn,k to the set Bn+2(k−1),k−1 of dispersed
Dyck paths of length n+ 2(k − 1) with exactly k − 1 peaks.

Proof. Let us prove that if w and w′ are two distinct k-ary faro words then we have
f(w) 6= f(w′). Let i > 1 be the smallest positive integer such that wi 6= w′i. Without loss
of generality, we assume wi < w′i. Let us consider the positions of wi and w′i in the block
decomposition of w.

If wi and w′i are both in the pairs wiwi+1 and w′iw
′
i+1, then Remark 2.3 implies

that a pair wix, wi > x, cannot appear to the right of w′i in w′, which implies that
T3(wi−1)−1 6= T ′3(wi−1)−1, and thus f(w) 6= f(w′).

There remain the following cases:

(i) wi or w′i is a singleton in w,

(ii) wi and w′i are both in the pairs wi−1wi and w′i−1w′i = wi−1w
′
i,

(iii) wi belongs to the pair wi−1wi and w′i belongs to the pair w′iw′i+1,

(iv) wi and w′i are both in the pairs wiwi+1 and w′i−1w′i.

The fact that a faro word avoids 231 in case (i) and Remark 2.3 for cases (ii), (iii)
(iv), imply that wi cannot appear to the right of w′i in w′. Then the number of wi
in w, i.e. T3(wi−1) + T3(wi−1)+1 + T3(wi−1)−1, is different from the number of wi in w′,
which is T ′3(wi−1) + T ′3(wi−1)+1 + T ′3(wi−1)−1. Therefore, there is δ ∈ {−1, 0, 1} such that
T3(wi−1)+δ 6= T ′3(wi−1)+δ, which implies that f(w) 6= f(w′).

Thus, f is an injective map, and using a cardinality argument (see A124428 in [26]),
we conclude that f is a bijection from Sn,k to Bn+2(k−1),k−1.

Although it is not used in the paper, we could prove that from a given dispersed Dyck
path P ∈ Bn+2(k−1),k−1, f−1(P ) can be obtained after applying the following procedure.
We refer to Figure 2.3 for several examples.

We set s = 1 as the initial value. We mark all D-steps preceded by an U -step and all
the other D-steps are left unmarked. Reading the steps of P from left to right:

– If a D-step is encountered, then skip it.

– If an F -step is encountered, then write the singleton s. If the next step is not an
F -step, then update s = s+ 1.

– If an U -step is encountered in the ith run of U -steps, then we distinguish two cases:

(i) the next step is D; then we skip this UD-pattern by continuing from the step
after D, if it exists.

(ii) the next step is U ; then we write the pair ji, where j is the least integer such
that the (j − 1)-th run of D-steps has at least one unmarked D-step. Mark
the first unmarked D-step from the (j − 1)-th run of D-steps.
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/\
111111212222 ? ______/ \____/\/\/\

/\
144 ? _/\/\/\__/\ 254 ? /\_/\/\/ \

/\ /\
12345 ? _/\_/\_/\_/\_ 32343 ? /\/ \_/ \/\

/\/\ /\ /\/\ /\/\
31343 ? / \_/ \/\ 3153 ? / \/ \

/\/\
/ \/\ /\/\ /\

3141 ? / \/\ 3154 ? / \/\/ \

/\ /\/\
/\/ \/\/\ /\/\/ \

1113152 ? ___/ \ 5153 ? / \

/\/\ /\
1113133434444555 ? ___/ \__/ \____/\___

Figure 2.3: Images of several 5-ary words under bijection f .

2.2 Distribution and popularity of patterns

In this part, we first show how the bijection f transports pattern statistics on Sn,k into
the context of dispersed Dyck paths. After, we deduce multivariate generating functions
for the distribution and the popularity of patterns of length two by exploiting the classic
recursive decomposition of dispersed Dyck paths.

Theorem 2.8. For n > 0, the bijection f from Sn,k to Bn+2(k−1),k−1 maps statistics
associated to patterns of length 2 as follows:

f(11) = FF,

f(21) = UU = DD,

f(12) = DD(UD)∗UU + DD(UD)∗D + DD(UD)∗F+

+ F(UD)+F + F(UD)∗UU

= n̂− 1̂−UU− FF.

Proof. By Remark 2.3, any occurrence of the pattern 11 in a faro word w is formed by
two consecutive singletons xx. From the definition of the bijection f , it follows that the
number of occurrences of 11 in w equals the number of occurrences of FF in f(w), that
is f(11) = FF.
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An occurrence of the pattern 21 in w is necessarily a pair in the decomposition of w.
Since the length of a maximal run of consecutive up steps is equal to one plus the number
of pairs yx in w for a given x ∈ [1, n], the number of occurrences of 21 in w equals the
number of occurrences of UU in f(w). On the other hand, any nonempty dispersed Dyck
path P is of the form either P = FR or P = UQDR where Q is a Dyck path and R a
dispersed Dyck path. Reasoning by induction, we obtain that the number of occurrences
of DD equals those of UU in any dispersed Dyck path, which implies f(21) = UU = DD.

Now, let us prove the equation f(12) = DD(UD)∗UU+DD(UD)∗D+DD(UD)∗F+
F(UD)+F+F(UD)∗UU. An occurrence xy of the pattern 12 occurs in w as a subblock
of one of the following:

(i) two distinct consecutive pairs (ax)(yb),

(ii) two equal consecutive pairs (yx)(yx),

(iii) a pair followed by a singleton (ax)(y),

(iv) a singleton followed by a pair (x)(ya),

(v) two distinct singletons (x)(y).

For the case (i), we distinguish three subcases.
Subcase 1. The occurrence xy appears in a factor of the form (ax)(yb) with b > a.

This implies that neither a singleton s ∈ [a, b] nor a pair pq with p ∈ (a, b] or q ∈ [a, b)
can appear in w. Therefore, T3(s−1) = 0 for s ∈ [a, b], T3(p−1)−1 = 1 for p ∈ (a, b]
and T3(q−1)+1 = 1 for any q ∈ [a, b). Thus, between the run of D-steps associated to
T3(a−1)−1 > 2 and the run of U -steps associated to T3(b−1)+1 > 2, there are no level steps,
and the runs of D-steps and U -steps are of length one, which creates m = b− a > 0 peaks
UD. Hence, the occurrence xy is associated to an occurrence of the pattern DD(UD)∗UU .

Subcase 2. The occurrence xy appears in a factor of the form (ax)(yb) with b < a and
a < y. This implies that neither a singleton x ∈ [a, y) nor a pair pq with p ∈ (a, y) or
q ∈ [a, y) can appear in the word w. Therefore, T3(x−1) = 0 for x ∈ [a, y[, T3(p−1)−1 = 1
for p ∈ (a, y) and T3(q−1)+1 = 1 for any q ∈ [a, y). Thus, between the run of D-steps
associated to T3(a−1)−1 > 2 and the run of D-steps associated to T3(y−1)+1 > 2, there
are no level steps, and the runs of D-steps and U -steps are of length one, which creates
m = y − a > 0 peaks UD. Hence, the occurrence xy is associated to an occurrence of the
pattern DD(UD)+D.

Subcase 3. The occurrence xy appears in a factor of the form (ax)(yb) with b < a
and a > y. By definition of a faro word, we necessarily have a 6 y. Thus. we deduce
a = y. So, we have T3(a−1)−1 > 3, which counts all consecutive pairs az, a > z in w.
Due to Remark 2.3, all these pairs appear consecutively in w. Thus, the number of
occurrences of the form (ax)(ab), for x, b such that x 6 b < a is equal to the number
of DDD = DD(UD)0D patterns in the (a− 1)-th run of D-steps in the corresponding
dispersed Dyck path. Combining to the subcase 2, the occurrence xy is associated to an
occurrence of the pattern DD(UD)∗D.

In the case (ii), we have a factor of the form (ax)(yb) with a = y and x = b and the
argument from Subcase 3 of case (i) applies. For the remaining cases, (iii) through (v),
the occurrence xy of the pattern 12 is either created by a pair followed by a singleton

9



(ax)(y), or by a singleton followed by a pair (x)(ya), or by two different singletons (x)(y).
Arguments similar to the ones given above, allow us to prove that an occurrence xy in w
corresponds to an occurrence of:

– DD(UD)y−aF for the case (ax)(y),

– F (UD)a−xUU for the case (x)(ya), and

– F (UD)y−xF for the case (x)(y).

Finally, in any n-length word we have n − 1 occurrences of 2-length patterns, thus
n̂− 1̂ = 11 + 21 + 12. Applying the bijection f to both parts of the equation, we obtain
f(12) = n̂− 1̂− f(11)− f(21) = n̂− 1̂−UU− FF.

Theorem 2.9. For p ∈ {11, 12, 21}, the trivariate generating functions Fp(x, y, z) where
the coefficient at xnykzt is the number of k-ary faro words of length n containing exactly t
occurrences of the pattern p are:

F11(x, y, z) =
2y (xz − x− 1)

−xyz + xy + x3z − x3 + y − x2 + xz + x− 1 + (xz − x− 1)A1
,

F21(x, y, z) =
2y

−y + x2z − 2x+ 1 +A2
,

F12(x, y, z) =
y
(
x3z2 − x3z + x2z + xyz − xy − 3xz + x+ y − 1 + (xz − x+ 1)A2

)
(x3z2 − x3z + x2z − xyz + xy − xz − x− y + 1 + (xz − x+ 1)A2) (−1 + y) z

+
y

1− y
,

where A1 =
√

x4 − 2x2y − 2x2 + y2 − 2 y + 1 and A2 =
√

x4z2 − 2x2yz − 2x2z + y2 − 2 y + 1.

Proof. We have f(Sn,k) = Bn+2(k−1),k−1. Thus, for any pattern p, the trivariate generating
function Fp(x, y, z) is given by y ·Bp(x,

y
x2
, z) where Bp(x, y, z) is the trivariate generating

function whose coefficient at xnykzt is equal to the number of dispersed Dyck paths
P ∈ Bn,k such that q(P ) = t, where q = f(p).

For p = 21, Theorem 2.8 has f(21) = UU. Therefore, we decompose the set D of
Dyck paths as follows:

D = ε ] UDD ] U(D \ ε)DD.
We also decompose the set B of dispersed paths as follows:

B = ε ] FB ] UDB ] U(D \ ε)DB.

If D(x, y, z) is the generating function where xnykzt is the number of Dyck paths of
length n with k peaks and t occurrences of UU , then the above algebraic equation
yields D(x, y, z) = 1 + x2yD(x, y, z) + x2z(D(x, y, z)− 1)D(x, y, z). If B21(x, y, z) is the
generating function whose coefficient at xnykzt is the number of dispersed Dyck paths of
length n with k peaks and t occurrences of UU , then the above decomposition of B yields
the functional equation

B21(x, y, z) = 1 + xB21(x, y, z) + x2yB21(x, y, z) + x2z(D(x, y, z)− 1)B21(x, y, z),

which, in turn, yields the desired result.
For p = 11, Theorem 2.8 has f(11) = FF. Therefore, we decompose the set D of Dyck

paths as follows:
D = ε ] UDD ] U(D \ ε)DD.

10



We also decompose the set B of dispersed Dyck paths as follows:

B = ε ] F ] FUDB ] FU(D \ ε)DB ] UDB ] U(D \ ε)DB,

where F is the infinite set of paths F k for k > 1. Denote by F (x, y, z) the generating
function for F , where its coefficient at xnykzt is the number of n-length paths from F
having k peaks and t occurrences of a pattern FF . Notice that F (x, y, z) = x

1−xz . If
D(x, y) is the generating function where the coefficient at xnyk is the number of Dyck
paths of length n with k peaks, then the above set decomposition yields D(x, y) =
1 + x2yD(x, y) + x2(D(x, y) − 1)D(x, y). Using the second set decomposition of B, we
obtain a functional equation

B11(x, y, z) = 1 + x(1 + z(F (x, y, z)− 1)) + x3(1 + z(F (x, y, z)− 1))B11(x, y, z)

+ x3(1 + z(F (x, y, z)− 1))D(x, y)B11(x, y, z) + x2yB11(x, y, z)

+ x2(D(x, y)− 1)B11(x, y, z),

which provides the result.
For p = 12, we have, for any P ∈ Bn,k, that 12(P ) = n− 1− 11(P )− 21(P ) (that is

12 = n̂− 1̂− 11− 21), and thus

F12(x, y, z) =
1

z

(
F11+21

(
xz, y,

1

z

)
− y

1− y

)
+

y

1− y
.

According to Theorem 2.8, we have f(11 + 21) = FF + UU. Therefore, we decompose
the set B as before for the case of pattern 11, and construct a functional equation by
taking into account the different occurrences of FF and UU , which yields the claimed
result.

Corollary 2.10. For n > 0, the popularity of pattern p ∈ {11, 12, 21} in Sn,k is given by
the bivariate generating function Gp(x, y):

G11(x, y) =
4x2y

(1− y − 2x+ x2 + A1)
2 ,

G21(x, y) =
2x2y (1 + y − x2 − A1)

(1− y − 2x+ x2 + A1)
2A1

,

G12(x, y) =
2xy (A3 + (x3 − 2x2 + 2xy − 2x− 2y + 2)A1)

(1− y − 2x+ x2 + A1)
2 (1− y)A1

,

where A1 =
√
x4 − 2x2y − 2x2 + y2 − 2 y + 1 and A3 = x5 − 2x4 − x3y − 3x3 + 4x2y +

4x2 − 2xy − 2 y2 + 2x+ 4 y − 2.

Proof. Using Theorem 2.9, we obtain the result by calculating
(
∂
∂z
Fp(x, y, z)

) ∣∣
z=1

for
p ∈ {11, 21, 12}.

Corollary 2.11. For p ∈ {11, 12, 21}, the bivariate generating functions Hp(x, y) whose
coefficient at xnyk is the number of k-ary faro words of length n avoiding the pattern p
are:

11



H11(x, y) =
2y (x+ 1)

1− x− y − xy + x2 + x3 + (1 + x)
√

(x2 − 2x− y + 1)(x2 + 2x− y + 1)
,

H21(x, y) =
y

1− x− y
,

H12(x, y) =
y (−x3y + x2y − xy2 + xy + y2 − 2y + 1)

xy3 − 3xy2 − y3 + 3xy + 3y2 − x− 3y + 1
.

Proof. Note that Hp(x, y) = Fp(x, y, 0), where Fp(x, y, z) is as in Theorem 2.9.

Now we discuss the two special cases of k = 2 and k = n, which correspond respectively
to binary words and n-ary words of length n (see Table 1 for numerical values).

Case k = 2: using Corollary 2.10, we can easily prove that the popularity of the pattern
11 in Sn,2 generates a shift of the sequence A212964 in [26], which also counts the number
of 3-element subsets A of {1, . . . , n+ 1} such that all the sums a1 + a2 with a1 6 a2 and
a1, a2 ∈ A are distinct. The popularity of 21 generates a shift of the sequence A006918
where the general term is given by

(
n+3
3

)
/4 if n is odd, and n(n+ 2)(n+ 4)/24 if n is even.

The other patterns do not provide known sequences in [26].
Case k = n: the sequences of popularity of p ∈ {11, 21, 12} are not listed in [26], and

we have not succeeded in finding a closed form for the diagonal of Gp(x, y). However,
using the Maple package gfun [24], we conjecture that the popularity sequence for 11
satisfies a recurrence equation Q1(n)un +Q2(n)un+1 +Q3(n)un+2 +Q4(n)un+3 = 0, where
Q1, Q2, Q3, Q4 are some polynomial functions of degree at most 10, which suggests that
the generating function of the diagonal is D-finite when p = 11. However, we have not
succeeded in obtaining a closed form of the diagonal of H11(x, y). In contrast, a simple
study of the residues (see [27] Section 6.3) of H21(x/y, y) at the pole y0 = (1−

√
1− 4x)/2

yields the generating function (1−
√

1− 4x)/(2
√

1− 4x) of the diagonal of H21(x, y), and
its general term is, therefore,

(
2n−1
n

)
(see sequence A001700). A similar study for the

pattern 12 yields the diagonal x(x3 − 2x2 + x + 1)/(1 − x)2 (here, the pole is y0 = x),
which generates the sequence u1 = 1, u2 = 3, un = n for n > 3.

k Pattern p Popularity of p in Sn,k for 1 6 n 6 9

2 11 0, 2, 6, 14, 26, 44, 68, 100, 140, . . .

21 0, 1, 2, 5, 8, 14, 20, 30, 40, . . .

12 0, 1, 4, 8, 14, 22, 32, 45, 60, . . .

n 11 0, 2, 12, 80, 490, 3192, 20076, 13094, 83655, . . .

21 0, 1, 8, 85, 574, 4788, 31800, 24489, 162305, . . .

12 0, 1, 16, 135, 1036, 7700, 53964, 38646, 2636920, . . .

Table 1: Popularity of patterns p of length two in Sn,2 and Sn,n.

Statistic correspondences for other patterns can be obtained using a method similar
to that of Theorem 2.8. Therefore, we list directly (without proof) in Theorem 2.12 the
f -images of all statistics associated to a pattern of length three. It is worth noting that
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the reverse-complement χ is a bijection on Sn,k, which proves that the statistics 112 and
122 (resp. 121 and 212, resp. 132 and 213) have the same distribution on Sn,k.

Theorem 2.12. For n > 0, the bijection f from Sn,k to Bn+2(k−1),k−1 translates statistics
associated to patterns of length three as follows:

f(111) = FFF,

f(112) = FF(UD)+F + FF(UD)∗UU,

f(122) = F(UD)+FF + DD(UD)∗FF,

f(121) = FUU + UUU,

f(212) = DDF + DDD,

f(132) = F(UD)+UU + U(UD)+UU + DD(UD)∗UU,

f(213) = DD(UD)+F + DD(UD)+D + DD(UD)∗UU,

f(123) = DD(UD)∗F(UD)∗UU + DD(UD)∗F(UD)+F

+ F(UD)+F(UD)∗UU + F(UD)+F(UD)+F,

f(211) = f(221) = f(231) = f(312) = f(321) = 0̂.

It would be interesting to see how the method developed in [1, 2] could be applied to
obtain more pattern distributions in dispersed Dyck paths, but this is beyond the scope
of the present paper. The multivariate generating functions for patterns of length three
are quite technical, not particularly interesting and laborious to obtain. So, we decide to
leave them as an exercise for the reader.

3 Patterns in faro permutations
We say that a k-ary faro word w of length n is injective (resp. surjective) if and only if
any value in w appears only once in w (resp. any value x ∈ [1, k] appears in w). A faro
permutation of length n is an n-ary faro word that is both injective and surjective. Let
Pn be the set of length n faro permutations. For instance, we have P3 = {123, 132, 213}.
Since faro permutations are entirely determined by the choice of their values on the odd
indices, the cardinality of Pn is

(
n
bn/2c

)
. Note that faro permutations are permutations

avoiding the three consecutive patterns 231, 321 and 312 (see Remark 1.3).

Theorem 3.1. The bijection f maps surjective k-ary faro words of length n onto dispersed
Dyck paths in Bn+2(k−1),k−1 avoiding UDUD that neither start nor end with UD.

Proof. Using the definition of the bijection f and in particular the definition of the sequence
T , surjective faro words are those that have a sequence T satisfying (i) T0 + T1 > 1, (ii)
T3(x−1)−1 +T3(x−1) +T3(x−1)+1 > 2 for x ∈ [2, k− 1], and (iii) T3(k−1)−1 +T3(k−1) > 1. Since
T1 > 1, the condition (i) is equivalent to T0 6= 0, or T0 = 0 and T1 > 1, which means that
f(w) does not start with UD. Similarly, the condition (iii) is equivalent to the fact that
f(w) does not end with UD. Since T3(x−1)−1 > 1 and T3(x−1)+1 > 1, the condition (ii) is
equivalent to T3(x−1) > 0, or T3(x−1) = 0 and T3(x−1)−1 + T3(x−1)+1 > 2, which means that
f(w) does not contain any occurrence of UDUD.
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Theorem 3.2. The bijection f maps injective k-ary faro words of length n into dispersed
Dyck paths in Bn+2(k−1),k−1 avoiding the patterns FF , DDD, UUU , DDF , FUU , and
DDUU .

Proof. Using the definition of f , injective faro words are those that have a sequence T
satisfying (i) T3(x−1) < 2, x ∈ [1, k]; (ii) T3(x−1)−1 < 3, x ∈ [2, k]; (iii) T3(x−1)+1 < 3,
x ∈ [1, k − 1]; (iv) T3(x−1)−1 + T3(x−1) < 3, x ∈ [2, k]; (v) T3(x−1) + T3(x−1)+1 < 3, for
x ∈ [1, k − 1]; and (vi) T3(x−1)−1 + T3(x−1)+1 < 3, for x ∈ [2, k − 1]. It means that f(w)
avoids, respectively, the patterns FF , DDD, UUU , DDF , FUU and DDUU .

Theorem 3.3. The image by f of Pn is the subset B′3n−2,n−1 of dispersed Dyck paths in
B3n−2,n−1 that neither start nor end with UD and where any two consecutive occurrences
of UD are separated by exactly one step.

Proof. The two previous theorems imply that f(Pn) is the set of dispersed Dyck paths
in B3n−2,n−1 that neither start nor end with UD and that avoid the patterns FF , DDD,
UUU , DDUU , UDUD, DDF and FUU , which is exactly the dispersed Dyck paths that
neither start nor end with UD and where any two consecutive occurrences of UD are
separated by exactly one step. Indeed, in any dispersed Dyck path, the subpath between
two consecutive occurrences of UD is necessarily of the form DiF jUk for i, j, k > 0. Then,
the avoidance of FF , DDD and UUU implies that i, j, k 6 1, and the avoidance of the
other patterns implies that i+ j + k = 1 as claimed.

Thus, we deduce a one-to-one correspondence g between length n faro permuta-
tions and dispersed Dyck paths of length n, where g(p) is obtained from p ∈ Pn by
removing all occurrences of UD in f(p). For instance, if p = 1243576 then f(p) =
FUDFUDUUDDUDFUDUUDD and g(p) = FFUDFUD.

Theorem 3.4. For n > 0, the bijection g from Pn to Bn transports the pattern statistics
as follows:

g(21) = U,

g(12) = DU + DD + DF + FF + FU,

= n̂− 1̂−U,

g(132) = FU + UU + DU,

g(213) = DF + DD + DU,

g(123) = DFU + DFF + FFU + FFF,

= n̂− 2̂− FU−UU− 2 DU−DF−DD,

g(231) = g(312) = g(321) = 0̂.

Proof. For a faro permutation w, g(w) is obtained from f(w) by removing all peaks UD.
In f(w) consecutive occurrences of UD are separated by one letter exactly, and no Uk,
Dk or F k exists for k > 3. The last U in U2 and the first D in D2 must be a part of an
occurrence of UD. The claimed statistic equations are obtained from Theorem 2.8 and
Theorem 2.12 by deleting peaks UD and replacing all remaining U2 (resp. D2) with U
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(resp. D) in all considered pattern statistics. Only two (resp. three) patterns of length 2
(resp. 3) are possible in a faro permutation, namely 12 and 21 (resp. 123, 132 and 213). In
any n-length word there is n− 1 (resp. n− 2) occurrences of patterns of length 2 (resp. 3).
It follows that g(12) = n̂− 1̂−U and g(123) = n̂− 2̂−FU−UU− 2 DU−DF−DD.

Theorem 3.5. For p ∈ {21, 12, 132, 213, 123}, the bivariate generating functions Kp(x, y, z),
where the coefficient at xnyk is the number of faro permutations of length n containing
exactly k occurrences of the pattern p, are:

K21(x, y) =
2

1− 2x+
√

1− 4x2y
,

K12(x, y) =
1 + y + 2xy − 2xy2 + (y − 1)

√
1− 4x2y

y
(

1− 2xy +
√

1− 4x2y
) ,

K132(x, y) =
1 + y + (y − 1)

√
1− 4x2y

y
(

1− 2x+
√

1− 4x2y
) ,

K213(x, y) = K132(x, y),

K123(x, y) =
2 + 3x− 3xy + 2x2 − 2x2y − x(1− y)

√
1− 4x2

1− 2xy +
√

1− 4x2
.

Proof. For p = 21, Theorem 3.4 has g(21) = U. So, we decompose the set of Dyck paths
as D = ε ] UDDD, the set of dispersed Dyck paths as B = ε ] FB ] UDDB, and obtain
the following system: {

D(x, y) = 1 + x2yD2(x, y),

B = 1 + xB(x, y) + x2yD(x, y)B(x, y),

where D(x, y) (resp. B(x, y)) is the generating function for the set of Dyck paths (resp.
dispersed Dyck paths) with respect to the number of occurrences of U . Solving it, we
obtain K21(x, y) = B(x, y).

Since only the two length 2 patterns (12 and 21) are possible in a faro permutation,
we have 12 = n̂− 1̂− 21. Hence, K12(x, y) = (K21(xy,

1
y
)− 1)/y + 1.

Only tree patterns of length 3 are possible in a faro permutation, 123, 132 and 213,
so we have 123 = n̂ − 2̂ − 132 − 213. By Theorem 3.4, g(132 + 213) = FU + UU +
2 DU + DF + DD. We decompose the sets of Dyck and dispersed Dyck paths as follows:

D = ε ] UD ] U(D \ ε)D ] UD(D \ ε) ] U(D \ ε)D(D \ ε),
B = ε ] B ] U(D \ ε)D ] U(D \ ε)DB ] U(D \ ε)D(B \ (ε ] B))

] UD ] UDB ] UD(B \ (ε ] B̄)),

B = F ] F(B \ (ε ] B)),

where F is the set of paths F k, k > 1 and B is the set of dispersed Dyck paths starting
with a level step. From this decomposition we obtain the following system of functional
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equations:

D(x, y) = 1 + x2 + 2x2y2 (D(x, y)− 1) + x2y4 (D(x, y)− 1)2 ,

B(x, y) = 1 +B(x, y) + x2y2 (D(x, y)− 1) + x2y3 (D(x, y)− 1)B(x, y)+

+ x2y4 (D(x, y)− 1)
(
B(x, y)−B(x, y)− 1

)
+ x2 + x2yB(x, y)

+ x2y2
(
B(x, y)−B(x, y)− 1

)
,

B(x, y) = x
1−x + xy

1−x

(
B(x, y)−B(x, y)− 1

)
,

where D(x, y) (resp. B(x, y), resp. B(x, y)) is the generating function for the set of Dyck
paths (resp. dispersed Dyck paths, resp. dispersed Dyck paths starting with F ) with
respect to the statistics FU + UU + 2DU + DF + DD. After solving this system, we
obtain the result by evaluating K123(x, y) = 1 + x + (B(xy, 1

y
)− 1− xy)/y2. Note that

it is possible to look directly at g(123) = DFU + DFF + FFU + FFF rather than at
g(132 + 213) as we did, but the decompostion will be more complicated.

Note that K132(x, y) = K213(x, y), by taking the reverse-complement of faro permu-
tations. We remark that DF + DD + DU corresponds to the number of occurrences of
D except the last symbol if it is a D. So, if D is the set of Dyck paths and B the set of
dispersed paths, then the classical decompositions D = ε ]DUDD, B = ε ] BF ] BUDD
provide the following system of functional equations:

D(x, y) = 1 + x2yD(x, y)2,

B(x, y) = 1 + xB(x, y) + x2yB(x, y)D(x, y),

B(x, y) = 1 + xB(x, y) + x2B(x, y)D(x, y),

where D(x, y) and B(x, y) (resp. B(x, y)) are the generating functions for the sets of
Dyck paths and dispersed Dyck paths with respect to the number of D (resp. number
of D except the last symbol if it is a D). Solving the system, we obtain K132(x, y) =
K213(x, y) = B(x, y).

Corollary 3.6. For n > 0, the popularity of pattern p ∈ {21, 12, 132, 213, 123} in Pn is
given by the generating function Lp(x):

L21(x) =
1−
√

1− 4x2

2(1− 2x)
√

1− 4x2
,

L12(x) =
2x
(
−1 + 4 x2 + x+

√
1− 4x2

)
(1− 2x)(1 +

√
1− 4x2)

√
1− 4x2

,

L132(x) =
x
(
−1 + 4x2 + 2x+ (1− 2x)

√
1− 4x2

)
(1− 2x)(1 +

√
1− 4x2)

√
1− 4x2

,

L213(x) = L132(x),

L123(x) =
x(1 + 2x)(1−

√
1− 4x2)

(1− 2x)(1 +
√

1− 4x2)
.

Proof. We evaluate ∂Kp(x,y)

∂y

∣∣
y=1

.
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Corollary 3.7. For n > 2, the popularity of pattern p ∈ {21, 12, 132, 213, 123} in Pn is
given by p(Pn):

21(Pn) =
n+ 1

2

(
n

bn
2
c

)
− 2n−1 ∼

√
n

2π
· 2n,

12(Pn) = (n− 1)

(
n

bn
2
c

)
− 21(Pn) ∼

√
n

2π
· 2n,

123(Pn) = 2n − 2

(
n− 1

bn−1
2
c

)
−
(
n

bn
2
c

)
∼ 2n,

132(Pn) = 213(Pn) =
1

2

(
(n− 2)

(
n

bn
2
c

)
− 123(Pn)

)
∼
√

n

2π
· 2n.

Proof. Recall that |Pn| =
(

n
bn/2c

)
. Then we have 21(Pn) + 12(Pn) = (n− 1) ·

(
n
bn/2c

)
and

132(Pn) + 213(Pn) + 123(Pn) = (n− 2) ·
(

n
bn/2c

)
, and considering 132(Pn) = 213(Pn), it

suffices to prove the result for 21(Pn) and 123(Pn). Due to Corollary 3.6, we have

L21(x) =
W (x)

2x
− 1

2(1− 2x)

where W (x) = x
(1−2x)

√
1−4x2 is the generating function for the sequence A100071 in [26]

which has the general term n
2
·
(

n−1
b(n−1)/2c

)
. This induces directly 21(Pn) = n+1

2
·
(

n
bn/2c

)
−2n−1.

Similarly, if we expand the numerator of L123(x) given in Corollary 3.6, then we obtain
four generating functions having the general terms respectively equal to 2n−1 −

(
n−1

b(n−1)/2c

)
,

−
(

n−1
b(n−1)/2c

)
, 2n−1 − 1

2
·
(

n
bn/2c

)
and −1

2
·
(

n
bn/2c

)
, which implies the claimed result. Finally,

asymptotics are easily obtained using
(

n
bn/2c

)
∼
√

2
πn
· 2n.

Using formulae from Corollary 3.7 the following remark can be easily verified.

Remark 3.8. The expected number of the occurrences of the pattern 21 (respectively
12, 132 and 213) in a randomly selected faro permutation of length n is asymptotically
equivalent to n/2 when n → ∞. In contrast, the expectation of 123 is asymptotically
equivalent to

√
πn/2 and thus the probability that a random faro permutation contains an

occurrence of 123 at a random position approaches 0 as n grows.

Table 2 provides the first values of the popularity of each pattern of length at most
three in faro permutations.

4 Some particular subsets of Pn and Sn,k
In this part, we study particular subsets of faro permutations and faro words which are in
one-to-one correspondence with other sets of well-known combinatorial objects. Let us
recall the definition of a standard cycle notation (s.c.n.) and Foata’s first fundamental
transformation φ (see [21]).

In the standard cycle notation (s.c.n.) of a permutation w each cycle starts with its
largest element, and cycles are ordered from left to right in increasing order of their largest
elements.
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Pattern p Popularity of p in Pn for 1 6 n 6 11 OEIS

21 0, 1, 2, 7, 14, 38, 76, 187, 374, 874, 1748, . . . A107373

12 0, 1, 4, 11, 26, 62, 134, 303, 634, 1394, 2872, . . . A340567

132, 213 0, 0, 1, 4, 10, 28, 61, 152, 318, 748, 1538, . . . A340568

123 0, 0, 1, 4, 10, 24, 53, 116, 246, 520, 1082, . . . A340569

231, 312, 321 0, 0, 0, 0, . . .

Table 2: Popularity of patterns p of length at most three in faro permutations.

Foata’s first fundamental transformation (see [21]) acts on a permutation w as follows.
Write a permutation w in s.c.n., and then cyclically rearrange every cycle so that it ends
with its largest element. Then, reverse each cycle and delete all parentheses. For instance,
if w = 7321564, then the s.c.n. for w is (32)(5)(6)(741), after rearrangement we have
(23)(5)(6)(417), and thus φ(w) = 3256714. If w is an involution, it contains only cycles of
length one or two, rearrangement and reversion are not needed, we directly obtain the
image after dropping parentheses in s.c.n.

Theorem 4.1. Foata’s first fundamental transformation bijectively maps the set In(3-2-1)
of involutions of length n avoiding the classical pattern 3-2-1 onto the set Pn of faro
permutations.

Proof. Let us prove that the standard cycle notation of w ∈ In(3-2-1) cannot contain
any of the following consecutive cycles: (x)(yz) with z < x, (xy)(z) with z < x, (x)(y)(z)
with z < x, or (xy)(zt) with t < y or z < x. Assume that w ∈ In(3-2-1) and assume
towards contradiction that the standard cycle notation (s.c.n.) of w contains (x)(yz) with
z < x. Then we have x < y and thus z < x < y, which means that the subsequence yxz
(occurring at indices z, x, y) is an occurrence of 3-2-1 in w, a contradiction. Due to the
definition of the s.c.n. of w, the case (x)(y)(z) with z < x, the case (xy)(z) with z < x
and the case (xy)(zt) with z < x do not occur since the cycles are arranged in increasing
order of their first elements. If the s.c.n. of w contains (xy)(zt) with t < y, then we have
t < y < x < z, which implies that w contains an occurrence zxy (at indices t, y, x) of
3-2-1, a contradiction. Thus, φ(In(3-2-1)) ⊂ Pn. Since φ is injective, and In(3-2-1) is also
enumerated by ballot numbers bn (see for instance [6, 25]), we have φ(In(3-2-1)) = Pn.

Remark 4.2. It is known that Foata’s first transformation φ maps the statistic of the
number of excedances (values wi such that wi > i) to the statistic 21 (number of descents
wi > wi+1). Therefore, the generating functions K21(x, y) and L21(x) in Corollary 3.6
also give the distribution and the popularity of excedances in In(3-2-1).

Remark 4.3. We could easily check that g(φ(w)) = Φ(w) for w ∈ In(3-2-1), where Φ is
a bijection in [6] between involutions and labeled Motzkin paths, which also is a restriction
of Biane’s bijection [9], which in turn is closely related to Françon-Viennot bijection [16].

The next theorem deals with alternating faro permutations, i.e. permutations w
satisfying w1 > w2 < w3 > · · · . Let An be the set of alternating faro permutations of
length n.
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Theorem 4.4. There is a bijection between A2n and the set of Dyck paths of length 2n.

Proof. Let w be a faro permutation of length 2n. Then, w is alternating if and only if w
does not contain any singleton in its block decomposition. Due to the definition of f , this
means that f(w) does not contain any F -steps and thus, g(w) is a Dyck path of length
2n, and vice versa.

Theorem 4.5. The set A2n is exactly the set of length 2n faro derangements, i.e. faro
permutations with no fixed point wi = i for i ∈ [1, 2n].

Proof. Let w = w1w2 . . . w2n−1w2n be a faro permutation of length 2n, that is wi < wi+2

for 1 6 i 6 2n− 2. Then, w is alternating if and only if w does not contain any singleton
in its block decomposition, or equivalently, w satisfies wi > wi+1 if i is odd, and wi < wi+1

otherwise. This is equivalent to wi is greater than w1, w2, . . . , wi−1 and wi+1 if i is odd,
and wi is smaller than wi−1, wi+1, wi+2, . . . , w2n if i is even, which means that wi > i if i
is odd and wi < i otherwise. Thus, we have wi 6= i, and w is a derangement. This last
implication also is an equivalence because it cannot occur wi < i with i odd, or wi > i
with i even in a faro derangement w.

Theorem 4.6. Let Bn (resp. B′n) be the set of length n faro permutations avoiding the
classical pattern 2-3-1 (resp. the pattern 3-1-2), then
• The cardinality of Bn is given by the Fibonacci sequence fn defined by fn = fn−1+fn−2

with f1 = 1, f2 = 2.
• We have Bn = B′n.
• Bn is exactly the set of length n faro involutions.

Proof. A faro permutation w avoiding the pattern 2-3-1 is of the form 1w′ or 21w′, where
w′ also is a faro permutation avoiding 2-3-1. Indeed, if a faro permutation w starts with
x > 2, then w starts with x1y for some y > x. Then the value 2 is to the right of x1y,
which creates an occurrence xy2 of 2-3-1, a contradiction. Therefore, the cardinality fn of
length n faro permutations satisfies fn = fn−1 + fn−2 with f1 = 1, f2 = 2. Using the same
argument, faro permutations avoiding 2-3-1 are also faro permutations avoiding 3-1-2.

For the third statement, due to the decomposition of w ∈ Bn (either w = 1w′ or
w = 21w′ with w′ ∈ B), we conclude by induction that w is necessarily a faro involution.
Conversely, a faro involution w avoids the classical pattern 321, which implies that
w = 1w′ or w = 21w′ where w′ is also a faro involution (if the first entry w1 of w satisfies
w1 > 3, then we have ww1 = 1; since w avoids 321, we necessarily have wi > w1 > 3 for
1 6 i 6 w1 − 1, and thus ww1−2 > ww1 = 1, which is not possible in a faro permutation).
A simple induction implies that w ∈ Bn, which completes the proof.

In the following, we consider (for convenience) faro words on the n-ary alphabet
[0, n− 1], and we focus on the set of subexcedent faro words of length n, i.e. faro words
w1w2 . . . wn satisfying wi 6 i− 1 for 1 6 i 6 n. We make a shift [1, n]→ [0, n− 1] on the
alphabet in order to apply directly the results presented in [13].

Theorem 4.7. There is a bijection between subexcedent faro words of length n and
2-1-4-3-avoiding Dumont permutations of the second kind of length 2n.
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We will briefly recall the result given in [13] that enumerated 2-1-4-3-avoiding Dumont
permutations of the second kind of length 2n. Dumont permutations of the second kind
of length 2n are permutations π that satisfy the following conditions for i ∈ [n]:

π(2i− 1) > 2i− 1, π(2i) 6 2i− 1.

In other words, the values in the odd positions are weak excedances, whereas the values
in the even positions are deficiencies. In addition, if π avoids the pattern 2-1-4-3 (i.e. does
not contain a subsequence π(i1)π(i2)π(i3)π(i4) of length 4 such that i1 < i2 < i3 < i4
and π(i2) < π(i1) < π(i4) < π(i3)), then the values in the even positions of π are exactly
{1, 2, . . . , n}, and the values in the odd positions of π are exactly {n+ 1, n+ 2, . . . , 2n}.
Moreover, the subsequence of values of π in the even positions avoids the pattern 2-1-3
while the subsequence of values of π in the odd positions avoids the pattern 1-3-2.
This allows [13] to construct a bijection as in Krattenthaler [20] from the even-position
subsequence of π to north-east integer lattice paths from (0, 0) to (n, bn/2c) staying on or
below the line y = x/2, and from the odd-position subsequence of π to the same paths
but ending at (n+ 1, b(n+ 1)/2c). Let {an}n>0 be the sequence A047749 [26], so that

a2n =
1

2n+ 1

(
3n

n

)
, a2n+1 =

1

n+ 1

(
3n+ 1

n

)
,

then the number of 2-1-4-3-avoiding Dumont permutations of the second kind of length
2n is anan+1. Thus, to prove Theorem 4.7, we only need to construct a bijection from
subexcedent faro words of length n to ordered pairs of north-east lattice paths on or below
the line y = x/2 from (0, 0) to (n, bn/2c) and (n+ 1, b(n+ 1)/2c), respectively.

Proof of Theorem 4.7. Let π be a subexcedent faro word of length n. As in [13], let πo
and πe be the odd-position and even-position subsequences of π. Then πo and πe are
nondecreasing subsequences such that

πo(i) = π(2i− 1) ∈ [0, 2i− 2], i 6

⌊
n+ 1

2

⌋
,

πe(i) = π(2i) ∈ [0, 2i− 1], i 6
⌊n

2

⌋
.

(4.1)

Conversely, any word π whose odd-position and even-position subsequences πo and
πe satisfy the above properties is a subexcedent faro word of length n. Given sequences
πo and πe as in (4.1), associate to them a pair of north-east lattice paths as follows. If
πo or πe has a letter ai in position i, map such an entry to the point (i − 1, ai) in the
integer lattice. Let k =

⌊
n+1
2

⌋
for πo and k =

⌊
n
2

⌋
for πe, and let ak+1 = 2k for πo and

ak+1 = 2k + 1 for πe.
Now consider a north-east lattice path (as in Figure 4.1 from (0, 0) to (k, ak+1) through

vertices (0, a1), (1, a2), . . . , (k − 1, ak) in that order so that each vertex is joined to the
next one by a (possibly empty) sequence of east steps followed by a (possibly empty)
sequence of north steps. In other words, consider the path

Na1 , E,Na2−a1 , E,Na3−a2 , E, . . . , E,Nak+1−ak (4.2)

from (0, 0) to (k, ak+1), where E = (1, 0) is the unit east step and N = (0, 1) is the unit
north step. Then this path lies on or below the line y = 2x for πo and on or below the
line y = 2x+ 1 for πe, and each such path corresponds to a unique πo or a unique πe.
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n is odd

π
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

πo
1 3 5 7 9 11

0

1

2

3

4

5

6

7

8

9

10

πe
0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

n is even

π
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

πo
1 3 5 7 9 11

0

1

2

3

4

5

6

7

8

9

10

πe
0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

11

Figure 4.1: An example of the bijection between a subexcedent faro word and pairs of
ternary paths as in the proof of Theorem 4.7.

Moreover, notice that if n is even, then(⌊
n+ 1

2

⌋
, 2

⌊
n+ 1

2

⌋)
=
(⌊n

2

⌋
, n
)

(⌊n
2

⌋
, 2
⌊n

2

⌋
+ 1
)

=

(⌊
n+ 1

2

⌋
, n+ 1

)
,

and if n is odd, then (⌊
n+ 1

2

⌋
, 2

⌊
n+ 1

2

⌋)
=

(⌊
n+ 1

2

⌋
, n+ 1

)
(⌊n

2

⌋
, 2
⌊n

2

⌋
+ 1
)

=
(⌊n

2

⌋
, n
)
.

It is easy to see now that the pair of paths thus obtained for πo and πe are in bijection
with the pair of paths in the proof of the [13, Theorem 3.5] (see also [13, Figure 6]),
which yields a bijection between the subexcedent faro words of size n and 2-1-4-3-avoiding
Dumont permutations of the second kind of size 2n.

The enumeration of subexcedent faro words may be refined by considering some natural
statistics on such words. Together with the bijection of Theorem 4.7 to pairs of ternary
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paths (or 2-Dyck paths), a recent result [12] lets us find several equidistributed statistics
on the odd-position and even-position subsequences of subexcedent faro words.

Recall that a ternary (or 2-Dyck) path is a sequence of unit steps u = (1, 1) and
d = (1,−2) starting at (0, 0) and staying in the first quadrant. A peak of a 2-Dyck path is
an ud-block in that path, as well as the vertex between the two steps. Likewise, a double
descent of a 2-Dyck path is a dd-block in that path, as well as the vertex between the two
steps. Define the following statistics on 2-Dyck paths:

– pk0, the number of peaks at even height,

– pk1, the number of peaks at odd height,

– dd, the number of double descents.

Then the following results hold.

Theorem 4.8 ([12]).

– On 2-Dyck paths ending at height 0, the tristatistic (pk0−1,pk1,dd) is jointly
equidistributed with any of its permutations.

– On 2-Dyck paths ending at height 1, the bistatistics (pk0,pk1) and (pk1,pk0) are
jointly equidistributed.

For a subexcedent faro word π of length 2n, define the following statistics on its
odd-position and even-position subsequences πo and πe:

– eOdis(π), the number of distinct positive even letters in πo (we exclude 0 since πo
and π always start with 0);

– oOdis(π), the number of distinct odd letters in πo;

– aOrpt(π) = {i ∈ [n− 1] | π(2i− 1) = π(2i+ 1)}, the number of letter repetitions
in πo (the “a” in aOrpt stands for “any parity”);

– eEdis(π), the number of distinct even letters in πe;

– oEdis(π), the number of distinct odd letters in πe.

Then we have the following result.

Theorem 4.9. On subexcedant faro words of length n,

– the tristatistic (eOdis,oOdis, aOrpt) is jointly equidistributed with any of its per-
mutations.

– the bistatistics (eEdis,oEdis) and (oEdis, eEdis) are jointly equidistributed.
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Proof. For each of πo and πe, define k and a1, a2, . . . , ak, ak + 1 as in the proof of Theorem
4.7, and let

P = Na1 , E,Na2−a1 , E,Na3−a2 , E, . . . , E,Nak+1−ak

be the corresponding north-east path as in (4.2) (when needed, we will distinguish the
paths obtained from πo and πe as Po and Pe, respectively). Map P to a lattice path
obtained by reversing P and mapping unit steps N 7→ u = (1, 1) and E 7→ d = (1,−2).
In other words, consider the map

φ : P 7→ φ(P ) = uak+1−ak , d, uak−ak−1 , d, . . . , d, ua2−a1 , d, ua1 ,

where φ(P ) starts at (0, 0). Recall that P starts at (0, 0), stays in the first quadrant on or
below y = 2x for πo and y = 2x+ 1 for πe, and ends on y = 2x for πo and y = 2x+ 1 for
πe. Therefore, it is easy to see that φ(P ) stays in the first quadrant and ends at height 0
for πo and at height 1 for πe. Moreover, each distinct letter of πo or πe (except for 0 in πo)
corresponds to a block EN in the corresponding path P , which in turn corresponds to a
block ud of φ(P ), i.e. to a peak of φ(P ).

Furthermore, a repetition of a letter in positions i and i+ 1 of πo means that ai+1 = ai,
and thus the i-th and (i+ 1)-st steps E in P are adjacent, which in turn corresponds to a
block dd in φ(P ). Therefore, aOrpt(π) = dd(Po).

Let ` be one of distinct letters of in πo or πe (for πo, also assume ` > 0). Suppose its
rightmost occurrence is in position j. Then there are k + 1− ` east steps and ak+1 − a`
north steps in path P to the right of that point, so the height of the corresponding peak
in φ(P ) is

ak+1 − a` − 2(k + 1− `) ≡ ak+1 − a` (mod 2) ≡ a` (mod 2) + ak+1 (mod 2).

It follows that, on πo (eOdis,oOdis)(π) = (pk0−1,pk1)(φ(Po)) if ak+1 is even, and
(eOdis,oOdis)(π) = (pk1,pk0−1)(φ(Po)) if ak+1 is odd. Likewise, (eEdis,oEdis)(π) =
(pk0,pk1)(φ(Pe)) if ak+1 is even, and (eEdis,oEdis)(π) = (pk1,pk0)(φ(Pe)) if ak+1 is
odd. However, the two statistics on the right-hand side of the equations are jointly
equidistributed in each case by Theorem 4.8, and thus the parity of ak+1 is immaterial in
each case.

From Corollary 1.12 and Equation (2.7) of [12], we can also determine the joint
distribution of all the statistics we defined on subexcedent faro words. For this result, we
let no =

⌊
n+1
2

⌋
and ne =

⌊
n
2

⌋
(so no + ne = n). We also let aErpt(π) be the number of

letter repetitions in πe, i.e. aErpt(π) = {i ∈ [n− 1] | π(2i) = π(2i+ 2)}.

Corollary 4.10. The number of subexcedent faro words π of length n such that

(eOdis,oOdis, aOrpt, eEdis,oEdis, aErpt)(π) = (r1, r2, r2, r4, r5, r6)

is
1

no

(
no
r1

)(
no
r2

)(
no
r3

)
r4 + r5

ne(ne + 1)

(
ne + 1

r4

)(
ne + 1

r5

)(
ne
r6

)
.

Note also that r1 + r2 + r3 = no − 1 and r4 + r5 + r6 = ne.
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