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On a vertex-edge marking game on graphs

REVISION NOTES

Boštjan Brešar, Nicolas Gastineau, Tanja Gologranc, and Olivier Togni

Many thanks to the reviewers for their careful reading of the paper and for their
remarks and suggestions that enabled us to improve the quality and the clarity of the
paper. Following the comments of Reviewer # 1, we have made some shortenings of the
paper. In particular, we have removed some parts of the paper, mainly in Section 2,
which had some issues and which have no effect on the rest of the paper containing main
results. Following the comments of Reviewer # 2, we have modified the main definitions
so that they work for infinite graphs, and, whenever possible, the results were extended
to arbitrary (also disconnected) graphs with multiple edges.

In the rest of the revision notes, we give more detailed answers to the main points of
each of the reviewers. In addition, the corrections made are highlighted in the version of
the paper attached to this revision note.

Comments by Reviewer # 1

• Issue 1: I think there is an error at page 4, Line -4 and Line -3: ”The degeneracy
∆+(G) of a graph G is the smallest k such that G is k-degenerate and is given by
∆+(G) = 2d∗(G) = mad(G) (see [14]).”

I think somewhere of the above equalities is not right ... Following above comments,
the proof and contents of Theorem 4 of this paper is wrong.

The reviewer has a point. Anyway, taking into account some comments of both
reviewers, we decided to remove this part of the paper in the revised version.
In particular, we have removed the observations about several concepts, such as
maximum density d∗(G), maximum average degree mad(G), pseudoarboricity p(G).
There are several reasons why. Firstly, some of these concepts were defined just
for finite graphs, but now we focus on general graphs. Secondly, we included these
concepts in the paper just to present some upper bounds for colve(G) as functions
of these parameters, but these concepts were not needed elsewhere. In addition, as
noted by Reviewer #1, most of these bounds are almost trivial and follow directly
from the definitions, so we agree that they are not necessary.

• Issue 2: I think all the results and proofs of this paper are simple, but the pre-
sentations are unnecessarily long. I gave some concrete examples: Example 1:
Corollaries 5, 6, and 7 should not be there at all.

We have removed them.

Example 2: All the results in Proposition 8 are very obvious, they can be done in
a few sentences instead of using almost one page.

Done. This part has been considerably shortened.
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Example 3: For Section 4 ”infinite lattice”: this paper has nothing to do with
infinite, the infinite there is only used in examples for some lower bounds, and
the examples really does not need infinite (maybe a few hundreds (thousands?)
vertices will be more than enough).

The reviewer is right. Following the suggestions of Reviewer #2 we have modified
the definition of the vertex-edge coloring game, so that it works for infinite graphs
too. In addition, we have merged two sections (about planar graph and about
infinite lattices) to one section entitled Planar graphs, making the material a bit
more compact. After all, also the mentioned lattices are planar graphs.

Example 4: For Section 5 ”Complete graphs”: The proof for the main results is
actually by using a kind of ”greedy” strategy by Alice, is simple. But currently is
three pages long, and presented in a somewhat abstract way; and this abstract way
has done nothing more than just giving a long and complicate proof of some simple
arguments; which I think is unnecessary. A direct proof (probably by induction)
will give a clear presentation.

Initially, we were thinking that the result could be proved by a direct and short
proof, but could not find one. We also think that the current proof is not too
abstract, since, as you correctly notice, it only follows a kind of a greedy strategy
for Alice. Even if the proof would not use the terminology of sorted words, we would
essentially need some concept, which would emulate the idea of sorted words.

We also wish to emphasize, as we now do in the abstract, the introduction and in
the formulation of Theorem 16, that the result holds not only for complete graphs
Kn, but for any multigraphs whose underlying graph is Kn, which makes the result
slightly stronger.

• Issue 3: The references have some problems. First example is as explained in Issue
1: the authors made some mistakes, but they say the results come from Reference
[14]; and they don’t say where; and indeed, according what I have checked, this is
not the case. Second example: the authors uses a lot on the maximum out degree of
orientations of G, and its relation with mad(G), this is Hakimi’s well-known result.
But there are no reference of Hakimi’s paper; instead, the reference is kept on
going to Reference [6]. Similarly, the paper mentions arboricity of graphs, all they
used is not more than Nash-Williams and Tutte’s well-known forests decomposition
theorem. But Nash-Williams and Tutte’s theorem is never mentioned, and again
the reference is kept on going to Ref- erence [6].

Since the results dealing with density were only applicable to finite graphs and
were not used in the rest of the paper, we have chosen to remove them.

Minor comments
All other comments of the reviewer have been taken into account and typos have been

corrected.
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Comments by Reviewer # 2

• (Comment 1) A natural definition of the score would be the following. The score of
an unmarked vertex v at a certain state t of the game is the number of marked edges
incident with v; the score of the vertex v is the supremum of the scores of v at state
t, where the supremum is taken over all states t of the game. In this paper, the
score of a vertex v is defined as the number of marked edges incident with v at the
time Alice marks the vertex v. These two concepts are the same for finite graphs
but may be different in case of locally finite infinite multigraphs. According to
your definition, the score of vertices that are never marked is undefined. Assuming
that it is defined to be zero, then e.g. the final score might be zero for multigraphs
with arbitrary maximum degree but infinitely many isolated vertices, which shows
that this definition makes no sense at least in disconnected infinite multigraphs.
By introducing an additional dominating vertex, the same construction applies to
connected infinite multigraphs, resulting in a final score of one. Although you
restrict your considerations to connected multigraphs, using the above given more
natural definition might be what you might have wanted to define, and the more
natural definition would even allow to extend most of your results to arbitrary
locally finite multigraphs (no matter whether connected or disconnected).

According to your suggestion we define the score of a vertex and the vertex-edge
coloring number in such way that the two concepts are well-defined also for infinite
graphs: The score of a vertex v at a certain state t of the game, scoret(v), is the
number of marked edges incident with v if v is unmarked at state t, and 0 otherwise.
The score of v ∈ V (G) is score(v) = supt{scoret(v)}, and the vertex-edge coloring
number is colve(G) = supv∈V (G){score(v)}+ 1.

• (Comment 2) I wonder whether with the more natural definition (see Comment
1) the precondition “locally finite” is needed. There seems to be no need for it.
Otherwise, please mention why and where you need the precondition “locally finite”
to make the game well- defined.

Indeed. We could safely remove this condition.

• (Comment 3) In all theorems, lemmas, propositions and corollaries, please make
clear in the formulation of the assertion and in the proofs whether they hold in
general (i.e. for infinite multigraphs) or only for finite multigraphs.

It is now clearly indicated if a graph in a statement is finite and/or simple. After
the definition of the vertex-edge coloring number, we explain that the invariant is
well defined for both finite and infinite graphs and all results given in the paper hold
for infinite graphs as well, unless otherwise is stated. We restrict to finite graphs
just in two graph classes, planar and outerplanar graphs. For those two graph
families we have not found the results about bounded degree orientation for the
infinite case in the literature. In addition, the results about complete (multi)graphs
clearly only hold in the finite case.
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In particular, Lemma 2 and its proofs should be formulated for the general case,
since in Theorem 12 and Propositions 13 and 14 it has to be used for infinite graphs.

Indeed Lemma 3 (Lemma 2 in the previous version) is now stated and proved for
the general case that can be used also for lattices.

Furthermore,

– the equation p(G) = dd∗(G)e is only valid for finite multigraphs, since al-
though the pseudoarboricity is well-defined for infinite multigraphs, your def-
inition of maximum density does not apply to infinite multigraphs;

As mentioned and explained in the answer to Reviewer #1, we have removed
several concepts (including pseudoarbority) from various reasons, which makes
this issue obsolete.

– the proof of Corollary 7 uses the maximum density, therefore Corollary 7
holds has been proven only for finite multigraphs and it may not be used in
the proofs of Theorem 12, Propositions 13 and 14.

Propositions 11 and 12 (previous 13 and 14) are now proved by using Lemma
3 (Orientation Lemma), which has been proved also for infinite graphs.

• (Comment 4) In the last subcase of the second case in the proof of Proposition 10
and three times in the proof of Theorem 12, you use the fact that if in a graph
there is a path of length ≥ 3 whose inner vertices have degree 3 and are unmarked
and whose outer edges are marked whereas its inner edges are unmarked (you
have called such a path “free path” somewhere) and it is Bob’s turn, then Bob
has a strategy to force a score of at least 3. You might formulate this fact as a
“Free-Path”-Lemma and prove it once and shorten the proofs of Proposition 10
and Theorem 12 by deleting the repeated argument and replacing it by a reference
to the new lemma.

Done. Thank you for this nice suggestion!

• I suggest to explain where you use the preconditions M(S) > s1 and M(S′) > s′1
inn the proof of Lemma 15 (iv).

This issue was noticed also by Reviewer #1. The fact is that condition M(S) > s1
is not needed, hence we removed it. We also added a reason why M(S′) > s′1 is
needed. Indeed, if M(S′) = s′1, then it is possible that M(S) < M(S′).

• I suggest to explain why property (iv) can be applied to Qt and Pt (i.e., why does
M(Qt) > 2 hold also in this case?)

The condition M(Qt) > m(Qt) is not the precondition of (iv) any more (see the
previous comment), so we do not need to check if this holds.

• In the proof of Proposition 20 it is essential that Alice has the first move. Therefore
the characterisation of graphs with vertex-edge coloring number at most 2 given in
Proposition 20 holds only for connected graphs. It might be interesting to discuss
the case of disconnected graphs as well.

4



The proposition has been modified so that it gives the characterization of all (con-
nected and disconnected) graphs G with colve(G) = 2.

• (Comment 5) You might remark that the combination of Proposition 22 with The-
orem 11 improves the general upper bound 5 for the game coloring number of
cactuses given by Sidorowicz [1] to the value 3 in the special case of “subdivided”
cactuses.

Done, thanks.

• It should be ”coloring number of a CONNECTED graph G yield the same ”. You
might also discuss disconnected graphs.

Since the characterization is now given for all graphs, CONNECTED is not needed
any more.

• You might give a motivation for Question 5 (which might include a definition of
the lexicographic graph product).

Done.

Minor comments
We have also checked all other (many) minor comments of the reviewer, and incor-

porated them to the revised version, with thanks.
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Abstract

The study of a variation of the marking game, in which the first player marks
vertices and the second player marks edges of an undirected graph was proposed by
Bartnicki et al. in [Game chromatic number of Cartesian product graphs, Electron.
J. Combin. 15 (2008) #R72]. In this game, the goal of the second player is to mark as
many edges around an unmarked vertex as possible, while the first player wants just
the opposite. In this paper, we prove various bounds for the corresponding graph
invariant, the vertex-edge coloring number colve(G) of a graph G. In particular,
every (finite or infinite) graph G whose edges can be oriented in such a way that the
maximum out-degree is bounded by an integer d has colve(G) ≤ d+2. We investigate
this invariant in (classes of) planar graphs, including some infinite lattices. We
present a close connection between the vertex-edge coloring number of a graph G
and the game coloring number of the subdivision graph S(G). In our main result,
we bound the vertex-edge coloring number in complete graphs from below and from
above, and while colve(Kn) ≤ dlog2 ne + 2, the difference between the upper and
the lower bound is roughly log2(log2 n). The latter results are in fact true for any
multigraph whose underlying graph is Kn.

Keywords: marking game, coloring game, degenerate graph, complete graph

AMS Subj. Class. (2010): 05C15, 05C57

1 Introduction

The coloring game on graphs was introduced independently by Gardner [11] and Bod-

lander [4], and was henceforth studied by a number of authors. The initial version of the
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coloring game triggered numerous investigations, which resulted in the development of

various methods and strategies; see the brief survey on different kinds of coloring games

by Bartnicki et al. [3]. A close variation of the coloring game, which has been one of the

main tools for bounding the game chromatic number, is the marking game as introduced

by Zhu [17] (see also [1, 5, 12, 13, 14, 16, 18] for some further studies). The marking

game can be viewed as the game version of the coloring number, which was introduced

by Erdős and Hajnal [9] for infinite graphs. One can make a small modification of the

definition from [17] so that it works for infinite graphs. The marking game is played on

a graph G by two players, Alice and Bob, who alternate turns in choosing a previously

unchosen vertex v of G; at the point v is chosen its score s(v) is determined as the cardi-

nality of the set of (previously) chosen neighbors of v. The resulting invariant, the game

coloring number is defined as colg(G) = 1 + sup{s(x) |x ∈ V (G)}, where it is assumed

that Alice’s goal is to minimize and Bob’s goal is to maximize the final score and both

players play optimally. For all concepts mentioned, but not defined in this paper we refer

to [7].

The vertex-edge marking game has been defined by Bartnicki et al. [2] as a variation

of the marking game on vertices: as usual, two players play the game, and while the

first player Alice marks vertices, Bob marks edges. The goal of Bob is to surround an

unmarked vertex by as many marked edges as possible, while the goal of Alice is opposite;

she wishes to keep the number of marked edges incident to an unmarked vertex as small

as possible. The score of a vertex v at a certain state t of the game, scoret(v), is the

number of marked edges incident with v if v is unmarked at state t, and 0 otherwise. The

score of v ∈ V (G) is score(v) = supt{scoret(v)}, and the vertex-edge coloring number is

colve(G) = sup
v∈V (G)

{score(v)}+ 1 .

Note that the above definition of the vertex-edge coloring number is well defined

for both finite and infinite graphs and all results we give hold for infinite graphs as well,

unless otherwise stated. Also note that the vertex-edge marking game can be extended to

multigraphs (allowing multiple edges between two vertices). We begin with the following

obvious observation.

Lemma 1. For every multigraph G, if H is a submultigraph of G, then we have colve(H) ≤
colve(G).

The vertex-edge coloring number of a graph G is closely related to the game coloring

number of the subdivision S(G) of G, obtained by subdividing every edge of G exactly

once:
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Proposition 2. If colve(G) > 2, then colve(G) = colg(S(G)).

(The proof of this result is given in Section 5.) Through this connection, one can de-

rive from [13, Example 6.1] that colve(Kn,n) is unbounded when n grows. Consequently,

also {colve(Kn) |n ∈ N} is unbounded, and we give some light on the asymptotic be-

haviour of the vertex-edge coloring number in complete graphs. More precisely, we prove

that

blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 2 ≤ colve(Kn) ≤ dlog2 ne+ 2. (1)

In fact, the upper bound in (1) holds even if Kn is generalized to K
(p)
n , where each edge

of Kn is replaced by the set of multiple edges of an arbitrarily large cardinality p. For the

upper bound we model the game as a process on sorted words of integers that represent

the positions in the game.

The paper is organized as follows. In the next section, we prove a basic auxiliary

result, which we call the Orientation Lemma, and give several immediate consequences

of this result, related to degeneracy and arboricity. In Section 3, we infer from the

Orientation Lemma that colve(G) ≤ 5 in finite planar graphs G, and prove sharp up-

per bounds for the vertex-edge coloring number in cactus graphs and finite outerplanar

graphs (which are 3 and 4, respectively). We also determine the exact value of the in-

variant in the hexagonal lattice and the square lattice, and bound it in the triangular

lattice. Section 4 is concerned with complete graphs and the proof of (1). In Section 5

we prove Proposition 2, and in the last section we propose several open problems.

2 Constrained degree orientations

In this section, we present a general upper bound for the vertex-edge coloring number of a

graph which involves orientations of its edges. We also give some immediate consequences

of this result that will be applied in several proofs of subsequent sections.

A graph has a d-bounded orientation if its edges can be oriented in such a way that the

maximum out-degree of the vertices in the resulting digraph is at most d. The concept

was introduced under this name by Chrobak and Eppstein [6] although similar concepts

have been studied earlier (see e.g. [10]).

Lemma 3 (Orientation Lemma). If G is a graph which has a d-bounded orientation,

then colve(G) ≤ d + 2.

Proof. Consider an oriented digraph D obtained from G by orienting its edges in such a

way that outdeg(v) ≤ d for all v ∈ V (G). Alice’s strategy to maintain score(v) ≤ d + 1

for every vertex v is as follows. Suppose that Bob marked an edge e = uv, and u → v

is the orientation of e in D. Then Alice marks v if v has not yet been marked (and
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otherwise she marks any unmarked vertex). Note that at the point v was marked, uv is

the only marked edge in G for which the orientation is towards v. Since v has outdegree

at most d, there are thus at most d + 1 edges incident to v that were already marked at

the time v is marked. Hence score(v) ≤ d + 1, which gives the claimed statement.

Another well-known parameter related to bounded-degree orientations is degeneracy.

A k-degenerate graph is a graph in which every subgraph has a vertex incident with at

most k edges. Alternatively, a graph is k-degenerate if and only if there is an ordering

of its vertices such that every vertex v has at most k backward edges with respect to

the ordering. Note that a k-degenerate graph has a k-bounded orientation. Bounded

orientation is also in relation with arboricity: if G can be decomposed into k forests,

then it has a k-bounded orientation (simply orient each tree towards a root). Hence, by

Lemma 3, we have the following bound.

Corollary 4. Given a positive integer k, if G is a k-degenerate graph or if its edge-set

can be decomposed into k forests, then colve(G) ≤ k + 2.

Since colve(P6) = 3 we get the following result.

Corollary 5. For any forest F we have colve(F ) ≤ 3 and the bound is tight.

3 Planar graphs

Using the tools of Section 2 and other known results, we derive sharp upper bounds for

the vertex-edge coloring number in several classes of planar graphs. In particular, we

find exact values of the vertex-edge coloring numbers of two infinite lattices.

First, since every finite planar graph has a 3-bounded orientation (which can even

be constructed in linear time, see [6]), we infer by the Orientation Lemma the following

general bound for planar graphs.

Proposition 6. For every finite planar graph we have colve(G) ≤ 5.

We next present an auxiliary result concerning a lower bound for the vertex-edge

coloring number, for which we need the following definition. In a graph G on which the

vertex-edge marking game is played, a free-path is a path P of length at least 3 whose

inner vertices have degree at least 3 in G and are unmarked and whose endvertices have

incident marked edges in P .

Lemma 7 (Free-path Lemma). If at some state in the vertex-edge coloring game, a graph

G contains a free-path and it is Bob’s turn, then Bob has a strategy to force colve(G) ≥ 4.
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Proof. Let P = (x1, x2, . . . , x`+1) be a free-path of length ` ≥ 3 in G. We prove the

lemma by induction on `. If ` = 3 then Bob marks the edge x2x3 (if it is already marked,

then he marks an arbitrary unmarked edge), leading to two unmarked vertices x2 and x3

with score 2. Thus, whatever the choice of Alice, there will remain an unmarked vertex

of score 2 and Bob will mark an edge incident with it to obtain a score of 3. Assume

now the lemma is true for free-paths of length at most `′ = ` − 1. We prove that Bob

can ensure a score of 3 with the free-path P of length `. Bob marks the edge x2x3 (or

an arbitrary unmarked edge if x2x3 is already marked) and then either Alice marks x2

and then we have a free-path (x2, x3, . . . , x`+1) of length `− 1 which, by induction, gives

the result or else, in the case Alice does not mark x2, Bob can mark an unmarked edge

incident with x2 (if x2 has all its incident edges marked, then it has already a score of

at least 3) to obtain a score of 3 on x2, which implies colve(G) ≥ 4.

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 1: The graph H and one of the two disjoint copies of the graph G (inside the
dashed area) contained in H; the thick line indicating the first edge chosen by Bob.

We are now able to prove the following result for outerplanar graphs. The Cartesian

product G�H of two graphs G and H is the graph with vertex set V (G) × V (H) and

in which vertices (g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G) and h1 = h2, or

g1 = g2 and h1h2 ∈ E(H).

Proposition 8. Let G be a finite outerplanar graph, then colve(G) ≤ 4 and the bound is

tight.

Proof. Outerplanar graphs are 2-degenerate, hence Corollary 4 gives the upper bound.

For the tightness, we prove that the graph H = P10�P2 with a leaf added on each of

its four vertices of degree 2 satisfies colve(H) ≥ 4. Let G be the graph P5�P2 with an

added leaf on two adjacent vertices of degree 2. We let ui and vi, for i ∈ {1, . . . , 5} be the

vertices of G such that, for i ∈ {1, 2, 3, 4}, ui, vi, ui+1 and vi+1 is an induced square of

G (uivi, ui+1vi+1, uiui+1 and vivi+1 being the edges of this square). Remark that there

are two disjoint copies of G in H (see Figure 1). Consequently, whatever the first vertex

marked by Alice, there remains one copy of G unmarked by Alice. The strategy of Bob

starts by marking the edge u4v4 of this unmarked copy of G in H (see Figure 1).
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First, if Alice does not mark u4 or v4, then there is at least one edge consisting

of unmarked vertices among u3v3 and u5v5 and Bob marks this edge, say it is u3v3.

Whatever the vertex Alice marks next, there is a free-path of length 3 between either v3

and v4 or between u3 and u4, and hence by Lemma 7 there is a vertex of score 3.

Second, if Alice marks u4 or v4, then suppose, without loss of generality, that Alice

has marked v4. In this case Bob marks the edge u2v2. We distinguish two cases. In the

case Alice does not mark u2 or v2, then Bob marks an edge containing only non-marked

vertices among u1v1 and u3v3 and whatever the vertex Alice marks, Bob can mark

an edge between two unmarked vertices so that they are now both incident with two

marked edges. In the case Alice marks u2, there is a free-path (v4, u4, u3, v3, v2, u2) and

thus by Lemma 7, Bob can force a score of at least 3 in some vertex. Otherwise if Alice

marks v2, then there is again a free-path (v4, u4, u3, u2, v2), hence, again by Lemma 7,

colve(G) ≥ 4.

A cactus graph is a connected graph in which any two simple cycles have at most one

vertex in common. Such graphs have a tree structure, i.e., each of its blocks is either

a cycle or an edge and the intersection graph of its blocks is a tree. Since every cactus

graph G is outerplanar, we have colve(G) ≤ 4 by Proposition 8 for such graphs. However,

we prove a stronger bound in the next theorem.

Theorem 9. For every cactus graph GC , we have colve(GC) ≤ 3.

Proof. Assume that GC has at least one cycle C1 since otherwise GC would be a tree

and hence Proposition 6 would allow to conclude.

Then in each other block B of GC , there is a unique vertex x that is closer to C1

than the other vertices of B (by the tree structure of the cactus). We call this vertex x

the head of B. For the cycle C1, we choose an arbitrary vertex to be the head.

The strategy of Alice is the following:

R1. At the beginning, Alice marks any vertex of C1.

R2. If Bob has marked an edge e that does not lie in a cycle, then if possible, Alice

marks the head of e, otherwise (if the head is already marked) Alice marks an

arbitrary unmarked vertex of GC .

R3. If Bob has marked an edge of a cycle C of GC and no other edges of C are marked,

then if possible, Alice marks the head of C, otherwise she marks an arbitrary

unmarked vertex of GC .

R4. Otherwise, if Bob marks an edge e = uv of C and C had already marked edges, then

if possible, Alice marks among u and v the vertex that is closer to the first marked
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edge of C along the path that does not cross the head of C. If this is not possible

(the chosen vertex is already marked), then Alice marks an arbitrary vertex of GC .

We now prove that with this strategy for Alice, there will not exist an unmarked

vertex u that is incident with more than two marked edges. If u is not in a cycle, then

by Rule R2, only the edge emanating from u towards the root cycle C1 and at most one

edge in the other direction may be marked at the time u is marked. If u lies in a cycle C

of GC and u has both of its two incident edges in C marked, then other edges incident

with u are not marked, by Rules R2 and R3. In addition, by Rule R4, Alice will mark

u when both of the incident edges of u in C are marked. Otherwise, if at most one edge

in C, which is incident with u, is marked, then by Rules R2 and R3, u will be marked

as the head of any other edge (or the head of the corresponding cycle) with which u is

incident. Hence, in either case, as soon as two edges incident with u are being marked,

u will be marked, thus the score of u is at most 2.

Theorem 10. If H is the infinite hexagonal lattice, then colve(H) = 4.

Proof. It is easy to orient the edges of H in such a way that each vertex has out-degree

at most 2 (see Figure 2 showing a portion of the hexagonal lattice with the orientation of

edges depicted), hence, by Lemma 3, we infer colve(H) ≤ 4. To prove the lower bound,

we are going to show that Bob has a strategy which ensures a score of 3 in some vertex

of H.

Consider a sufficiently large portion of the hexagonal lattice such that after Alice’s

first move, Bob is able to mark an edge e1 = x1y1 that is far enough from the vertex

marked by Alice (distance 7 should suffice). See Figure 2 for the names of the other

edges and vertices considered. If Alice does not mark x1 or y1, then Bob marks an edge

e ∈ {e11, e12} such that all vertices of the 6-cycle C containing e1 and e are unmarked.

Hence whatever the vertex Alice marks there is a free-path of length 4 on C and by

Lemma 7, Bob has a way to force a score of 3.

Now assume, without loss of generality, that Alice has marked vertex x1. Then Bob

marks the edge e2 = x2y2. Suppose that in the next move Alice does not mark vertex y1.

Then there remains a free path between either x2 (if y2 is not marked) or y2 (if x2 is not

marked) and x1 and by Lemma 7, Bob has a way to force a score of 3 in some vertex.

Otherwise, if Alice marks y1 then Bob marks the edge e3 = x3y3, by which he gets

two marked edges of the 6-cycle, none of which vertices is marked. Hence, whatever the

vertex marked by Alice, there will remain a free-path between x2 or y2 and x3 or y3 and

thus Bob will be able again to force a score of 3, yielding colve(H) ≥ 4.

Proposition 11. If S is the infinite square lattice, then colve(S) = 4.

12



e11

e12

x1
y1x2

y2

x3

y3

Figure 2: A part of the hexagonal lattice with 2-bounded orientation and some designated
edges and vertices.

Figure 3: The square lattice with 2-bounded orientation and the triangular lattice with
3-bounded orientation.

Proof. Since the graph H from the proof of Proposition 8 is a subgraph of S, it follows

from Lemma 1 that 4 = colve(H) ≤ colve(S).

For the upper bound we use the Orientation Lemma, noting that S can be oriented

in such a way that the out-degree of every vertex of S is bounded by 2, see Figure 3.

For the triangular lattice, there is an orientation of its edges such that the out-degree

of every vertex is 3 (see Figure 3), hence we infer by Lemma 3 the following upper bound.

Proposition 12. If T is the infinite triangular lattice, then colve(T ) ≤ 5.

Since H is a spanning subgraph of T , we infer the lower bound colve(T ) ≥ 4. We

wonder what is the exact value of the vertex-edge coloring number of T . The question

is related also to the exact upper bound of this number in planar graphs.

4 Complete graphs

In order to prove the upper bound on the vertex-edge marking game on complete graphs,

we find convenient to model the game as a process on sorted words of integers that will

13



represent the positions of the game (i.e., the number of incident marked edges of each

unmarked vertex). This model enables us to prove the upper bound for a family of

multigraphs that generalize complete graphs; notably, given a positive integer n and a

non-zero cardinal number p, the multigraph K
(p)
n has n vertices and between each pair

of vertices there are p parallel edges.

We first introduce some notation and two lemmas on sorted words. Let S be a finite

sequence of non-negative integers in non-increasing order, i.e., let S = s1s2 · · · sp be a

word over the alphabet of integers, with s1 ≥ s2 ≥ · · · ≥ sp; p = |S|. This is called

a sorted word. We consider the process that starts from a sorted word S and apply

inductively the operation that consists in suppressing the first letter s1 of the word and

adding the value 1 to two distinct letters of the word (and then reordering the letters of

the word in such a way that it becomes a sorted word). More formally, let f be a function

that maps a sorted word S = s1 · · · sp, where p ≥ 3, to a sorted word T = t1 · · · tp−1,
such that there exist i, j ∈ {2, . . . , p}, i 6= j, and s′k = sk+1 for j 6= k + 1 6= i, and

s′i−1 = si + 1, s′j−1 = sj + 1, and T is obtained from S′ = s′1s
′
2 · · · s′p−1 by an eventual

reordering of S′ to create a non-increasing order. We then write f(S) = T . When p = 2,

we let f(s1s2) = s2 + 1 (that is, the resulting word T is of length 1).

Let M(S) be the maximum integer in a word that can be obtained by this process

starting from the word S. More formally, let m(S) be the maximum (i.e., the first)

integer of a word S. Then let SS = {S′| ∃f1, . . . , fk : S′ = fk ◦ . . .◦f1(S)}. Alternatively,

we can define M(S) as max{m(S′)| S′ ∈ SS}.
We also define the partial order � on sorted words by S � S′ if |S| ≤ |S′| and for

each i, 1 ≤ i ≤ |S|, si ≤ s′i.

Lemma 13. The following properties hold for sorted words.

(i) if S � S′, then M(S) ≤M(S′);

(ii) if f(S) = S′, then M(S′) ≤M(S);

(iii) for any positive integer i, M(1i) = 1 + M(0i);

(iv) if M(S′) > s′1, |S| = |S′|, and si ≥ s′i for every integer i, i ≥ 2, then M(S) ≥
M(S′).

(v) for any integers r ≥ 2 and s ≥ 2, we have M(1r0s) ≤M(1r+10s−2).

Proof. (i) Let Sm be the word of SS such that m(Sm) = M(S). Let f1, . . . , fk be the

functions such that Sm = fk ◦ . . . ◦ f1(S). Since S � S′, then clearly, for the word

S′m = fk ◦ . . . ◦ f1(S′) we have m(S′m) ≥ m(Sm) = M(S).

(ii) If f(S) = S′, then SS′ ⊆ SS , which implies that M(S′) ≤M(S).
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(iii) Let Sm be a sorted word of S0i such that m(Sm) = M(0i). The same sequence of

functions used to obtain Sm from 0i can be used on 1i to obtain a sorted word S′m such

that m(S′m) = M(1i). We infer m(S′m) = m(Sm) + 1.

(iv) Let S′m be the word of SS′ such that m(S′m) = M(S′). Since M(S′) > s′1, there exist

the set of functions f1, . . . , fk such that S′m = fk ◦ . . . ◦ f1(S′). Note that fk ◦ . . . ◦ f1(S)

yields a sorted word Sm such that M(S) ≥ m(Sm) ≥ m(S′m) = M(S′).

(v) Let us prove that for any integers r ≥ 2 and s ≥ 2, we have M(1r0s) ≤M(1r+10s−2).

Let 1r0s = P0, P1, . . . , Pn = Sm be a sequence of words with fi(Pi) = Pi+1 for 0 ≤ i ≤
n−1, and M(1r0s) = m(Sm). Let t be the smallest integer such that Pt does not contain

the subword 0s. (If such an integer t does not exists, then we have M(1r0s) = M(1r) ≤
M(1r+10s−2), by property (i), as desired.) Let Q1 = 1r+10s−2. For any i, 2 ≤ i ≤ t, we

denote by Qi the sorted word fi−2 ◦ · · · f0(Q1). See the diagram on Figure 4.

P0 = 1r0s P1 = f0(1
r0s) Pt−1 = ft−2 ◦ · · · ◦ f0(1r0s)

Q1 = 1r+10s−2 Q2 = f0(1
r+10s−2) Qt = ft−2 ◦ · · · ◦ f0(1r+10s−2)

f0 f1...ft−2

f0 f1...ft−2

Figure 4: Illustration of the proof of Lemma 13.

Note that Pt−1 = ft−2 ◦ · · · ◦ f0(1r0s) = u1 . . . ur−t+10
s, and Qt = ft−2 ◦ · · · ◦

f0(1
r+10s−2) = u1 . . . ur−t+11

10s−2 (since f1, . . . ft−2 are functions whose composition

changes the r first integers equal to 1 into u1 . . . ur−t+1). Observe that Pt is obtained

from Pt−1 by deleting the first integer and adding 1 to two integers, at least one of which

is 0.

We distinguish two cases. If Pt was obtained from Pt−1 by adding 1 to two integers

equal to 0, then Pt = u2 . . . ur−t+11
20s−2, and clearly Pt � Qt, which implies M(Pt) ≤

M(Qt) by property (i). Thus, we have M(1r0s) = M(Pt) ≤M(Qt) ≤M(1r+10s−2).

The second case is that Pt is obtained from Pt−1 by suppressing u1, changing one

integer 0 to 1 and increasing by 1 an integer ui, where i ∈ {2, . . . , r − t + 1}. Suppose

ui < u2. Then, let j be the largest index in {2, . . . , i− 1} such that uj > ui. Hence,

Pt = u2 . . . uj(ui + 1)uj+1 . . . ui−1ui+1 . . . ur−t+11
10s−1.

Note that Pt � Qt, since uj ≥ ui + 1. We again derive in the same way that M(1r0s) ≤
M(1r+10s−2). Finally, suppose that ui = u2. Then Pt = (u2 + 1)u3 . . . ur−t+110s−1. If

M(P0) = M(Pt) = u2 + 1, then M(Qt) ≥ u2 + 1, because for Q′ = f(Qt), where f

is a function that increases the second integer by 1, we get M(Qt) ≥ M(Q′) ≥ u2 + 1.
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Otherwise, if M(Pt) > u2+1, then by property (iv) applied on Qt and Pt, we get M(Qt) ≥
M(Pt). In either case, we infer M(1r0s) = M(Pt) ≤M(Qt) ≤M(1r+10s−2).

The properties of Lemma 13 are used to prove the following lemma.

Lemma 14. For any k ≥ 1 we have M(02
k+1) = k + 1 = dlog2(2

k + 1)e.

Proof. Let t = 2k + 1, where k ≥ 1. Using the sequence of functions that always

change two zeros, we get the sequence of words, 0t, 120t−3, . . . , 1d
t
2
e−102, 1d

t
2
e. Therefore

M(1d
t
2
e) ≤M(0t).

Now, we show the reversed inequality, M(0t) ≤M(1d
t
2
e). Since S0t = S120t−3 ∪ {0t},

we have M(0t) = M(120t−3). If k = 1, that is, t = 3, this gives M(0t) = M(03) =

M(12) = M(1d
t
2
e). Otherwise, we apply Lemma 13(v) several times and we get M(0t) =

M(120t−3) ≤M(130t−5) ≤ . . . ≤M(1d
t
2
e).

We prove M(02
k+1) = k + 1 by induction on k. When k = 1, we clearly have

M(000) = 2. By the above, M(02
k+1) = M(12

k−1+1). By Lemma 13(iii), this is in turn

equal to 1+M(02
k−1+1), which is by induction equal to k. Hence, M(02

k+1) = k+1.

Corollary 15. For any n ≥ 3, we have M(0n) ≤ dlog2 ne+ 1.

Proof. For n ≥ 3, let k be the integer such that 2k−1 + 1 < n ≤ 2k + 1. Thus, by

Lemma 13(i) and Lemma 14, M(0n) ≤M(02
k+1) = k + 1 ≤ dlog2 ne+ 1.

We think that in fact M(0n) = dlog2 ne, but could not improve the upper bound

from Corollary 15. We are now ready to prove the upper bound for colve(K
(p)
n ).

Theorem 16. For a non-zero cardinal number p and every n ≥ 2,

colve(K
(p)
n ) ≤ dlog2 ne+ 2.

Proof. We are going to prove the upper bound dlog2 ne + 2 for the multigraph K
(p)
n ,

where p ≥ n− 1. Then, Lemma 1 yields the statement of the theorem for any p < n− 1

as well.

The strategy of Alice is to mark at each step a vertex having a maximum number of

incident edges that are marked. We will prove that whatever the strategy of Bob, there

will be no unmarked vertex with more than dlog2 ne+ 1 incident marked edges. Clearly,

at any step for which there remain at least two unmarked vertices, we can assume that

Bob marks an edge e = xy with both x and y being not already marked, by which the

score of two vertices is increased. When just one vertex x remains unmarked by Alice,

then Bob marks an edge incident with x increasing its score by 1 (therefore, before the

penultimate move of Alice, x and y have been unmarked, and if they have the same
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number of incident marked edges at that time, then it is possible that colve(K
(p)
n ) is

attained only by the score of x). With this hypothesis, we can represent the game by a

sequence S0, S1, . . . , Sn−1 of sorted words of integers as described above; word Si, where

0 ≤ i ≤ n − 1, is the sorted word that contains the numbers of marked edges incident

with each unmarked vertex of K
(p)
n after the ith move of Bob. In addition, Si is obtained

from Si−1 by a function as described above. Since we have S0 = 0n, then, by virtue of

Corollary 15, we obtain M(S0) ≤ dlog2 ne+ 1, and hence colve(K
(p)
n ) ≤ dlog2 ne+ 2.

Clearly, plugging p = 1 in Theorem 16, we get colve(Kn) ≤ dlog2 ne + 2. Note that

Lemma 14 implies that colve(Kn) ≤ dlog2 ne+ 1, for n = 2k + 1.

Now, we prove the lower bound in (1) by presenting a strategy for Bob for which at

least one vertex will have a score of blog2(n − 1)c − dlog2 blog2(n− 1)ce + 1 whatever

Alice’s strategy.

Theorem 17. For every n ≥ 3, we have

colve(Kn) ≥ blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 2.

Proof. First, we consider the graph Kn, where n = 2k + 1. The strategy of Bob consists

of several steps, in each of which Bob marks edges of a matching. After the ith step Bob

can ensure that there exists a subgraph Gi with 2k−i unmarked vertices each of which is

incident with i marked edges.

Note that Alice starts the game by marking an arbitrary vertex x. Let X0 = {x} and

G0 = Kn − X0. Clearly, G0 has 2k unmarked vertices each of which is incident with 0

marked edges (which presents the zero-th step).

We follow with the first step and it is Bob’s turn. In the next 2k−1 moves Bob marks

edges of a perfect matching of G0. During this time, Alice marks 2k−1 vertices (denote

this set of vertices by X1) of G0. Let G1 = G0 − X1, and note that G1 has (at least)

2k−1 unmarked vertices each of which is incident with 1 marked edge. This ends the first

step and note that Alice was the last to play in this step.

In the ith step we note by induction that there exists a subgraph Gi−1 with 2k−i+1

unmarked vertices each of which is incident with i − 1 marked edges. If there exists

a perfect matching in Gi−1 that consists of non-marked edges, then in the next 2k−i

moves Bob marks edges of this perfect matching. During this time, Alice marks 2k−i

vertices (denote this set of vertices by Xi) of Gi−1. Then Gi = Gi−1 −Xi has (at least)

2k−i unmarked vertices each of which is incident with i marked edges. We apply Dirac’s

theorem [8], which ensures a Hamiltonian cycle in a graph H with even order if each

vertex has degree at least half of the order. This in turn implies the existence of a
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perfect matching in H. Therefore, Bob can ensure the existence of a perfect matching

of non-marked edges in Gi−1 if

|V (Gi−1)| − 1− (i− 1) ≥ 1

2
|V (Gi−1)|.

That is, 2k−i+1 − i ≥ 2k−i, which gives

2k−i ≥ i. (2)

The number of steps (in Bob’s strategy) is the largest i such that (2) is fulfilled. When

this condition is no longer fulfilled (after the ith step), Bob can mark an edge incident

to an unmarked vertex of Gi by which the score of this vertex is at least i + 1 (and so

colve(Kn) ≥ i + 2).

Since i ∈ N, the largest i satisfying (2) is k − dlog2 ke or k − dlog2 ke+ 1 (depending

on k). In the case n = 2k + 1, we get colve(Kn) ≥ log2 (n− 1)−dlog2 (log2 (n− 1))e+ 2.

Finally, let 2k ≤ n− 1 < 2k+1. Therefore,

colve(Kn) ≥ colve(K2k+1) ≥ k − dlog2 ke+ 2 ≥ blog2(n− 1)c − dlog2 blog2(n− 1)ce+ 2.

5 Relations with the marking game

We will prove that the vertex-edge coloring number of a graph G coincides with the game

coloring number of the graph S(G) obtained from G by subdividing all of its edges once,

as soon as the vertex-edge coloring number of G is at least 3 (Proposition 2).

First, we prove that the class of graphs G with colve(G) ≤ 2 is small. Clearly, only

graphs with no edges have this number equal to 1. We characterize the graphs with

colve(G) = 2 as follows.

Proposition 18. If G is a non-empty graph, then colve(G) = 2 if and only if G is

a forest with at most one connected component of diameter at most 4 and all other

connected components of diameter at most 2.

Proof. First, suppose that colve(G) = 2. Remark that if Bob can mark an edge having

each of its end-vertices unmarked and incident to an unmarked edge, then it implies

colve(G) ≥ 3. If G contains a cycle, such an edge can be found in Bob’s first move. Thus

G is a forest. If G has a connected component T of diameter at least 5 or if G contains
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two connected components both having diameter at least 3, such an edge can be found

at first Bob’s move whatever the vertex Alice has chosen in her first move.

For the converse, let G be a non-empty forest with at most one connected component

T1 of diameter at most 4 and all other connected components T2, . . . , Tk of diameter at

most 2. Let ci be a center of Ti for any i ∈ {1, . . . , k}. The strategy of Alice is to first

mark c1 and then after each Bob’s move (in which he marks an edge e), she marks (if

possible) an unmarked vertex incident with e that is not a leaf. Therefore the score of

each vertex in G is at most 1 and colve(G) = 2.

For the purpose of proving the next result, which connects the vertex-edge marking

game on a graph G with the (standard) marking game on the subdivided graph S(G),

we propose two variations of the vertex-edge marking game. In the first variation, which

we call vertex-edge-star-Alice marking game, Alice is allowed to play also on the edges

while Bob’s role does not change. The corresponding score of the game will be denoted

by col∗Ave (G), and is defined exactly the same as in the standard vertex-edge marking

game, that is, sup
v∈V (G)

{score(v)} + 1. As in the vertex-edge marking game, score(v) =

supt{scoret(v)}, where scoret is the number of marked edges surrounding the vertex v at

state t if v is unmarked, and 0 if v is marked at state t. Since Alice may choose to play

on the vertices of G as long as possible also in the vertex-edge-star-Alice marking game,

and it is not to her advantage to play on the edges, it is clear that the new invariant

gives the same score.

Similarly, we call vertex-edge-star-Bob marking game the game in which Bob is al-

lowed to play also on the vertices while Alice’s role does not change. The corresponding

score of the game will be denoted by col∗Bve (G), and is again defined in the same way as

above. Since Bob may choose to play on the edges of G as long as possible in this version

of the vertex-edge marking game, and it is not to his advantage to play on the vertices,

we get the following observation.

Lemma 19. For any graph G, col∗Ave (G) = colve(G) = col∗Bve (G).

We are now able to prove Proposition 2.

Proof of Proposition 2. Consider a strategy of Alice played in the vertex-edge-star-Bob

marking game on G, which bounds score(v) from above by col∗Bve (G)−1 for all vertices v

of G. Alice can use the same strategy in the marking game in the graph S(G) by playing

only on the original vertices of G. During the marking game on S(G), she will imagine

a vertex-edge-star-Bob marking game be played on G, and will copy her moves from the

optimal strategy on the vertex-edge-star-Bob marking game on G to the real game played

on S(G). Note that the resulting score s(v) of a vertex v is bounded by col∗Bve (G)− 1 if
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Alice plays optimally (since the score of subdivided vertices is at most 3, the maximum

score will be achieved by an original vertex except possibly when colve(G) = 3). This

gives colg(S(G)) ≤ col∗Bve (G).

To see the reversed inequality, let us consider a strategy of Bob in the vertex-edge-

star-Alice marking game, which ensures that supv∈V (G){score(v)} of a vertex v in G is

at least col∗Ave (G)− 1. While playing the marking game on S(G), Bob uses this strategy

in the vertex-edge-star-Alice marking game on G, by playing the subdivided vertices of

S(G) in the corresponding order. In this way, sup{s(v) | v ∈ V (G)} ≥ col∗Ave (G) − 1,

which gives colg(S(G)) ≥ col∗Ave (G). By Lemma 19, the proof follows.

The above result implies that the results in this paper for the vertex edge coloring

number of a graph G yield the same results for the game coloring number of the subdi-

vision graph S(G), as soon as G is not a forest with at most one connected component

of diameter at most 4 and all other connected components of diameter at most 2. (Oth-

erwise, one can check that, for instance, colve(P3) = 2, yet colg(S(P3)) = colg(P5) = 3.)

Combining Proposition 2 with Theorem 9 we can improve the general upper bound 5 for

the game coloring number of cactus graphs given by Sidorowicz [15] to the value 3 in the

special case of subdivided cactus graphs.

6 Concluding remarks

There are a number of well studied classes of graphs for which it would be interesting to

establish whether the vertex-edge coloring number is bounded by a constant. (Clearly,

if a class of graphs is k-degenerate for some fixed k, then Corollary 4 provides a positive

answer.) In particular, we propose to consider the class of hypercubes, and pose the

following

Question 1. Is {colve(Qn) |n ∈ N}, where Qn denotes the hypercube of dimension n,

bounded by a constant?

As proven in Section 3, finite planar graphs admit a general upper bound of 5 for

their vertex-edge coloring number. There are several examples of (finite or infinite)

planar graphs G with colve(G) = 4, so we wonder what is the correct sharp bound in

planar graphs. We thus pose the following question.

Question 2. Is there a (finite) planar graph G with colve(G) = 5?

(Note that for infinite planar graphs we did not establish a general upper bound for

the vertex-edge marking game.) It seems that a good candidate for which Question 2

could have an affirmative answer is the triangular lattice.
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Question 3. Is colve(T ) for the triangular lattice T equal to 4 or 5?

Trivially, the following general upper bound colve(G) ≤ ∆(G) + 1 holds in every

graph G. Note that colve(Cn) = 3 for any n ≥ 3, hence the bound is attained in cycles,

as well as in the hexagonal lattice, since colve(H) = 4. We propose the problem of

characterizing the graphs G in which colve(G) = ∆(G) + 1, and pose the question about

the most interesting case.

Question 4. For which graphs G with maximum degree 3 we have colve(G) = 4?

A logarithmic upper bound for complete graphs, see Theorem 16, suggests that in

many classes of finite graphs the vertex-edge coloring number is bounded by a constant.

Therefore, it would be interesting to find a graph operation by which one could built

a family of finite graphs with unbounded vertex-edge coloring number. We think that

the lexicographic product of graphs could be such an operation. Let G and H be finite

graphs. The lexicographic product G ◦H of G and H has V (G ◦H) = V (G)×V (H), and

(g, h)(g′, h′) ∈ E(G ◦H) if either g = g′ and hh ∈ E(H), or gg′ ∈ E(G). We propose the

following question for which we suspect it has an affirmative answer.

Question 5. Is it true that colve(G ◦K4) ≥ colve(G) + 1? More generally, is colve(G ◦
K2n+1) ≥ colve(G) + n?
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