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Abstract Classical and community-aware centrality measures are two main
approaches for identifying influential nodes in complex networks. Nonetheless,
both contrast in the way they locate these nodes. This work investigates the
relationship between classical and community-aware centrality measures using
empirical data. Results demonstrate that the correlation between represen-
tative measures of these two approaches ranges from low to medium values.
Furthermore, transitivity, efficiency, and mixing parameter are critical network
topological properties driving their interactions.

Keywords Centrality Measures · Community Structure · Influential Nodes

1 Introduction

Real-world systems modeled into networks can be protected from epidemics,
guarded against electric blackouts, or fully exposed to specific information,
thanks to a minimal set of influential nodes [1]. Centrality measures are one
of the main approaches in identifying influential nodes. The main focus of
centrality measures is to exploit local or global information of the network to
identify key nodes [1,2]. Until recently, exploiting the community structure to
identify influential nodes has shown the merit of this approach compared to
classical centrality measures [3–11].

These “community-aware” centrality measures differentiate between a node’s
links inside its community (i.e., intra-community links) and outside of it (i.e.,
inter-community links). Indeed, a node belonging to a specific community with
many connections to other communities has a greater global influence than its
neighbors with no external links. Similarly, a node densely connected inside
its community has a more significant local influence than a node sharing few
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connections with the members of its community. Although a lot of research
concerns the relationship between classical centrality measures [12–15], the
relationship between classical and community-aware centrality measures is al-
most unexplored. In this work, we investigate the correlation between classical
and community-aware centrality measures. Additionally, we examine the in-
fluence of network topology on their correlation.

2 Classical and Community-aware Centrality Measures

In this work, we investigate ten classical and seven community-aware centrality
measures. The classical measures are: Degree (αd), Leverage (αlev), Laplacian
(αlap), Diffusion Degree (αdiff ), Maximum Neighborhood Component (αm),
Betweenness (αb), Closeness (αc), Katz (αk), PageRank (αp), and Subgraph
(αs). They can be divided into two groups. The first group consisting of the
first five are local measures. They make use of the node’s neighborhood to
quantify its importance. The second group includes the last five are global
measures. They use the whole network structure to quantify a node’s impor-
tance. For more details about the classical measures, one can refer to [1].

The seven community-aware centrality measures require the knowledge of
the community structure to derive the intra-community and inter-community
links. Subsequently, each community-aware centrality measure processes the
two types of links types differently. Community Hub-Bridge (βCHB) [3] com-
bines intra-community and inter-community links by weighting the former by
the node’s community size and the latter by the node’s number of neighboring
communities. Comm centrality (βComm) [6] weights both types of links by the
fraction of outer connections and prioritizes bridges. Community-based cen-
trality (βCBC) [8] weights inter-community and intra-community links by the
size of their belonging communities. Community-based Mediator (βCBM ) [5]
uses entropy to weight a node’s intra-community and inter-community links.
For Participation Coefficient (βPC) [4], if a node’s links are uniformly dis-
tributed across all communities, including its community, it would be consid-
ered the most influential. From a different perspective, K-shell with Commu-
nity (βks) [9] first decomposes the network into two, one composed of intra-
community links and the other composed of inter-community links. Then, the
k-shell of the node is calculated and combined by a weighting parameter.
Based on the modularity of a network, Modularity Vitality (βMV ) [7] assesses
a node’s influence according to the modularity variation when it is removed.
In the experiments, we use Infomap and Louvain to uncover the unknown
community structure of the networks under test.

3 Correlation Analysis

Kendall’s Tau correlation is computed between the classical and community-
aware centrality measures using fifty real-world networks from diverse do-
mains (animal, biological, collaboration, social networks, infrastructural, and
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miscellaneous). Results show that for each network, Kendall’s Tau median
value is around 0.5. The average median for all the networks is 0.43±0.1,
and the average mean correlation is 0.37±0.07. In other words, classical and
community-aware centrality measures generally exhibit low to medium cor-
relation. Figure 1 (A) shows the correlation distribution of 4 networks. The
correlation consistency of classical and community-aware centrality measures
is then inspected. Averaging each combination across the networks, we can
distinguish in Figure 1 (B) four situations. The first one concerns Modularity
Vitality. It is the only signed measure, resulting in a low negative correlation
between classical and community-aware centrality measures. The second cat-
egory contains Community Hub-Bridge, Participation Coefficient, and Comm
Centrality. They exhibit a low-positive correlation (≤0.45). The third category
includes Community-based mediator (≤0.6), which shows a medium-positive
correlation. Finally, the fourth category made of Community-based Centrality
and K-shell with Community exhibits a high-positive correlation.

4 Network Topology Analysis

We perform a linear regression analysis to understand the relation between
the network topological properties and the correlation between classical and
community-aware centrality measures. Its mean value represents the correla-
tion of each community-aware centrality measure with the ten classical cen-
trality measures. Simple linear regression is then performed. We investigate
macroscopic properties (Density, Transitivity, Assortativity, Average distance,
Diameter, Efficiency, and the Degree distribution exponent) and mesoscopic
properties (Modularity, Mixing parameter, Internal distance, Internal density,
Max-ODF, Average-ODF, Flake-ODF, Embeddedness, and Hub dominance).
The linear relationship is statistically significant if the p-value is below 0.05.
Transitivity shows the lowest p-value on Participation Coefficient, Community-
based Mediator, and Community-based Centrality. Nonetheless, the slopes are
negative for Participation Coefficient (ω=-0.351) and Community-based Me-
diator (ω=-0.264) but positive for Community-based Centrality (ω=0.173).
This illustrates that depending on how the community-aware centrality mea-
sure is defined, an increase in transitivity affects it differently. An increase in
transitivity means there are more triads in the network. As Participation Co-
efficient capitalizes on the difference between the intra-community and inter-
community links, transitivity may increase the margin between the two, lead-
ing to lower correlation. A similar explanation goes to Community-based Me-
diator, based on the entropy of the two link fractions. Contrarily, Community-
based Centrality reduces to degree centrality if the network forms a single
community. Hence, the correlation between Community-based Centrality and
classical centrality measures increases. Efficiency shows the lowest p-value on
Comm Centrality, Community-based Centrality, and K-shell with Community.
Unlike transitivity, efficiency exerts a positive effect on them. The mixing pa-
rameter is the most influential feature among the mesoscopic properties under
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Fig. 1 (A) The distribution of the Kendall’s Tau correlation on 4 real-world networks. (B)
The mean of the correlation of each classical and community-aware centrality measure across
the 50 networks. (C) The relationship between the mean of Community-based Mediator and
classical centrality measures for each network as a function of their mixing parameter.

study. It has a significant positive effect on Community Hub-Bridge, Participa-
tion Coefficient, and Community-based Mediator (Figure 1 (C)). The mixing
parameter quantifies the strength of the community structure. A small mixing
parameter represents a strong community structure. As it increases, the com-
munity structure gets weaker. Consequently, these measures tend to extract
dissimilar information when the network exhibits a strong community struc-
ture and similar information when the community structure becomes weaker.

5 Conclusion

This paper investigates the relationship between classical and community-
aware centrality measures. Results show that they are generally weakly corre-
lated. The most influential network topological features are transitivity, effi-
ciency, and the mixing parameter. These results are encouraging. They stimu-
late research of new community-aware centrality measures incorporating topo-
logical features of the networks.
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