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Mass transportation on sub-Riemannian
structures of rank two in dimension four

Z. BADREDDINE*

Abstract

This paper is concerned with the study of the Monge optimal trans-
port problem in sub-Riemannian manifolds where the cost is given by
the square of the sub-Riemannian distance. Our aim is to extend pre-
vious results on existence and uniqueness of optimal transport maps to
cases of sub-Riemannian structures which admit many singular mini-
mizing geodesics. We treat here the case of sub-Riemannian structures
of rank two in dimension four.

Introduction

Let M be a smooth connected manifold without boundary of dimension n >
2. The problem of optimal transportation, raised by Monge | | in 1781,
was concerned with the transport of a pile of soil into an excavation. Given
two probability measures p,v on M, we call the transport map from u to
v, any measurable application 7" : M — M such that Tyu = v (we say
that T is pushing forward p to v, ie. for every measurable set B in M,
w(T~1(B)) = v(B)). Therefore, the Monge problem was modelized as an
optimal transport problem consisting in minimizing the transportation cost

/M e, T(2))du(z),

among all the transport maps 7" : M — M.
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Here, c(x,y) represents the cost of transporting a unit of mass from a po-
sition x to some position y. The fact that the condition Ty = v is nonlinear
with respect to T', is the main difficulty in solving the Monge problem.

In 1942, Kantorovitch | | proved a duality theorem to study the re-
laxed form of the problem. He replaced the transport map 7" : M — M by
a transport plan o € II(u,v) where II(u,v) is the set of probability mea-
sures a in the product M x M with P/(a) = p and P7(a) = v ( where
P': M x M — M is the projection map into the i-th component). Hence,
Kantorovitch problem consists in minimizing

/ c(z,y)da(z,y), among all the transport plans o € I, v).
MxM

The Kantorovitch approach leads to a dual formulation (see Chapter 5 | 1)
given by:

inf c(z,y)da(x, =
it [ ctdaten]

(%@D)GLSlu(p ><L1 {/ Ply)duly / ()du(x)}. (1)
U(y) — o(x) < e(a,

This leads to find a pair of integrable functions (¢, 1)) optimal on the right-
hand side, and a transport plan « optimal on the left-hand side. The pair
of functions (¢, 1) should satisty ¢¥(y) — ¢(z) < ¢(z,y). Then, for a given v,
¥ (y) will be the infinimum of p(z) + ¢(x, y) among all z. For a given x, ¢(x)



will be the supremum of 1(y) — ¢(z,y) among all y. We may indeed assume
that ¢ is a c-convex function and 1) = ¢ satisfying the two equations below:

ola) = sup{ () = e(wp) ., v € M (2a)
v y) = xig]g{w(:v) + C(w,y)}, VyeM (2b)

The pair (¢, ¢°) is called the Kantorovitch potentials.

We refer the reader to the textbooks | , | by Villani for more
details on the optimal transport theory.

Several techniques developed by Brenier | |, McCann | |, Caval-
letti and Huesmann | | and others allow to show that in certain cases,
optimal transport plans yield indeed optimal transport maps, solutions to
the Monge problem.

This paper will be concerned with the study of the Monge problem for
the quadratic geodesic sub-Riemannian cost. Let (A, g) be a complete sub-
Riemannian structure on M, where A is a totally nonholonomic distribution
on M of rank m (m < n) and g a smooth Riemannian metric on A, that is for
every © € M, g, is a scalar product on A(x). We recall that a distribution
A is called totally nonholonomic if, for every x € M, there exist an open
neighborhood V, of z and a local frame X}, ... X™ on V), such that

Lie{X;, . ,X;”}(y) = T,M, Yy € V..

Let T' > 0. A continuous path v : [0, 7] — M is said to be horizontal with
respect to A if it is absolutely continuous with square integrable derivative
and satisfies

F(t) € A(v(t)), a.e. t €1]0,T].
The length of an horizontal path v is given by

1) = [ om0



We define the sub-Riemannian distance dggr(x,y) between two points = and
y of M as the infimum of lengths of horizontal paths joining x to y, that is,

dsr(z,y) := inf {l(’y)] v :[0,7] — M horizontal path s.t. y(0) = z,y(T) = y}.

A minimizing geodesic is an horizontal path with constant speed mini-
mizing for the sub-Riemannian distance between its end-points. We shall
say that the sub-Riemannian structure (A, g) on M is complete if the metric
space (M, dgg) is complete. Thanks to the Hopf-Rinow theorem (see | D,
if (A,g) is a complete sub-Riemannian structure on M, then minimizing
geodesics exist between any pair of points in M. Let {X Lo Xk } be a
family of & = m(n + 1) smooth vector fields generating A (see proposition
1.1.8 | |), that is for every y € M,

Aly) = Span{Xl(y), . ,X’“(y)}'
Given x € M and T > 0, the End-point mapping from z is defined by

E*: L*[0,T],R*) — M
u e E(u) = 3(T)

where 7, : [0, T] — M is the unique solution to the Cauchy problem:

Fult) = Zuz(t)Xi(%(t)), vtel[0,T] (3)
7 (0) = v

A control u is called singular if and only if it is a critical point of E*, and
regular if not. An horizontal path ~ is said to be singular (resp. regular)
if and only if any control u associated to vy (i.e. v = 7, solution of (3)) is
singular (resp. regular) for E®.

For every x € M and every T > 0, we denote by ijT the set of regular
minimizing geodesics v : [0,T] — M starting at . We also denote by QiT
the set of singular minimizing geodesics v : [0,7] — M starting at z.

The notion of singular curves play a major role in this paper. In ab-
sence of singular minimizing geodesics, sub-Riemannian distances enjoy the
same kind of regularity as Riemannian distances at least outside the diago-
nal. We recall that the diagonal of M x M is the set of all pairs of the form
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(z,x) with + € M. Following previous results by Ambrosio-Rigot | |
and Agrachev-Lee | |, Figalli and Rifford (see | |) proved that local
lipschitzness of the sub-Riemannian distance outside the diagonal is sufficient

to guarantee existence and uniqueness of optimal transport maps (see also
the textbook | | by Rifford).

In general, we do not know if the Monge problem (for the sub-Riemannian
quadratic cost) admits solutions if there are singular minimizing curves. For
a two-rank distribution A on a three-dimensional manifold M, we have ex-
istence and uniqueness of optimal transport maps for the sub-Riemannian
quadratic cost because non-trivial singular horizontal paths are included in
the Martinet surface $a given by S := {z € M| A(z) + [A, A](z) #£ T, M}
which has Lebesgue measure zero. The first relevant case to consider is the
one of rank-two distributions in dimension four. In this case, as shown by
Sussman | |, singular horizontal paths can be seen (locally) as the or-
bits of a smooth vector field, at least, outside a set of Lebesgue measure zero.

The definition of a real analytic manifold is similar to that of a smooth
manifold. We begin by recalling that an analytic function f is an infinitely
differentiable function such that the Taylor series at any point zq in its do-
main, converges to f(z) for x in a neighborhood of z5. We say that a manifold
M of dimension n is real analytic if transition maps are analytic. We pro-
vide M with a real analytic distribution A of rank m (m < n), that is for
each x € M, there are an open neighborhood U containing z and m analytic
vector fields X*!,..., X™ on U such that

Ay) = Span{Xl(y), . ,Xm(y)}, Yy e U.

In this case, the Cauchy problem given in (3), has a real analytic solution on
M for t € [0, T] and some T > 0.

The aim of this paper is to show that, in the case of rank-two analytic
distribution in dimension four, we have existence and uniqueness of optimal
transport maps for the sub-Riemannian quadratic cost, as soon as the distri-
bution satisfies some growth condition.

We recall that the support of a measure p, denoted by supp(u), refers to
the smallest closed set F' C M of full mass pu(F) = u(M) = 1.
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Our main result is the following:

Theorem 1. Let M be a real analytic manifold of dimension 4 and (A, g)
be a complete analytic sub-Riemannian structure of rank 2 on M such that

Ve e M, A(z) + [A, Al(z) has dimension 3, (4)

where
A A]:={[X,Y] | X,Y sections of A}.

Let p, v be two probability measures with compact support on M such that
is absolutely continuous with respect to the Lebesque measure L2
Then, there is existence and uniqueness of an optimal transport map from p
to v for the sub-Riemmannian quadratic cost ¢ : M x M — [0,4o00]| defined
by:

c(x,y) = dsp(z,y), Y(z,y) € M x M.

Our strategy to prove Theorem 1 is twofold. It combines the technique
used by Figalli-Rifford | | (see also the paper by Agrachev-Lee | 1)
which is based on the regularity of the distance function outside the diagonal
in absence of singular minimizing curves, together with a localized contrac-
tion property for singular curves in the spirit of a previous work by Cavalletti
and Huesmann | .

The paper is organized as follows. In Section 1, we give more details on
the strategy of proof. Then Section 2-3 are devoted to prove some required
results to achieve existence and uniqueness of optimal transport maps. In
Section 4, we finalize the proof of Theorem 1.

1 Strategy of proof

From now on, we assume that the manifold M has dimension 4 and is
equipped with a complete sub-Riemannian structure (A, g) of rank 2 such
that

Ve e M, A(z)+ [A, Al(x) has dimension 3.



We fix u, v two probability measures compactly supported on M such that u
is absolutely continuous with respect to the Lebesgue measure. As it is well-
known (see | ]), since ¢ = d%p is continuous on M x M, the Kantorovitch
transport problem between p and v with cost ¢ admits at least one solution
and there is a pair of Kantorovitch potentials (¢, ¢°) solution of the dual
problem satisfying the equations (2a) and (2b). Moreover, we denote by I'
the contact set of the pair (¢, ¢°) given by

I = {(@,y) € M x M| ¢*(y) = ¢(2) = e(w,9) }.
We get that (see Corollary 3.2.14 | E
a transport plan o € II(p, v) is optimal if and only if a(T") = 1.

In other words, the problem of existence and uniqueness of optimal transport
maps can be reduced to prove that I' is concentrated on a graph, that is to
show that for p—almost every point x € M the set

['(z):= {y € M| (z,y) € F} is a singleton.

Following | |, let us introduce the following definition:

Definition 1. We call "static” set S and "moving” set M respectively the
sets defined as follows:

S = {xEM| xEF(x)},

M = {x e M| z¢ r(m)}.

We note that M is an open subset of M. In fact, we can easily check
that M coincides with the set

{zeM|p)#¢(x)} ={ze M| px) > ()},

which is open by continuity of ¢ and ¢°.



Since both supp(u) and supp(v) are compact and the metric space (M, dsg)
is complete, there are o € M and a constant L > 0 such that

supp(u) | J supp(v) C Bsg(wo, L/4)

where Bsg(1g, L/4) is the open ball in R* centered at g of radius L.
As a consequence, any minimizing geodesic v : [0,1] — M from x € supp(u)
to y € supp(v) is contained in Bsg(zo, L/2).

BSR(Z’Q, L/2)

supp supp v

From now on, we work in the compact set Bsgr(zo, L/2) of diameter L
and so, we proceed as if M were a compact manifold.

Asin | |, we shall show that "static" points do not move, i.e. almost
every x € S is transported to itself. For sake of completeness, the proof of
Lemma 1 is given in Appendix A.

Lemma 1. For p-a.e. v € S , we have I'(x) = {z}.

We need now to show that almost every moving point is sent to a sin-
gleton. To this aim, we need to distinguish between two types of moving
points.



Definition 2. Let T > 0. For every x € M, we set

[¥(w) == {y € T(@) | 3y € Qi UT) =y}

and
(@) = {y € (&) |3y € Q7 9(T) = y}.

Moreover, we let

MS = {xEM| rs(a:)#@} and M = {x€M|FR(x)7é®}.

Note that, by construction, for every x € M, I'(x) = T'®(z) UT'¥(z). Fur-
thermore, if there are no non-trivial singular minimizing curves then M* = ().

First, using techniques reminiscent to the previous works by Agrachev-
Lee | | and Figalli-Rifford | |, we prove that

Proposition 1. For L*-a.e. v € M, TE(x) is a singleton.
Then, using a localized contraction property for singular curves which

holds thanks to (4), the technique developed by Cavalletti and Huesmann |
allows to show that

Proposition 2. For L*-a.e. v € M®, T'%(x) is a singleton.

It remains to show that for almost every z € M, I'(z) is a singleton.
Again this will follow from a local contraction property together with the
approach of Cavalletti and Huesmann | |, see Section 4.

2 Proof of Proposition 1

Argue by contradiction, by assuming that there is a compact set A C MF
of positive Lebesgue measure such that

Vo € A, I'f(z) is not a singleton. (5)

We may assume that A is contained in a chart (V, ¢y) of M. Without
loss of generality, we may assume that V is an open subset of R* where we

9
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can use the local set of coordinates (z1, 2, T3, 4).

For every k € N, we define the set

W = {x € M|3p, € R sit. [p.| < k and

o) < o(2)— < pp, v — 2> +k |z —2|?, Vz € B(a:,l/k;)} (6)

where B(z,1/k) denotes the closed ball in R* centered at x with radius 1/k.
The set W, is well-defined, up to a change of coordinates, for k large enough.

Lemma 2. M c U Wiy.

keN

Proof of Lemma 2. Let € ME. There are 3 € T'(z) and

7 :[0,1] — M a regular horizontal path steering y to . There exist an open
neighborhood V of 4([0, 1]) and an orthonormal family (with respect to g) F
of two vector fields X!, X? such that

A(z) = Span{Xl(z),Xz(z)}, VzeV.

According to a change of coordinates if necessary, we can assume that
V is an open subset of R*. Moreover, there is a control u € L?*([0, 1], R?)
associated to 7, ie.

2

() =D w(®) X (3(t), vt €[0,1].

i=1

We recall that the set of minimizing geodesics between T and g is compact
with respect to the uniform topology: if (yx)x is a sequence converging uni-
formly to y then, the sequence (7x)x of minimizing geodesics joining x to yx
converges uniformly to 4 and the sequence (uy); of controls associated to
(% )x converges uniformly to @ in L?([0, 1], R?). Hence, there exists an open
neighborhood O; of z such that Vz € Oz, every minimizing geodesic joining
9 to z is contained in V.
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Since 7 is regular, there exist v!, v?, 03 vt € L*([0, 1], R?) such that the linear
operator
RY — R?
4
a  —> Z a; Dy EY (v") (7)
i=1
is invertible.

Recall that C*>([0, 1], R?) is dense in L?([0, 1], R?), we can assume that v!, v? v3 v?
are in C°°([0, 1], R?). Define locally

F: R' — R
4
a Eg(ﬂ—i-Zozivi)'
i=1

This mapping is well-defined and of class C? in the neighborhood of zero. It
satisfies F(0) = Z and its differential at 0 is invertible.

By the Local Inverse Function Theorem, there exist an open ball B of R*
centered at Z and a function G : B — R?* of class C? such that

FoG(z) ==z VzeB.

11



We note that
4
Vz € B, dip(z,9) < [lu+ ) (G(2)']|7-.
i=1
So we define
4
¢ (2) = |[u+ > (G(2))iv'|[72, ¥z € B.
i=1

We conclude that there is a C? function ¢®¥ : B — R* such that
¢"(2) > dap(2,9), Vz € B and ¢™¥ (%) = dzp(7, 7).

Recall that, by the definition of the Kantorovitch potentials, for every
z € M, we have

Then, Vz € B,

Define o B
V(z) = ¢(y) — ¢"¥(2),Vz € B.
Hence, we put locally a C? function under the graph of ¢ with a uniform

control on the C? norm of 1®¥. It implies that for every z € M, we can
find & € N such that there is p; € R* with |p;| < k verifying

o(z) <p(y)— <ps,T—y > +k |z —y|*, Vye B(z,1/k).

We are ready to complete the proof of Proposition 1.

Since M C U Wy (by Lemma 2), there exists & € N such that
keN

Ay .= AN W, is of positive Lebesgue measure.
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Let T be a density point of Ay and i € I'(z). By the definition of the
Kantorovitch potentials, we have that

@(2) + dip(z,9) < @(z) + dig(2,9), V2 € M

= 0(Z) + d5p(2,§) — o(2) < dgp(2,7), ¥z € M.

. Pt M — R
We define the function - _ _
z = pf(2) = 0(T) + diR(T,7) — o(2)
verifying
p"(2) < dip(2,9), V2 € M and equality for z = 7. (8)

Let Ay, := A, N B(Z,1/2k). For every y € Ay, there is p, € RY, |p,| < k
such that

o(y) < o(2)— <pyy—2z>+k |y —z|?, Vz € B(y,1/k).

We define the function ¢ : B(z,1/2k) — R as follows
P(z) = sup ¥, (2), Vz € B(z,1/2k)
yeAy

where

Vy € Ay, U, (2) i= oY)+ < pyy — 2 > —k |y — 2[*.

We claim that for every z € Ar, ¢(2) = ¢(2). Let us prove our claim.
In fact, for every z € Ag,we have

B(z) > U,(2), Yy € Ay,
that is

P(2) > oY)+ < pyy — 2> —k |y — 2%, Yy € Aj.
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In particular, for y = z € Ay, we obtain

p(z) < o(2).

Assume that there is 2 € Ay such that ¢(z) < @(z).
Then, there is y € Ay, y # 2z such that

p(z) < Uy(2)
that is

0(2) < pW)+ <pyy—2z>—k |y — 2. (9)
Or, z,y € Ay, then z € B(y,1/k). So,

o(y) < p(2)— < py,y — 2> +klz —y|?

= oY)+ <ppy—2z>—kl|z—yl> <o(2)

which contradicts inequality (9). And the conclusion follows.

Moreover, let y € Ay be fixed. For any 2 € B(Z,1/2k), there is a
neighborhood B(z,1/k) of x contained in B(z,1/2k) such that for every
2’ € B(x,1/k), we can find p, € R?* such that

Wy () — Wy (2')

<Pyt — 2 > +h(la! -yl — |z — yP?)

IN

<py, ¥ —x>+kld -z -2k<y—z2 —z>

< <p,—2k(y—2z),2 — x> +k|z' — x]?

Take p, := p, — 2k(y — ), we obtain
U, (z) <V, (2")— < Ppyx — 0" > +k|z" — 2.

This means that for every y € Ay, U,, is locally semiconvex on B(7, 1/2k).
According to Lemma 14 in Appendix B, since ¢ is the supremum of local
semiconvex functions ¥, among all y € Ay, then ¢ is locally semiconvex on
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B(z,1/2k). By the Rademacher Theorem, ¢ is differentiable almost every-
where on B(z,1/2k).

We also define the function

57 B(z,1/2k) — R
z = p7(2) = @(T) + d§R(T, ) — (2)
such that for any z € Ay, we have
5(2) = () and 77(2) < dinl2,7). (10)
Here, 7 is fixed and p® is a function of z. By the definition of p*, as ¢ is

differentiable at almost every z € B(Z, 1/2k), p” is also differentiable almost
everywhere on B(z,1/2k).

On the other hand, following the proof of Lemma 2, for 2 € M¥% and
y € TR(x), there are an open set Bz in R* containing  and a C? function
¢™Y : Bz — R such that

¢:7:,z7(z) > d%R(z,ﬂ),VZ € B; and equality for z = 7. (11)

Consequently, by (8), (10), (11), we obtain

p7(2) < dip(2,0) < ¢7(2), Vz € Bs N Ay

and
equality for z = Z.

Note that ¢%¥ is a C? function and j® is differentiable almost everywhere
on B(z,1/2k). Then,

It means that there is a unique § € I'*(Z) such that

y= epr<d:Bﬁj) = exp;(—dz9),

15



with exp; : TXM — M the sub-Riemannian exponential map from z. This
contradicts assumption (5) and the conclusion follows.

Remark 1. The above argument can be used to prove the required result in the
general case, with M a smooth connected manifold of dimension n equipped
with a complete sub-Riemannian structure (A, g) of rank m(m < n).

3 Proof of Proposition 2

Our aim is to prove that
for almost every z € M?, I'(z) is a singleton.

First, we need to construct a line field, defined on a set of full Lebesgue
measure, whose orbits correspond to the singular curves.

The following holds (see | |, | |, | D :

Lemma 3. There is an open set H of full Lebesgue measure on M such that:

Vo € H, T,M = A(z) + [A, Al(z) + [A, [A, Al (2). (12)

Proof of Lemma 3. We denote by .¥ the set given by

S = {x € M|A(z) + [A, Al(z) + [Alz), [A, All(z) # TzM}.

Assume by contradiction that . is of positive Lebesgue measure on M.
It is sufficient to work locally. Taking a sufficiently small open neighborhood
Y of the origin in M and doing a change of coordinates if necessary we may
assume that there are a set of coordinates (x1, 22, x3, x4) and two vector fields
X' X% on V of the form

X'=0,,, X*=0,,+ A0,, + Bo,,

where A, B : M — R are smooth functions such that A(0) = B(0) =0
and
A(z) = Span{Xl(x),XQ(x)}, Vo e V.

16



So we have

(X', X% = Ay, 0py + By, Ory on V.
By hypothesis (4) in Theorem 1, we have

Vo € M, A(z) + [A, A](z) has dimension 3.

We may assume
A, #0 on V.

We denote by X3 the horizontal vector field given by

X9 = Ai[xl,xﬂ — 0, +Cd,,

where C' := B,, /A,, is smooth.

A computation gives

[Xla Xﬂ = [aruaxs + Caﬁm] = 09618904

and

(X%, X?| = [04, + Ay, + B0y, 0y + COy,)
= (— Ay — CA,,) 0,

+(Chy + ACy, + BC,, — By, —

Let z € N V. It follows

Alz) +[A, Al(x) + [Alx), [A, All(x) # T, M.

Since A + [A, A] is of dimension 3, it means that
det (X', X2 [X!, X7, [X', [X!, X)) =0

and,

17
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det(Xl,XQ, X', X7, (X2, [Xl,XQ]D ~0 (16)

which is equivalent to

det(Xl,X2, X', X7, [Xl,X?’]) ~0 (17)
and,
det<X1,X2, X1, X7, [XQ,X3]> —0 (18)
that is,
Cy =0 (19)
and
Cy, + AC,, + BC,, — B, — OB,, + CA,, + C*A,, = 0. (20)

For every k-tuple I = (iy,...,ix_1,3) s.t. (i1,...,ir_1) € {1,2}*71 we
denote by Z! the smooth vector field constructed by the Lie brackets of
X1, X? as follows

71— [X (X0, X, X)) }

Note I(I) the length of the Lie brackets Z!. By totally nonholonomicity, for
every x € V), there exists an integer r(x) > 2 such that

T.M = Span{ZI(x)| (I < r(x)}
For every I of I(I) > 2,
ZN(x) = Z3(x) Opy + Z1 () Os,.
We define the following set

A= {x e V| Zl(z) — C(a)ZL(x) = 0 VI s.t. I(I) < k}

and

18



r—1
SNY = U A\ Ag41 where r = max r(x). (21)

eV
k=2

Recall that .7 is supposed to be of positive Lebesgue measure. By (21),
there is 2 < k < r — 1 such that A\ Az, has positive Lebesgue measure.
Fix 7 a density point in A;\Ag,;. There exists some J' = (iy, ..., i, 3) of
length & + 1 such that on a neighborhood V; of z,

z{ —Cz] #0on V. (22)

From J', we take J = (iy,...,i5,3) of length k, so that Z] — CZ{ = 0.
And, we compute Z7" in terms of Z7:

((X427) = (Z])as0s + (20)u100
g _ L IXEZ) = ((Z)s + A@) (2 )us + B2 )y — 21 Auy — 21 AL, )00,

+<<ZZ1])I2 + A(Zzlj)l% + B(Zfl])m - Zi;]BI’; - ZZL]BM)am

\

Replacing Z{" and Z{ in (22), it follows that on V), we have
(Z)ay = C(Z)zy #0 (23)
or

(Zfl])xz + A(Zflj):cs + B(Zi])u - Z§7Ba:3 - ZZ{BQM
- C((Zé])xz + A(Zé])m + B(Z?{)M - Zé]Aﬂﬁs - ZZAM) 7é 07 (24>

We recall that Z] — C'Zy is a smooth function such that
Z] —CZ] =0 on A\ Az, (25)
Since T is a density point on A\ Az, we have

(z] - CZ?;’)M(@) =0,Vi=1,2,3,4.
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Note that by (19), C,, = 0. And, by computing the partial derivatives of
(25), we obtain

(2),,@) - C(2)(Z),,(2) =0

(2]), (&) - C@)(2]), (&) = Cu(2)2](3), Vi=2,3,4

Using (27), we can check that the left-hand side of (24) evaluated at the
point Z is equal to
(Zz{)xz + A(Zflj):cg + B(Zi])u - Z§7Ba:3 o ZZ{BQM

- C((Zé])wz + A(Z?{)x?, + B(Zé])m - Zé]Axs - ZA{A:M)

((Z)es = C(Z)s) + A((Z)ey = C(Z)as)) + B((Z)es — CZ)a)

—z] (Bxg _ CAIS) —z] (BM _ CAM>

= CoZ] + AC,,Z{ + BC 2 = 7] (Bo, - CAL) = 2] (Bu, - CAL)
- (Cm + AC,, + BC,, — By, + CAxS)Zg{ — 7/ (BM . CAM>

o (C’BM - CZAm) zI — 77 (BM - CAM)

- <BI4 - C’AM) (Z;{ —cz! )

=0

This and (26) imply that

7'(@) - C(0) 7 (7) = 0
which contradicts (23) and (24),i.e. the fact that z ¢ Az ;.
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We need another lemma.

Lemma 4. There exists a line subbundle L of A such that the singular
horizontal curves defined on H are exactly the trajectories described on L.

Proof of Lemma 4. 1t is sufficient to prove the result in a neighborhood
of each point in H. So, let us consider a local frame {X!, X?} such that

Az) = Span{Xl(z),X2(z)}, Vz e M.

Let v : [0,1] = M be a trajectory associated to some control u € L*([0, 1], R?).
In local coordinates, singular curves can be characterized as follows (see
Proposition 1.3.3 | E

7 is singular with respect to A if there is p : [0, 1] — (R*)*\{0} satisfying :

2

p(t) = — Z w ()p(t) - Dy X', ace. t €[0,1] (28)
p(t) - X'(y(t)) =0,Vt € [0,1], Vi =1,2 (29)

Derivative two times yields for almost every ¢ € [0, 1] such that u(t) # 0

p(t) - [ X1, X2(0)] (1) = 0, (30)
and

u(®p(t) - [ X4 [XY XY (1) + wa(0p(t) - | X2 (X7 X7 | (v() = 0. (31)

Since M has dimension four and A + [A, A} has dimension three, there is

locally a smooth non-vanishing 1-form « such that
Qv =0, Yve Alr) + [A,A} (x), Vo € H.

Then, by (29), (30)-(31), we infer that for almost every ¢ € [0, 1] such that
u(t) # 0, we have:

ur () [Xl, X1, X?]] (7(1)) + w2 () e - [X% X1, Xﬂ (7(t)) = 0.
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By above assumption, for every x € H, the linear form
(s Aa) = (- [ X 1 X3 | (@) + (o - [ X2 (XY X (@)

has a kernel of dimension one. This shows that there is a smooth line field
(a distribution of rank one) L C A on M such that the singular horizontal
curves are exactly the integral curves of L. O

We are ready now to prove Proposition 2.

Without loss of generality, it is sufficient to prove the result locally. We
can assume that (x1, xs, z3, x4) denotes the coordinates in an open neighbor-
hood V in M and consider { X', X?} a local frame of A such that

Ax) = Span{Xl(x),XQ(m)},‘v’x eVv.
Doing a change of coordinates if necessary, we can assume that
X' =0, X?=0,, +A()0s, + B()0,,

where A, B : V — R are smooth functions.

For the upcoming results, it is important to keep in mind the following
notations.

Notation 1. We denote by A,,, B, the partial deriwative with respect to the
variable x;, and Axixj, By, the second partial derivative with respect to the
variable x; and x;, of A and B respectively.

We compute the Lie brackets of X' and X? :

|:X17 X2i| - Axlaxg + leax4 (32>
[X17 [leXzﬂ = Auy2,0us + Bayzy Ony

[XQ, X1, X2]] — EO,, + FO,,
E = App + AAys + BAyo, — Ay Ay, —
with
F = By, +ABy., + BBy, — Ay Buy —

22
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By hypothesis (4) and (32), we can assume that

A (x) #0, Ve e V. (33)

We denote by H¢ the complementary set of H on M given by
He = {x e M| Az) + [A, A} () + [A, A, A]] () # TIM}.

Thus, H¢ is a closed set of Lebesgue measure zero on M.

The above discussion implies indeed the following lemma.

Lemma 5. There exists an analytic horizontal vector field X given by
X = Oéle + OCQXQ
with oy, a9 'V — R smooth functions given by

al = EBx1 - FACCl
Qo = Bxlzlel - ACE1I1B$1

(E and F : VYV — R smooth functions defined in Notation 1).

The vector field X wvanishes on H® and any solution of the Cauchy prob-
lem @(t) = X (x(t)) is analytic and singular.

Proof of Lemma 5. Let T > 0 and let u € L*([0,1],R?) be a singular
control and z : [0,7] — M be a solution to the Cauchy problem

i(t) = u ()X (2(t)) + ua () X2 (2(2)), a.e. t €[0,T).
There exists an absolutely continuous arc p : [0, 7] — (R*)*\{0} such that

P(t) = —un()p(t) Doy X' — us()p(t). Doy X2, ave. t € [0, 7] (34)

p(t). X (z(t)) = p(t).X*(x(t)) = 0,Vt € [0,T] (35)
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Taking the derivatives in (35) gives
p(t) - [X', X?|(x(t)) =0, Vt € [0,T) (36)
which implies that V¢ € [0, 77,
pi(t) =0
pa(t) + A(z(t))ps(t) + B(z(t))pa(t) =0
A, (2(8)ps(t) + Ba, (2(2))pa(t) = 0

Assume that condition (33) is true, then we obtain

p(0) = (0, [AG(0) 2 0(0) = Blt)lpi(0). ~w(Opi(0). m(0)). Ve € 0.7

By taking the derivatives in (36), we obtain for every t € [0, T

ur(t)p(t) - (X [XT, XP][(2()) + ua()p(t) - [ X7, [XT, XF)(2(2) = 0

= w1 () (Ps(t) Avyay + Pa(t) Baya) + u2(t) (p3(1) E + pa(1) F) = 0.

We can write

w®) = ~OE+pOF) = -pOF - E)
wlt) = polO A 4 Pa0)Bar) = PaO(Bse, — Arye, 22)

Assume that py(t) = 1,Vt € [0, 1], we obtain

{ ap(x) = EB, — FA,,

37
062(1‘) - Amlelxl_BmlAwlrl ( )

Lemma 6. There is a positive constant C' > 0 such that

div, X > —C|X(z)], Yz € V.
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Proof of Lemma 6. Let us compute the divergence of X. For every x € V,
div, X = oy (2)divg X' + ag(2)div, X? + X (ay) + X?(ay)

= a3(2)div, X* + By, (Avyage, + Asy Avgay + AAuyaga, + Bay Avia,
+BAs a1y — AvgAvizr — Auy Avizy — Boyan Auy — Bay Asyay)
— Ay (Byyzgz, + Az Baszy + AByiagz, + BeyBayoy + BBoygya,
=By Aviay — Az Biyey — Boyey Buy — Biy Biywy) + EByy,
—F A2y + Avyoy Buyon + Azy Boyoroy — Brazi Aviey — Bay Azozia
+AAzge, Bryay + AAz, Buyeyoy — ABugay Avyzy — ABuyy Avgary
+BAgz Bryay + BAzy Buyoyzy — BBoyay Azyoy — BBy Avyzyay

= o (2)div, X? + EBy 0, — F Ay,
+Bayoy (BAsyay + Alugay + Avgey + Avy Bay — By Asy)
+As10, (= BBuyay — ABuyay — Buyay + Ay Buy — By Auy)

= ay(2)div, X* + EBy o, — FAz 2,
+ B2y Aw Bay + Boyoy (B + Auy Asy) = Avyoy Bay Awg — Agyay (F + Bay Be,)

= o (2)div, X* + 2E By, — 2F Ay, a,
+Beya (Aay Bry + Az Azy) = Aayay (Bry Asy + Bay Ba,)

= o (2)divg X* + 2E By, o, — 2F Ay,a,
+(Bayey Ay — Awyay By ) (Auy + Bay)

=2 By B —2 Ay, F + 2 ao(x)div X2
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B:): Ax 1 EBxl -
By (37), we can write B,,,, = @2+ Do Aoy and F——2n— %
Al’l A.Z‘1
Hence, div, X = 2 o +2 o —2 49 qadivg X2
ACEI A-Tl
=2 (E + div, X?) + 2 ag —=
— Q9 Axl A (03] Axl

As we noticed before, without loss of generality, we proceed as if M is a
compact manifold. Then, (E/Am1 +diva2> and (Amm:l /Axl) are bounded
functions on M. There exist ¢, co > 0 such that

|A$11(:E1)| < ¢ and |Aa:1 (z) + div, X?| < ¢y, Yz € V.
Thus,
div,X > —kloy| — K|as|, Vo €V
> —C|X(z)|,Yx eV
with C' = max{c;, 2} > 0 positive constant. O

The following process is equivalent to the process introduced by Belotto
and Rifford | | to set the contraction property.

Let ¢ € {1,+1} and T > 0, we denote by (¢2) the analytic flow of the
vector field X generating locally singular minimizing geodesics.

For every subset A in V, we set

A7 =3 (A), Yt €[0,T] and A = A.

t
We denote by I(A,t) := sup length ¢X(A) = sup/ | X (02, (2))|ds,
0

T€EA €A

where | X (X (z))] stands from the norm of X (X (z)) with respect to g.
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We recall that there is L > 0, already defined in section 1, such that for
every r € A, we have

/Ot X (X (2))|ds < L, ¥t € [0, T]. (38)

We state now divergence formulas, one of the main tool of the present
paper (see | |, Proposition B.1).

Lemma 7. For every compact A in M, there is a smooth function
J 0, T] x A— [0, +00] such that for every t € [0,T], we have:

J(0,2) =1 and aa—{(t,z) =div X(p%(2)) J(t,2) (39)
Vo€ A, LY(AS) = / 2= / T(t,2) d= (40)

and
LA :/Aea:p</0 div X (¢X(2)) ds> dz (41)

The following result is an immediate corollary of Lemma 7.

Lemma 8. Let T' > 0. For every subset A in V, we have

LYNAS) > exp(—C (A1) LY(A), Yt € [0,T). (42)

Proof of Lemma 8. Let A be a subset in V. By Lemma 6, there is a
constant C' > 0 such that

div X(z) > —C|X(2)|, Vz € A.
Therefore, by (41), we infer that, V¢ € [0, 7],

£HAS) > / cxp / XX ds) dz

> /Aexp<—C l(A,t)> dz
> exp(—C’ l(A,t)>£4(A).
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The following result whose proof is based on the local contraction prop-
erty, is fundamental.

Lemma 9. Let T' > 0. The closed set given by
{x € M; 3y € QF 1 such that v(T) € Hc}

is of Lebesque measure zero on M.

Proof of Lemma 9. Let A be a subset of M of positive Lebesgue measure.
Without loss of generality, we can assume that A is contained in an open set
V in M. We argue by contradiction by assuming that

£4({:c € A; 3y € Q1 such that y(T) € HC}> > 0.

By Lemma 5, there is an analytic horizontal vector field X defined on V
generating singular minimizing geodesic defined on V.

LU

HC

Moreover, X vanishes on H¢. Then, for every z € A, the flow of X
starting at x requires an infinite time to reach ¢, that is

A = o5 (4) — S A",

Let t — 0o, we obtain that £*(AY) — 0.
By Lemma (8), we have

LYAS) > exp(—C I(A, 1) LYA), Vit € [0,T).
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By (38), we obtain
I(A,t) < LVt € [0,T].

Hence,
LYA2) > exp(—CL)L*A), Vt € [0,T].
When t — 400, we obtain

which implies the contradiction. O

In the spirit of | |, we have the following result.
Lemma 10. Let Ay, Ay be two subsets of I' such that
(i) PY(A1) = PY(Ay) and PY(A;) C M5 Vi =1,2.
(ii) P%*(A;) N P*(Ay) = 0.
Then, LY(P'(Ay)) = L*(P'(A)) = 0.

Proof of Lemma 10. Set A = P'(A;) = P'(Ay). We can assume that A
is contained in an open set V in M. Let T > 0. For every ¢ = 1,2, we define

AP = {el@) o () € A and X (x) € P(A)}, Vi€ 0.7]

Since P?(A;) N P?(Ay) = 0, we have
AP N AP — 0 vt e [0,T).
For § > 0 fixed, we define A° = {x : dgg(z, A) < 6}.
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L4(A) = limsup £*(A%)

6—0

> limsup LA U APA2)
t—0

= limsup[C*(A7™) + £1(A47)]
> 2 exp(—C I(A, t)>£4(A).

Since t — 0, we have Ats Ai very close to A. So we can choose
[(A,t) > 0 sufficiently small, that is

exp (—C I(A, t)) >

1
2
Hence, we obtain £*(A) = 0. O

We are ready to complete the proof of Proposition 2.
Consider the following set
E = {x € M®:T%(x) is not a Singleton}

and assume that E has positive measure. It follows that there is k € N
such that the set given by

1
B, = {x € E: diam Fs(x) > E} has positive Lebesgue measure.

Without loss of generality, we can assume that the manifold M can be
covered by finitely many open balls (U;);e; of diameter less or equal to 1/k.
From (U;);er, we construct a finite family of open sets (V;);c; pairwise dis-
joint covering M by proceeding as follows

(Vi = U
Vo = Ups\Uy

Ve = UNULUUyU---UU,q)
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such that UZ/{i = U V.
i€l i€l

Therefore, for any x € Ej, there are 1., j, € [ with 7, # j, such that
¥(x) NV, #0and I(z) NV, # 0.

Denote by

Epi = |J {z} x @) n V)

el

and

Epj = |J {z} x (T%(2)n V).

ﬂC’EEk
We notice that P'(Ey;) = P'(E}) ;) = E such that
LYE) > 0. (43)

We also have P?(E} ;) N P?(E} ;) = 0 since for any = € Ex, Vi, NV;, =0, for
iz # Jo- Using lemma 10, we obtain

LY(PY(By)) =0,

which contradicts assumption (43).

We conclude that for a.e. z € M5, T%(z) is a singleton.

4 End of the proof of Theorem 1
In the previous sections, we have shown that
Vo € M® TH(x) is a singleton (see section 2),

and
Vo € M® T®(x) is a singleton (see section 3).

To complete the proof of Theorem 1, it remains to prove that

Vo € M0 MP® T'(z) is a singleton.
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For this purpose, we will use again the technique introduced by Cavalletti
and Huesmann | |. First, we will show a localized contraction property
for regular horizontal curves.

Lemma 11. There is a positive constant C such that for T > 0 and for
every set A in ME,

LHARY > CLA(A), Yt e [0,T] (44)
with
Al = {'y(t)| veQ; xeAand(T) € FR([E)}.

Proof of Lemma 11. Let A be a compact set of M of positive measure.

Since M% C U Wi (by Lemma 2), for every point z of A, there exists

keN
k = k(z) € N such that

r €Ay = ANW,,
so there is p, € R? with |p,| < k verifying
o(x) < p(2)— < pp,x — 2 > +klz — 2|°, V2 € B(z,1/k).
Let Ay, := Ay N B(z,1/2k). As in section 2, we define the function
¢ (2) if z € /Ik
p(2) =

sup {p(y)+ <pyy—2z>—k|y—=2*}  if not
yEA;

For any x € A, ¢ is locally semiconvex on B(x,1/2k). By the Alexandrov
Theorem, ¢ is twice differentiable at a.e. z € B(z,1/2k). Moreover, there
exists a constant C}, > 0 such that

Hess,p > —Cyly, a.e. z € B(x,1/2k) (45)

where I, is the 4 x 4 identity matrix.

We notice that A = U Ay, Denote by C' > 0 the constant given by
keN

C :=sup Ck.

keN
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Then, .
Hess,p > —C1y, a.e. x € A. (46)

By section 2, for almost every z € A C MPE, there exists a unique
y € I'B(z) given by
Y = expy(—d.P).
Then, the curve 7,(t) : [0,7] — M defined by
Ve (t) = expy(—td,p), ae. x € A

is the unique regular minimizing geodesic joining x to y.

For every ¢ € [0,T], we define the function

T,: M — M
r — Ty(x) = 7(t) = expy(—td,@)

Note that
vt € [0,T), Al = {T;(2); = € A}.

We have

LYAR) = /A g20195: [{ o) dr = /A det(Jac Ty(x))dz.  (47)

However, the function 7} results from the composition of the two following
functions

fixeM—d,peTiM, and g:p € T*M — exp,(—tp) € M.
By computing the Jacobien of T}, we obtain

Jac Ty(x) = Jac g(f(x)) x Hess,p .

Here, ¢ is smooth on T*M and by (46), there is a constant C' > 0 such
that )
Jac Ty(x) > —C I, a.e. x € A.

By (47), this implies

LYAR) > CLY(A), vt € [0,T].
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We conclude with the following lemma.
Lemma 12. M® N M?® has Lebesque measure zero on M.
Proof of Lemma 12. Assume that there is a set A of M® N M such that
LYA) > 0. (48)
Let "> 0 and € € {—1,+1}. For every t € [0,T], we define the two
following intermediate subsets by

AR = {%(tﬂ Yo € QY with z € A and 7J(T) € FR(J?)},

and
A7 = X (A).

For every € A, we have I'(z)NT"S(z) = 0, then there is t = t(z) €]0, T
such that
0 (x) # 7. (5), Vs €)t, T).

As a matter of fact, regular minimizing geodesics are analytic as pro-
jections of the analytic sub-Riemannian Hamiltonian system and singular
minimizing geodesic are analytic as the analytic flow of X. Without loss of
generality, we can assume that there is ¢ €]0, 1[ such that for every x € A

t=t(zx) <tand ARNAS =0, Vs €]t, T]

and
ARN A7 #0.

We denote by )
A= AFU AY.

We may assume that A has positive Lebesgue measure. Notice that for s > t,
when s — £, AR and AY converge to A, then one has

LA(A) = (lsii% sup £L4(A%) > lim sup £(AM U AD2)

s—tt
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= lim sup £*(AF U AY)

s—tt

= lim sup[L*(AF) + £Y(AD)]

s—tt

> lim, (&'Ep(—C' I(A, s)) n é) LY(A). (49)

where A° := {x;dgp(x, A) < &}, for a given § > 0.

The inequality (49) follows from Lemmas 8 and 11 according to which we
have

LYARY > CLY(A) and £1(AS) > exp(—m(;x, s)).c4(A),vs elf, T.
As s — t, we can choose [(A, s) > 0 sufficiently small, that is
exp(—C’ I(A, s)) +C > 1.

It implies that £*(A) = 0. And the conclusion follows. O

A Proof of Lemma 1

It is sufficient to prove the result for x contained in an open set ¥V C M such
that there is an orthonormal family of m vector fields X, ..., X™ generating
A(z), Vz € V. Let € S be fixed. By a change of coordinates if necessary,
we can write the vector fields as follows

X' =

0 & 0
i, Vi=1,...,m.
axi +Z;az] G-Tj’ VZ ) , M

1=

We remark that for every y € M, the function z € M + ¢°(y) — d%p(z,y)
is locally Lipschitz with respect to the sub-Riemannian distance. Then, ¢ is
also locally Lipschitz with respect to the sub-Riemannian distance. By the
Pansu-Rademacher theorem, since p is absolutely continuous with respect
to the Lebesgue measure, ¢ is differentiable with respect to the vector fields
X1t ..., X™ p-almost everywhere on V. Hence, we have:

m

oY) — p(r) = ZXISO(@(?/Z — ;) + o(dsr(z,y)), Yy € V.

i=1
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Let ¢ : [0,1] — M, ¢ = 1,...,m be the integral flow associated to X’
starting at x. Then, we denote by

I — i PO (0) — ()
! t—0 t

Recall that g(v7 (1), 7/ (t)) = g(X" (77 (1)), X' (7 (1)) = 1, Vt € [0, 1].

NVi=1,...,m.

It follows
dsr(z, /(1)) < [t],Vt € [0,1].

Then,

v €T(z) = o(z) — ¢(2) < dip(w, 2),Vz € V.

In particular,
p(r) — (] (1) < diple, 77 (1) < £
This implies that [; = 0. Hence,
Xip(x)=0,Vi=1,...,m. (50)

Assume now that there exists y € I'(x) such that y # z. So we have

gp(l‘) - ()0(2) S d%R(l',Z) - d%’R('r?y)avz eV

Let 7., : [0,1] = M be a minimizing geodesic joining x to y. Then,
vt € [0,1],

P(2) = 9(Yay (1)) < dip(@, Yoy (1) — dgp(z,y),
= —0(dsr(,Vay (1)) < dip(2, 70,y (t) — dir(z,y),
= —o(t dsr(z,y)) < (1 —t)*d2p(x,y) — d2p(2,y),
= —o(t dsp(x,y)) < =2t dip(z,y) +t* dig(z,y),

= o(t dsn(w,y)) > 2t dgp(w,y) = o(t dsr(z,y)),

36



= o(t dsr(z,y)) >t dqu(:c, Y).

td
For t small enough, M

d%p(z,y) = 0. This contradicts the fact that z # y.

tends to zero which implies that

B Local semiconvexity

Let (A, g) be a sub-Riemannian structure of rank m < n on the manifold M.

We recall here the definition of local semiconvexity of a given function.

Definition 3. A function f : Q@ — R, defined on the open set Q C M, is
called locally semiconvex on ) if for every x € € there exist a neighborhood
Q. of x and a smooth diffeomorphism ¢, : Q. — 0.(Qs) such that ot is
locally semiconvexr on the open subset Qx = ¢,(Q) CR™.

By the way, we recall that the function f : Q0 = R s locally semiconvex
on the open subset 2 C R™ if for every T € Q) there exist C;d > 0 such that

f (A + (1= Ny) = Af(@) = (1= N)f() < ML= NCla =yl
VA €[0,1)],Vz,y € B(Z, )
where B(Z,0) is the open ball in R™ centered at T with radius 0.

The following result is useful to prove the local semiconvexity of a given
function.

Lemma 13. Let f : Q — R be a function defined on an open set 2 C R".
Assume that for every T € (), there exist a neighborhood YV C  of T and a
positive real number o such that, for every x € V, there is p, € R"™ such that

f(@) < fly)— <peyx—y > +olz —y|’, VyeV.

Then, the function f is locally semiconvex on €.

37



Proof of Lemma 13. Let & € (2 be fixed and V be the neighborhood given
by assumption. Without loss of generality, we can assume that V is an open
ball B. Let x,y € B and X € [0,1]. The point Z := Az + (1 — )y belongs to
B. By assumption, there exists p € R™ such that

f@) < f(2)— <p, 2 — 2> +old — 2>, Vz € B.
Hence, we easily get
f@) < fl@)=(1=-N)<py—z>+0(l-Nz—yf

f(@) < fly)—=A<px—y>+oz—y|?

M (2) < M@+ M1 =) <p,x—y >+l —N)|z —y]?
=
(1=Nf@) < @=Nf)-A1=XN) <pr—y>+oA(1l -]z -yl
= f(&) < Af(2) + (1= N fy) +2A\(1 = Nolz —y/?
and the conclusion follows. O

Remark 2. Thanks to Lemma 153, a way to prove that a given function

[ Q — R is locally semiconvex on €2 is to show that for every x € €2, we
can put a support function ¢ of class C* under the graph of f at x with a
uniform control of C* norm of ¢.

Let us derive another important consequence of the definition of semicon-
vexity.

Lemma 14. Let Q be a subset of R" and {uq}aca be a family of functions

defined on Q and semiconver. Then, the function u := sup u, is also semi-
acA
convex on §2.

Proof of Lemma 14. Take z,y € Q and X € [0,1].
Given any € > 0, we can find « such that

uAz + (1= Ny) <us(Az+ (1= N)y) +e.
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Then we have, for C,d, > 0,

u(Az + (1= N)y) — Mu(z) — (1= Nu(y)
<Az + (1= Ny) + & — Mg (z) — (1 — Nua(y)

<A1 =N Cylz —y|* +¢,Vy € B(x,6,).

Since € > 0 is arbitrary, we obtain the assertion. O

More details of local semiconvexity of a given function are given in the
textbook | .
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