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Mass transportation on sub-Riemannian
structures of rank two in dimension four

Z. BADREDDINE∗

Abstract
This paper is concerned with the study of the Monge optimal trans-

port problem in sub-Riemannian manifolds where the cost is given by
the square of the sub-Riemannian distance. Our aim is to extend pre-
vious results on existence and uniqueness of optimal transport maps to
cases of sub-Riemannian structures which admit many singular mini-
mizing geodesics. We treat here the case of sub-Riemannian structures
of rank two in dimension four.

Introduction
Let M be a smooth connected manifold without boundary of dimension n ≥
2. The problem of optimal transportation, raised by Monge [Mon81] in 1781,
was concerned with the transport of a pile of soil into an excavation. Given
two probability measures µ, ν on M , we call the transport map from µ to
ν, any measurable application T : M → M such that T]µ = ν (we say
that T is pushing forward µ to ν, ie. for every measurable set B in M ,
µ(T−1(B)) = ν(B)). Therefore, the Monge problem was modelized as an
optimal transport problem consisting in minimizing the transportation cost∫

M

c(x, T (x))dµ(x),

among all the transport maps T : M →M .
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Here, c(x, y) represents the cost of transporting a unit of mass from a po-
sition x to some position y. The fact that the condition T]µ = ν is nonlinear
with respect to T , is the main difficulty in solving the Monge problem.

In 1942, Kantorovitch [Ka42] proved a duality theorem to study the re-
laxed form of the problem. He replaced the transport map T : M → M by
a transport plan α ∈ Π(µ, ν) where Π(µ, ν) is the set of probability mea-
sures α in the product M × M with P 1

] (α) = µ and P 2
] (α) = ν ( where

P i : M ×M → M is the projection map into the i-th component). Hence,
Kantorovitch problem consists in minimizing∫

M×M
c(x, y)dα(x, y), among all the transport plans α ∈ Π(µ, ν).

The Kantorovitch approach leads to a dual formulation (see Chapter 5 [Vil08])
given by:

inf
α∈Π(µ,ν)

{∫
M×M

c(x, y)dα(x, y)

}
=

sup
(ϕ, ψ) ∈ L1(µ)× L1(ν)
ψ(y)− ϕ(x) ≤ c(x, y)

{∫
M

ψ(y)dν(y)−
∫
M

ϕ(x)dµ(x)

}
. (1)

This leads to find a pair of integrable functions (ϕ, ψ) optimal on the right-
hand side, and a transport plan α optimal on the left-hand side. The pair
of functions (ϕ, ψ) should satisfy ψ(y)− ϕ(x) ≤ c(x, y). Then, for a given y,
ψ(y) will be the infinimum of ϕ(x) + c(x, y) among all x. For a given x, ϕ(x)
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will be the supremum of ψ(y)− c(x, y) among all y. We may indeed assume
that ϕ is a c-convex function and ψ = ϕc satisfying the two equations below:

ϕ(x) = sup
y∈M

{
ϕc(y)− c(x, y)

}
, ∀x ∈M (2a)

ϕc(y) = inf
x∈M

{
ϕ(x) + c(x, y)

}
, ∀y ∈M (2b)

The pair (ϕ, ϕc) is called the Kantorovitch potentials.

We refer the reader to the textbooks [Vil03, Vil08] by Villani for more
details on the optimal transport theory.

Several techniques developed by Brenier [Br91], McCann [Mc01], Caval-
letti and Huesmann [CH15] and others allow to show that in certain cases,
optimal transport plans yield indeed optimal transport maps, solutions to
the Monge problem.

This paper will be concerned with the study of the Monge problem for
the quadratic geodesic sub-Riemannian cost. Let (∆, g) be a complete sub-
Riemannian structure on M , where ∆ is a totally nonholonomic distribution
onM of rankm (m < n) and g a smooth Riemannian metric on ∆, that is for
every x ∈ M , gx is a scalar product on ∆(x). We recall that a distribution
∆ is called totally nonholonomic if, for every x ∈ M , there exist an open
neighborhood Vx of x and a local frame X1

x, . . . , X
m
x on Vx such that

Lie
{
X1
x, . . . , X

m
x

}
(y) = TyM, ∀y ∈ Vx.

Let T > 0. A continuous path γ : [0, T ]→M is said to be horizontal with
respect to ∆ if it is absolutely continuous with square integrable derivative
and satisfies

γ̇(t) ∈ ∆(γ(t)), a.e. t ∈ [0, T ].

The length of an horizontal path γ is given by

l(γ) :=

∫ T

0

√
gγ(t)(γ̇(t), γ̇(t))dt.
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We define the sub-Riemannian distance dSR(x, y) between two points x and
y of M as the infimum of lengths of horizontal paths joining x to y, that is,

dSR(x, y) := inf
{
l(γ)| γ : [0, T ]→M horizontal path s.t. γ(0) = x, γ(T ) = y

}
.

A minimizing geodesic is an horizontal path with constant speed mini-
mizing for the sub-Riemannian distance between its end-points. We shall
say that the sub-Riemannian structure (∆, g) on M is complete if the metric
space (M,dSR) is complete. Thanks to the Hopf-Rinow theorem (see [Rif14]),
if (∆, g) is a complete sub-Riemannian structure on M , then minimizing
geodesics exist between any pair of points in M . Let

{
X1, . . . , Xk

}
be a

family of k = m(n + 1) smooth vector fields generating ∆ (see proposition
1.1.8 [Rif14]), that is for every y ∈M ,

∆(y) = Span
{
X1(y), . . . , Xk(y)

}
.

Given x ∈M and T > 0, the End-point mapping from x is defined by

Ex : L2([0, T ],Rk) → M
u 7→ Ex(u) = γu(T )

where γu : [0, T ]→M is the unique solution to the Cauchy problem: γ̇u(t) =
k∑
i=1

ui(t)X
i(γu(t)), ∀t ∈ [0, T ]

γu(0) = x

. (3)

A control u is called singular if and only if it is a critical point of Ex, and
regular if not. An horizontal path γ is said to be singular (resp. regular)
if and only if any control u associated to γ (i.e. γ = γu solution of (3)) is
singular (resp. regular) for Ex.
For every x ∈ M and every T > 0, we denote by ΩR

x,T the set of regular
minimizing geodesics γ : [0, T ] → M starting at x. We also denote by ΩS

x,T

the set of singular minimizing geodesics γ : [0, T ]→M starting at x.

The notion of singular curves play a major role in this paper. In ab-
sence of singular minimizing geodesics, sub-Riemannian distances enjoy the
same kind of regularity as Riemannian distances at least outside the diago-
nal. We recall that the diagonal of M ×M is the set of all pairs of the form
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(x, x) with x ∈ M . Following previous results by Ambrosio-Rigot [AR04]
and Agrachev-Lee [AL09], Figalli and Rifford (see [FR10]) proved that local
lipschitzness of the sub-Riemannian distance outside the diagonal is sufficient
to guarantee existence and uniqueness of optimal transport maps (see also
the textbook [Rif14] by Rifford).

In general, we do not know if the Monge problem (for the sub-Riemannian
quadratic cost) admits solutions if there are singular minimizing curves. For
a two-rank distribution ∆ on a three-dimensional manifold M , we have ex-
istence and uniqueness of optimal transport maps for the sub-Riemannian
quadratic cost because non-trivial singular horizontal paths are included in
the Martinet surface Σ∆ given by Σ∆ :=

{
x ∈M | ∆(x) + [∆,∆](x) 6= TxM

}
which has Lebesgue measure zero. The first relevant case to consider is the
one of rank-two distributions in dimension four. In this case, as shown by
Sussman [Sus96], singular horizontal paths can be seen (locally) as the or-
bits of a smooth vector field, at least, outside a set of Lebesgue measure zero.

The definition of a real analytic manifold is similar to that of a smooth
manifold. We begin by recalling that an analytic function f is an infinitely
differentiable function such that the Taylor series at any point x0 in its do-
main, converges to f(x) for x in a neighborhood of x0. We say that a manifold
M of dimension n is real analytic if transition maps are analytic. We pro-
vide M with a real analytic distribution ∆ of rank m (m < n), that is for
each x ∈M , there are an open neighborhood U containing x and m analytic
vector fields X1, . . . , Xm on U such that

∆(y) = Span
{
X1(y), . . . , Xm(y)

}
, ∀y ∈ U .

In this case, the Cauchy problem given in (3), has a real analytic solution on
M for t ∈ [0, T ] and some T > 0.

The aim of this paper is to show that, in the case of rank-two analytic
distribution in dimension four, we have existence and uniqueness of optimal
transport maps for the sub-Riemannian quadratic cost, as soon as the distri-
bution satisfies some growth condition.

We recall that the support of a measure µ, denoted by supp(µ), refers to
the smallest closed set F ⊂M of full mass µ(F ) = µ(M) = 1.
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Our main result is the following:

Theorem 1. Let M be a real analytic manifold of dimension 4 and (∆, g)
be a complete analytic sub-Riemannian structure of rank 2 on M such that

∀x ∈M, ∆(x) + [∆,∆](x) has dimension 3, (4)

where
[∆,∆] := {[X, Y ] | X, Y sections of ∆}.

Let µ, ν be two probability measures with compact support on M such that µ
is absolutely continuous with respect to the Lebesgue measure L4.
Then, there is existence and uniqueness of an optimal transport map from µ
to ν for the sub-Riemmannian quadratic cost c : M ×M → [0,+∞[ defined
by:

c(x, y) := d2
SR(x, y), ∀(x, y) ∈M ×M.

Our strategy to prove Theorem 1 is twofold. It combines the technique
used by Figalli-Rifford [FR10] (see also the paper by Agrachev-Lee [AL09])
which is based on the regularity of the distance function outside the diagonal
in absence of singular minimizing curves, together with a localized contrac-
tion property for singular curves in the spirit of a previous work by Cavalletti
and Huesmann [CH15].

The paper is organized as follows. In Section 1, we give more details on
the strategy of proof. Then Section 2-3 are devoted to prove some required
results to achieve existence and uniqueness of optimal transport maps. In
Section 4, we finalize the proof of Theorem 1.

1 Strategy of proof
From now on, we assume that the manifold M has dimension 4 and is
equipped with a complete sub-Riemannian structure (∆, g) of rank 2 such
that

∀x ∈M, ∆(x) + [∆,∆](x) has dimension 3.
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We fix µ, ν two probability measures compactly supported on M such that µ
is absolutely continuous with respect to the Lebesgue measure. As it is well-
known (see [Vil08]), since c = d2

SR is continuous onM×M , the Kantorovitch
transport problem between µ and ν with cost c admits at least one solution
and there is a pair of Kantorovitch potentials (ϕ, ϕc) solution of the dual
problem satisfying the equations (2a) and (2b). Moreover, we denote by Γ
the contact set of the pair (ϕ, ϕc) given by

Γ :=
{

(x, y) ∈M ×M | ϕc(y)− ϕ(x) = c(x, y)
}
.

We get that (see Corollary 3.2.14 [Rif14]):

a transport plan α ∈ Π(µ, ν) is optimal if and only if α(Γ) = 1.

In other words, the problem of existence and uniqueness of optimal transport
maps can be reduced to prove that Γ is concentrated on a graph, that is to
show that for µ–almost every point x ∈M the set

Γ(x) :=
{
y ∈M | (x, y) ∈ Γ

}
is a singleton.

Following [FR10], let us introduce the following definition:

Definition 1. We call "static" set S and "moving" set M respectively the
sets defined as follows:

S :=
{
x ∈M | x ∈ Γ(x)

}
,

M :=
{
x ∈M | x /∈ Γ(x)

}
.

We note that M is an open subset of M . In fact, we can easily check
thatM coincides with the set{

x ∈M | ϕ(x) 6= ϕc(x)
}

=
{
x ∈M | ϕ(x) > ϕc(x)

}
,

which is open by continuity of ϕ and ϕc.
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Since both supp(µ) and supp(ν) are compact and the metric space (M,dSR)
is complete, there are x0 ∈M and a constant L > 0 such that

supp(µ)
⋃

supp(ν) ⊂ BSR(x0, L/4)

where BSR(x0, L/4) is the open ball in R4 centered at x0 of radius L.
As a consequence, any minimizing geodesic γ : [0, 1]→M from x ∈ supp(µ)
to y ∈ supp(ν) is contained in BSR(x0, L/2).

BSR(x0, L/2)

supp µ supp ν

From now on, we work in the compact set BSR(x0, L/2) of diameter L
and so, we proceed as if M were a compact manifold.

As in [FR10], we shall show that "static" points do not move, i.e. almost
every x ∈ S is transported to itself. For sake of completeness, the proof of
Lemma 1 is given in Appendix A.

Lemma 1. For µ-a.e. x ∈ S , we have Γ(x) = {x}.

We need now to show that almost every moving point is sent to a sin-
gleton. To this aim, we need to distinguish between two types of moving
points.
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Definition 2. Let T > 0. For every x ∈M, we set

ΓS(x) :=
{
y ∈ Γ(x) | ∃γ ∈ ΩS

x,T , γ(T ) = y
}

and
ΓR(x) :=

{
y ∈ Γ(x) | ∃γ ∈ ΩR

x,T , γ(T ) = y
}
.

Moreover, we let

MS :=
{
x ∈M| ΓS(x) 6= ∅

}
and MR :=

{
x ∈M| ΓR(x) 6= ∅

}
.

Note that, by construction, for every x ∈M, Γ(x) = ΓR(x)∪ΓS(x). Fur-
thermore, if there are no non-trivial singular minimizing curves thenMS = ∅.

First, using techniques reminiscent to the previous works by Agrachev-
Lee [AL09] and Figalli-Rifford [FR10], we prove that

Proposition 1. For L4-a.e. x ∈MR, ΓR(x) is a singleton.

Then, using a localized contraction property for singular curves which
holds thanks to (4), the technique developed by Cavalletti and Huesmann [CH15]
allows to show that

Proposition 2. For L4-a.e. x ∈MS, ΓS(x) is a singleton.

It remains to show that for almost every x ∈ M , Γ(x) is a singleton.
Again this will follow from a local contraction property together with the
approach of Cavalletti and Huesmann [CH15], see Section 4.

2 Proof of Proposition 1
Argue by contradiction, by assuming that there is a compact set A ⊂ MR

of positive Lebesgue measure such that

∀x ∈ A, ΓR(x) is not a singleton. (5)

We may assume that A is contained in a chart (V , φV) of M . Without
loss of generality, we may assume that V is an open subset of R4 where we
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can use the local set of coordinates (x1, x2, x3, x4).

For every k ∈ N, we define the set

Wk :=
{
x ∈M|∃px ∈ R4 s.t. |px| ≤ k and

ϕ(x) ≤ ϕ(z)− < px, x− z > +k |x− z|2, ∀z ∈ B̄(x, 1/k)
}

(6)

where B̄(x, 1/k) denotes the closed ball in R4 centered at x with radius 1/k.
The set Wk is well-defined, up to a change of coordinates, for k large enough.

Lemma 2. MR ⊂
⋃
k∈N

Wk.

Proof of Lemma 2. Let x̄ ∈MR. There are ȳ ∈ ΓR(x̄) and
γ̄ : [0, 1]→M a regular horizontal path steering ȳ to x̄. There exist an open
neighborhood V of γ̄([0, 1]) and an orthonormal family (with respect to g) F
of two vector fields X1, X2 such that

∆(z) = Span
{
X1(z), X2(z)

}
, ∀z ∈ V .

According to a change of coordinates if necessary, we can assume that
V is an open subset of R4. Moreover, there is a control ū ∈ L2([0, 1],R2)
associated to γ̄, ie.

˙̄γ(t) =
2∑
i=1

ūi(t)X
i(γ̄(t)), ∀t ∈ [0, 1].

We recall that the set of minimizing geodesics between x̄ and ȳ is compact
with respect to the uniform topology: if (yk)k is a sequence converging uni-
formly to y then, the sequence (γk)k of minimizing geodesics joining x to yk
converges uniformly to γ̄ and the sequence (uk)k of controls associated to
(γk)k converges uniformly to ū in L2([0, 1],R2). Hence, there exists an open
neighborhood Ox̄ of x̄ such that ∀z ∈ Ox̄, every minimizing geodesic joining
ȳ to z is contained in V .
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Since γ̄ is regular, there exist v1, v2, v3, v4 ∈ L2([0, 1],R2) such that the linear
operator

R4 −→ R4

α 7−→
4∑
i=1

αiDūE
ȳ(vi)

(7)

is invertible.
Recall that C∞([0, 1],R2) is dense in L2([0, 1],R2), we can assume that v1, v2, v3, v4

are in C∞([0, 1],R2). Define locally

F : R4 −→ R4

α 7−→ E ȳ(ū+
4∑
i=1

αiv
i)
.

This mapping is well-defined and of class C2 in the neighborhood of zero. It
satisfies F(0) = x̄ and its differential at 0 is invertible.
By the Local Inverse Function Theorem, there exist an open ball B of R4

centered at x̄ and a function G : B → R4 of class C2 such that

F ◦ G(z) = z, ∀z ∈ B.

V

•x̄ • ȳγ̄ ↔ ū= E ȳ(ū)

B

•z

ū+
4∑
i=1

(G(z))iv
i
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We note that

∀z ∈ B, d2
SR(z, ȳ) ≤ ||ū+

4∑
i=1

(G(z))iv
i||2L2 .

So we define

φx̄,ȳ(z) := ||ū+
4∑
i=1

(G(z))iv
i||2L2 ,∀z ∈ B.

We conclude that there is a C2 function φx̄,ȳ : B → R4 such that

φx̄,ȳ(z) ≥ d2
SR(z, ȳ), ∀z ∈ B and φx̄,ȳ(x̄) = d2

SR(x̄, ȳ).

Recall that, by the definition of the Kantorovitch potentials, for every
z ∈M , we have {

ϕ(z) ≥ ϕc(ȳ)− d2
SR(z, ȳ)

ϕ(x̄) = ϕc(ȳ)− d2
SR(x̄, ȳ)

.

Then, ∀z ∈ B, {
ϕ(z) ≥ ϕc(ȳ)− φx̄,ȳ(z)

ϕ(x̄) = ϕc(ȳ)− φx̄,ȳ(x̄)
.

Define
ψx̄,ȳ(z) := ϕc(ȳ)− φx̄,ȳ(z),∀z ∈ B.

Hence, we put locally a C2 function under the graph of ϕ with a uniform
control on the C2 norm of ψx̄,ȳ. It implies that for every x̄ ∈ MR, we can
find k ∈ N such that there is px̄ ∈ R4 with |px̄| ≤ k verifying

ϕ(x̄) ≤ ϕ(y)− < px̄, x̄− y > +k |x̄− y|2, ∀y ∈ B(x̄, 1/k).

We are ready to complete the proof of Proposition 1.

SinceMR ⊂
⋃
k∈N

Wk (by Lemma 2), there exists k ∈ N such that

Ak := A ∩Wk is of positive Lebesgue measure.
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Let x̄ be a density point of Ak and ȳ ∈ ΓR(x̄). By the definition of the
Kantorovitch potentials, we have that

ϕ(x̄) + d2
SR(x̄, ȳ) ≤ ϕ(z) + d2

SR(z, ȳ),∀z ∈M

⇒ ϕ(x̄) + d2
SR(x̄, ȳ)− ϕ(z) ≤ d2

SR(z, ȳ),∀z ∈M.

We define the function ρx̄ : M → R
z 7→ ρx̄(z) := ϕ(x̄) + d2

SR(x̄, ȳ)− ϕ(z)
verifying

ρx̄(z) ≤ d2
SR(z, ȳ),∀z ∈M and equality for z = x̄. (8)

Let Ãk := Ak ∩B(x̄, 1/2k). For every y ∈ Ãk, there is py ∈ R4, |py| ≤ k
such that

ϕ(y) ≤ ϕ(z)− < py, y − z > +k |y − z|2, ∀z ∈ B(y, 1/k).

We define the function ϕ̃ : B(x̄, 1/2k)→ R as follows

ϕ̃(z) = sup
y∈Ãk

Ψy(z), ∀z ∈ B(x̄, 1/2k)

where

∀y ∈ Ãk, Ψy(z) := ϕ(y)+ < py, y − z > −k |y − z|2.

We claim that for every z ∈ Ãk, ϕ̃(z) = ϕ(z). Let us prove our claim.
In fact, for every z ∈ Ãk,we have

ϕ̃(z) ≥ Ψy(z), ∀y ∈ Ãk,

that is

ϕ̃(z) ≥ ϕ(y)+ < py, y − z > −k |y − z|2, ∀y ∈ Ãk.
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In particular, for y = z ∈ Ãk, we obtain

ϕ(z) ≤ ϕ̃(z).

Assume that there is z ∈ Ãk such that ϕ(z) < ϕ̃(z).
Then, there is y ∈ Ãk, y 6= z such that

ϕ(z) < Ψy(z)

that is

ϕ(z) < ϕ(y)+ < py, y − z > −k |y − z|2. (9)

Or, z, y ∈ Ãk, then z ∈ B(y, 1/k). So,

ϕ(y) ≤ ϕ(z)− < py, y − z > +k|z − y|2

⇒ ϕ(y)+ < py, y − z > −k |z − y|2 ≤ ϕ(z)

which contradicts inequality (9). And the conclusion follows.

Moreover, let y ∈ Ãk be fixed. For any x ∈ B(x̄, 1/2k), there is a
neighborhood B(x, 1/k) of x contained in B(x̄, 1/2k) such that for every
x′ ∈ B(x, 1/k), we can find p̃x ∈ R4 such that

Ψy(x)−Ψy(x
′) = < py, x

′ − x > +k(|x′ − y|2 − |x− y|2)

≤ < py, x
′ − x > +k|x′ − x|2 − 2k < y − x, x′ − x >

≤ < py − 2k(y − x), x′ − x > +k|x′ − x|2

Take p̃x := py − 2k(y − x), we obtain

Ψy(x) ≤ Ψy(x
′)− < p̃x, x− x′ > +k|x′ − x|2.

This means that for every y ∈ Ãk, Ψy is locally semiconvex on B(x̄, 1/2k).
According to Lemma 14 in Appendix B, since ϕ̃ is the supremum of local
semiconvex functions Ψy among all y ∈ Ãk, then ϕ̃ is locally semiconvex on
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B(x̄, 1/2k). By the Rademacher Theorem, ϕ̃ is differentiable almost every-
where on B(x̄, 1/2k).

We also define the function

ρ̃x̄ : B(x̄, 1/2k) → R
z 7→ ρ̃x̄(z) := ϕ̃(x̄) + d2

SR(x̄, ȳ)− ϕ̃(z)

such that for any z ∈ Ãk, we have

ρ̃x̄(z) = ρx̄(z) and ρ̃x̄(z) ≤ d2
SR(z, ȳ). (10)

Here, x̄ is fixed and ρ̃x̄ is a function of z. By the definition of ρ̃x̄, as ϕ̃ is
differentiable at almost every z ∈ B(x̄, 1/2k), ρ̃x̄ is also differentiable almost
everywhere on B(x̄, 1/2k).

On the other hand, following the proof of Lemma 2, for x̄ ∈ MR and
ȳ ∈ ΓR(x̄), there are an open set Bx̄ in R4 containing x̄ and a C2 function
φx̄,ȳ : Bx̄ → R such that

φx̄,ȳ(z) ≥ d2
SR(z, ȳ),∀z ∈ Bx̄ and equality for z = x̄. (11)

Consequently, by (8), (10), (11), we obtain

ρ̃x̄(z) ≤ d2
SR(z, ȳ) ≤ φx̄,ȳ(z), ∀z ∈ Bx̄ ∩ Ãk

and
equality for z = x̄.

Note that φx̄,ȳ is a C2 function and ρ̃x̄ is differentiable almost everywhere
on B(x̄, 1/2k). Then,

dx̄φ
x̄,ȳ = dx̄ρ̃

x̄.

It means that there is a unique ȳ ∈ ΓR(x̄) such that

ȳ = expx̄(dx̄ρ̃
x̄) = expx̄(−dx̄ϕ̃),
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with expx̄ : T ∗x̄M → M the sub-Riemannian exponential map from x̄. This
contradicts assumption (5) and the conclusion follows.

Remark 1. The above argument can be used to prove the required result in the
general case, with M a smooth connected manifold of dimension n equipped
with a complete sub-Riemannian structure (∆, g) of rank m(m < n).

3 Proof of Proposition 2
Our aim is to prove that

for almost every x ∈MS, ΓS(x) is a singleton.

First, we need to construct a line field, defined on a set of full Lebesgue
measure, whose orbits correspond to the singular curves.

The following holds (see [Sus96], [Rif14], [LS95]) :

Lemma 3. There is an open set H of full Lebesgue measure on M such that:

∀x ∈ H, TxM = ∆(x) + [∆,∆](x) + [∆, [∆,∆]](x). (12)

Proof of Lemma 3. We denote by S the set given by

S =
{
x ∈M |∆(x) + [∆,∆](x) + [∆(x), [∆,∆]](x) 6= TxM

}
.

Assume by contradiction that S is of positive Lebesgue measure on M .
It is sufficient to work locally. Taking a sufficiently small open neighborhood
V of the origin in M and doing a change of coordinates if necessary we may
assume that there are a set of coordinates (x1, x2, x3, x4) and two vector fields
X1, X2 on V of the form

X1 = ∂x1 , X2 = ∂x2 + A∂x3 +B∂x4

where A,B : M → R are smooth functions such that A(0) = B(0) = 0
and

∆(x) = Span
{
X1(x), X2(x)

}
, ∀x ∈ V .
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So we have
[X1, X2] = Ax1∂x3 +Bx1∂x4 on V .

By hypothesis (4) in Theorem 1, we have

∀x ∈M,∆(x) + [∆,∆](x) has dimension 3.

We may assume
Ax1 6= 0 on V .

We denote by X3 the horizontal vector field given by

X3 :=
1

Ax1
[X1, X2] = ∂x3 + C∂x4

where C := Bx1/Ax1 is smooth.

A computation gives

[X1, X3
]

= [∂x1 , ∂x3 + C∂x4 ] = Cx1∂x4 (13)

and

[X2, X3
]

= [∂x2 + A∂x3 +B∂x4 , ∂x3 + C∂x4 ] (14)

=
(
− Ax3 − CAx4

)
∂x3

+
(
Cx2 + ACx3 +BCx4 −Bx3 − CBx4

)
∂x4

Let x ∈ S ∩ V . It follows

∆(x) + [∆,∆](x) + [∆(x), [∆,∆]](x) 6= TxM.

Since ∆ + [∆,∆] is of dimension 3, it means that

det
(
X1, X2, [X1, X2],

[
X1, [X1, X2]

])
= 0 (15)

and,
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det
(
X1, X2, [X1, X2],

[
X2, [X1, X2]

])
= 0 (16)

which is equivalent to

det
(
X1, X2, [X1, X2],

[
X1, X3

])
= 0 (17)

and,

det
(
X1, X2, [X1, X2],

[
X2, X3

])
= 0 (18)

that is,
Cx1 = 0 (19)

and
Cx2 + ACx3 +BCx4 −Bx3 − CBx4 + CAx3 + C2Ax4 = 0. (20)

For every k-tuple I = (i1, . . . , ik−1, 3) s.t. (i1, . . . , ik−1) ∈ {1, 2}k−1, we
denote by ZI the smooth vector field constructed by the Lie brackets of
X1, X2 as follows

ZI =
[
X i1 ,

[
X i2 , . . . , [X ik−1 , X3]

]
. . .
]
.

Note l(I) the length of the Lie brackets ZI . By totally nonholonomicity, for
every x ∈ V , there exists an integer r(x) ≥ 2 such that

TxM = Span
{
ZI(x)| l(I) ≤ r(x)

}
.

For every I of l(I) ≥ 2,

ZI(x) = ZI
3 (x) ∂x3 + ZI

4 (x) ∂x4 .

We define the following set

Ak :=
{
x ∈ V| ZI

4 (x)− C(x)ZI
3 (x) = 0 ∀I s.t. l(I) ≤ k

}
and
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S ∩ V =
r−1⋃
k=2

Ak\Ak+1 where r = max
x∈V

r(x). (21)

Recall that S is supposed to be of positive Lebesgue measure. By (21),
there is 2 ≤ k̄ ≤ r − 1 such that Ak̄\Ak̄+1 has positive Lebesgue measure.
Fix x̄ a density point in Ak̄\Ak̄+1. There exists some J ′ = (i1, . . . , ik̄, 3) of
length k̄ + 1 such that on a neighborhood Vx̄ of x̄,

ZJ ′

4 − CZJ ′

3 6= 0 on Vx̄. (22)

From J ′, we take J = (i2, . . . , ik̄, 3) of length k̄, so that ZJ
4 − CZJ

3 = 0.
And, we compute ZJ ′ in terms of ZJ :

ZJ ′ =



[X1, ZJ ] = (ZJ
3 )x1∂x3 + (ZJ

4 )x1∂x4

[X2, ZJ ] =
(

(ZJ
3 )x2 + A(x̄)(ZJ

3 )x3 +B(ZJ
3 )x4 − ZJ

3 Ax3 − ZJ
4 Ax4

)
∂x3

+
(

(ZJ
4 )x2 + A(ZJ

4 )x3 +B(ZJ
4 )x4 − ZJ

3 Bx3 − ZJ
4 Bx4

)
∂x4

Replacing ZJ ′
3 and ZJ ′

4 in (22), it follows that on V , we have

(ZJ
4 )x1 − C(ZJ

3 )x1 6= 0 (23)

or

(ZJ
4 )x2 + A(ZJ

4 )x3 +B(ZJ
4 )x4 − ZJ

3 Bx3 − ZJ
4 Bx4

− C
(
(ZJ

3 )x2 + A(ZJ
3 )x3 +B(ZJ

3 )x4 − ZJ
3 Ax3 − ZJ

4 Ax4
)
6= 0, (24)

We recall that ZJ
4 − CZJ

3 is a smooth function such that

ZJ
4 − CZJ

3 = 0 on Ak̄\Ak̄+1. (25)

Since x̄ is a density point on Ak̄\Ak̄+1, we have(
ZJ

4 − CZJ
3

)
xi

(x̄) = 0, ∀i = 1, 2, 3, 4.
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Note that by (19), Cx1 = 0. And, by computing the partial derivatives of
(25), we obtain

(
ZJ

4

)
x1

(x̄)− C(x̄)
(
ZJ

3

)
x1

(x̄) = 0 (26)(
ZJ

4

)
xi

(x̄)− C(x̄)
(
ZJ

3

)
xi

(x̄) = Cxi(x̄)ZJ
3 (x̄), ∀i = 2, 3, 4 (27)

Using (27), we can check that the left-hand side of (24) evaluated at the
point x̄ is equal to

(ZJ
4 )x2 + A(ZJ

4 )x3 +B(ZJ
4 )x4 − ZJ

3 Bx3 − ZJ
4 Bx4

− C
(
(ZJ

3 )x2 + A(ZJ
3 )x3 +B(ZJ

3 )x4 − ZJ
3 Ax3 − ZJ

4 Ax4
)

=
(

(ZJ
4 )x2 − C(ZJ

3 )x2

)
+ A

(
(ZJ

4 )x3 − C(ZJ
3 )x3

)
+B

(
(ZJ

4 )x4 − CZJ
3 )x4

)
− ZJ

3

(
Bx3 − CAx3

)
− ZJ

4

(
Bx4 − CAx4

)

= Cx2Z
J
3 + ACx3Z

J
3 + BCx4Z

J
3 − ZJ

3

(
Bx3 − CAx3

)
− ZJ

4

(
Bx4 − CAx4

)
=
(
Cx2 + ACx3 +BCx4 −Bx3 + CAx3

)
ZJ

3 − ZJ
4

(
Bx4 − CAx4

)
=

by(20)

(
CBx4 − C2Ax4

)
ZJ

3 − ZJ
4

(
Bx4 − CAx4

)
= −

(
Bx4 − CAx4

)(
ZJ

4 − CZJ
3

)
= 0

This and (26) imply that

ZJ ′

4 (x̄)− C(x̄)ZJ ′

3 (x̄) = 0

which contradicts (23) and (24),i.e. the fact that x̄ /∈ Ak̄+1.

20



We need another lemma.

Lemma 4. There exists a line subbundle L of ∆ such that the singular
horizontal curves defined on H are exactly the trajectories described on L.

Proof of Lemma 4. It is sufficient to prove the result in a neighborhood
of each point in H. So, let us consider a local frame {X1, X2} such that

∆(z) = Span
{
X1(z), X2(z)

}
, ∀z ∈M.

Let γ : [0, 1]→M be a trajectory associated to some control u ∈ L2([0, 1],R2).
In local coordinates, singular curves can be characterized as follows (see
Proposition 1.3.3 [Rif14]):

γ is singular with respect to ∆ if there is p : [0, 1]→ (R4)∗\{0} satisfying :

ṗ(t) = −
2∑
i=1

ui(t)p(t) ·Dγ(t)X
i, a.e. t ∈ [0, 1] (28)

p(t) ·X i(γ(t)) = 0,∀t ∈ [0, 1], ∀i = 1, 2 (29)

Derivative two times yields for almost every t ∈ [0, 1] such that u(t) 6= 0

p(t) ·
[
X1(t), X2(t)

]
(γ(t)) = 0, (30)

and

u1(t)p(t) ·
[
X1, [X1, X2]

]
(γ(t)) + u2(t)p(t) ·

[
X2, [X1, X2]

]
(γ(t)) = 0. (31)

Since M has dimension four and ∆ +
[
∆,∆

]
has dimension three, there is

locally a smooth non-vanishing 1-form α such that

αx · v = 0, ∀v ∈ ∆(x) +
[
∆,∆

]
(x), ∀x ∈ H.

Then, by (29), (30)-(31), we infer that for almost every t ∈ [0, 1] such that
u(t) 6= 0, we have:

u1(t)αγ(t) ·
[
X1, [X1, X2]

]
(γ(t)) + u2(t)αγ(t) ·

[
X2, [X1, X2]

]
(γ(t)) = 0.
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By above assumption, for every x ∈ H, the linear form

(λ1, λ2) 7→ (αx ·
[
X1, [X1, X2]

]
(x))λ1 + (αx ·

[
X2, [X1, X2]

]
(x))λ2

has a kernel of dimension one. This shows that there is a smooth line field
(a distribution of rank one) L ⊂ ∆ on M such that the singular horizontal
curves are exactly the integral curves of L.

We are ready now to prove Proposition 2.

Without loss of generality, it is sufficient to prove the result locally. We
can assume that (x1, x2, x3, x4) denotes the coordinates in an open neighbor-
hood V in M and consider {X1, X2} a local frame of ∆ such that

∆(x) = Span
{
X1(x), X2(x)

}
, ∀x ∈ V .

Doing a change of coordinates if necessary, we can assume that

X1 = ∂x1 , X2 = ∂x2 + A(.)∂x3 +B(.)∂x4

where A,B : V → R are smooth functions.

For the upcoming results, it is important to keep in mind the following
notations.

Notation 1. We denote by Axi , Bxi the partial derivative with respect to the
variable xi, and Axixj , Bxixj the second partial derivative with respect to the
variable xi and xj, of A and B respectively.

We compute the Lie brackets of X1 and X2 :[
X1, X2

]
= Ax1∂x3 +Bx1∂x4 (32)[

X1, [X1, X2]
]

= Ax1x1∂x3 +Bx1x1∂x4[
X2, [X1, X2]

]
= E∂x3 + F∂x4

with

 E = Ax2x1 + AAx3x1 +BAx1x4 − Ax1Ax3 −Bx1Ax4

F = Bx2x1 + ABx3x1 +BBx1x4 − Ax1Bx3 −Bx1Bx4
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By hypothesis (4) and (32), we can assume that

Ax1(x) 6= 0, ∀x ∈ V . (33)

We denote by Hc the complementary set of H on M given by

Hc =
{
x ∈M | ∆(x) +

[
∆,∆

]
(x) +

[
∆, [∆,∆]

]
(x) 6= TxM

}
.

Thus, Hc is a closed set of Lebesgue measure zero on M .

The above discussion implies indeed the following lemma.

Lemma 5. There exists an analytic horizontal vector field X given by

X = α1X
1 + α2X

2

with α1, α2 : V → R smooth functions given by{
α1 = EBx1 − FAx1
α2 = Bx1x1Ax1 − Ax1x1Bx1

(E and F : V → R smooth functions defined in Notation 1).

The vector field X vanishes on Hc and any solution of the Cauchy prob-
lem ẋ(t) = X(x(t)) is analytic and singular.

Proof of Lemma 5. Let T > 0 and let u ∈ L2([0, 1],R2) be a singular
control and x : [0, T ]→M be a solution to the Cauchy problem

ẋ(t) = u1(t)X1(x(t)) + u2(t)X2(x(t)), a.e. t ∈ [0, T ].

There exists an absolutely continuous arc p : [0, T ]→ (R4)∗\{0} such that

ṗ(t) = −u1(t)p(t).Dx(t)X
1 − u2(t)p(t).Dx(t)X

2, a.e. t ∈ [0, T ] (34)

p(t).X1(x(t)) = p(t).X2(x(t)) = 0,∀t ∈ [0, T ] (35)
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Taking the derivatives in (35) gives

p(t) · [X1, X2](x(t)) = 0, ∀t ∈ [0, T ] (36)

which implies that ∀t ∈ [0, T ],
p1(t) = 0

p2(t) + A(x(t))p3(t) +B(x(t))p4(t) = 0

Ax1(x(t))p3(t) +Bx1(x(t))p4(t) = 0

Assume that condition (33) is true, then we obtain

p(t) =
(

0, [A(x(t))
Bx1

Ax1
(x(t))−B(x(t))]p4(t),−Bx1

Ax1
(x(t))p4(t), p4(t)

)
, ∀t ∈ [0, T ].

By taking the derivatives in (36), we obtain for every t ∈ [0, T ]

u1(t)p(t) · [X1, [X1, X2]](x(t)) + u2(t)p(t) · [X2, [X1, X2]](x(t)) = 0

⇒ u1(t)(p3(t)Ax1x1 + p4(t)Bx1x1) + u2(t)(p3(t)E + p4(t)F ) = 0.

We can write
u1(t) = −(p3(t)E + p4(t)F ) = −p4(t)(F − Bx1

Ax1
E)

u2(t) = p3(t)Ax1x1 + p4(t)Bx1x1) = p4(t)(Bx1x1 − Ax1x1
Bx1

Ax1
)
.

Assume that p4(t) = 1,∀t ∈ [0, 1], we obtain{
α1(x) = EBx1 − FAx1
α2(x) = Ax1Bx1x1 −Bx1Ax1x1

(37)

Lemma 6. There is a positive constant C > 0 such that

divxX ≥ −C|X(x)|, ∀x ∈ V .
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Proof of Lemma 6. Let us compute the divergence of X. For every x ∈ V ,

divxX = α1(x)divxX
1 + α2(x)divxX

2 +X1(α1) +X2(α2)

= α2(x)divxX
2 +Bx1(Ax1x2x1 + Ax1Ax3x1 + AAx1x3x1 +Bx1Ax1x4

+BAx1x1x4 − Ax3Ax1x1 − Ax1Ax1x3 −Bx1x1Ax4 −Bx1Ax1x4)

−Ax1(Bx1x2x1 + Ax1Bx3x1 + ABx1x3x1 +Bx1Bx1x4 +BBx1x1x4

−Bx3Ax1x1 − Ax1Bx1x3 −Bx1x1Bx4 −Bx1Bx1x4) + EBx1x1

−FAx1x1 + Ax2x1Bx1x1 + Ax1Bx2x1x1 −Bx2x1Ax1x1 −Bx1Ax2x1x1

+AAx3x1Bx1x1 + AAx1Bx3x1x1 − ABx3x1Ax1x1 − ABx1Ax3x1x1

+BAx4x1Bx1x1 +BAx1Bx4x1x1 −BBx4x1Ax1x1 −BBx1Ax4x1x1

= α2(x)divxX
2 + EBx1x1 − FAx1x1

+Bx1x1(BAx4x1 + AAx3x1 + Ax2x1 + Ax1Bx4 −Bx1Ax4)

+Ax1x1(−BBx4x1 − ABx3x1 −Bx2x1 + Ax1Bx3 −Bx1Ax3)

= α2(x)divxX
2 + EBx1x1 − FAx1x1

+Bx1x1Ax1Bx4 +Bx1x1(E + Ax1Ax3)− Ax1x1Bx1Ax3 − Ax1x1(F +Bx1Bx4)

= α2(x)divxX
2 + 2EBx1x1 − 2FAx1x1

+Bx1x1(Ax1Bx4 + Ax1Ax3)− Ax1x1(Bx1Ax3 +Bx1Bx4)

= α2(x)divxX
2 + 2EBx1x1 − 2FAx1x1

+(Bx1x1Ax1 − Ax1x1Bx1)(Ax3 +Bx4)

= 2 Bx1x1E − 2 Ax1x1F + 2 α2(x)divxX
2.
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By (37), we can write Bx1x1 =
α2 +Bx1Ax1x1

Ax1
and F =

EBx1 − α1

Ax1
.

Hence, divxX = 2 α2
E

Ax1
+ 2 α1

Ax1x1
Ax1

+ 2 α2divxX
2

= 2 α2(
E

Ax1
+ divxX

2) + 2 α1
Ax1x1
Ax1

As we noticed before, without loss of generality, we proceed as if M is a
compact manifold. Then,

(
E/Ax1 + divxX

2
)
and

(
Ax1x1/Ax1

)
are bounded

functions on M . There exist c1, c2 > 0 such that

| Ax1x1
Ax1(x)

| ≤ c1 and | E
Ax1

(x) + divxX
2| ≤ c2, ∀x ∈ V .

Thus,
divxX ≥ −k|α1| − k′|α2|, ∀x ∈ V

≥ −C|X(x)|,∀x ∈ V

with C = max{c1, c2} > 0 positive constant.

The following process is equivalent to the process introduced by Belotto
and Rifford [BR16] to set the contraction property.

Let ε ∈ {1,+1} and T > 0, we denote by (ϕXεt) the analytic flow of the
vector field X generating locally singular minimizing geodesics.

For every subset A in V , we set

ASt = ϕXεt(A), ∀t ∈ [0, T ] and AS0 = A.

We denote by l(A, t) := sup
x∈A

length ϕXεt(A) = sup
x∈A

∫ t

0

|X(ϕXεs(x))|ds,

where |X(ϕXεs(x))| stands from the norm of X(ϕXεs(x)) with respect to g.
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We recall that there is L > 0, already defined in section 1, such that for
every x ∈ A, we have∫ t

0

|X(ϕXεs(x))|ds ≤ L, ∀t ∈ [0, T ]. (38)

We state now divergence formulas, one of the main tool of the present
paper (see [BR16], Proposition B.1).

Lemma 7. For every compact A in M , there is a smooth function
J : [0, T ]× A→ [0,+∞[ such that for every t ∈ [0, T ], we have:

J (0, z) = 1 and
∂J
∂t

(t, z) = div X(ϕXεt(z)) J (t, z) (39)

∀x ∈ A, L4(ASt ) =

∫
AS

t

dz =

∫
A

J (t, z) dz (40)

and

L4(ASt ) =

∫
A

exp
(∫ t

0

div X(ϕXεs(z)) ds
)
dz (41)

The following result is an immediate corollary of Lemma 7.

Lemma 8. Let T > 0. For every subset A in V, we have

L4(ASt ) ≥ exp(−C l(A, t)) L4(A), ∀t ∈ [0, T ]. (42)

Proof of Lemma 8. Let A be a subset in V . By Lemma 6, there is a
constant C > 0 such that

div X(z) ≥ −C|X(z)|, ∀z ∈ A.

Therefore, by (41), we infer that, ∀t ∈ [0, T ],

L4(ASt ) ≥
∫
A

exp
(
−C

∫ t

0

|X(ϕXεs(z))| ds
)
dz

≥
∫
A

exp
(
−C l(A, t)

)
dz

≥ exp
(
−C l(A, t)

)
L4(A).
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The following result whose proof is based on the local contraction prop-
erty, is fundamental.

Lemma 9. Let T > 0. The closed set given by{
x ∈M; ∃γ ∈ ΩS

x,T such that γ(T ) ∈ Hc
}

is of Lebesgue measure zero on M .

Proof of Lemma 9. Let A be a subset ofM of positive Lebesgue measure.
Without loss of generality, we can assume that A is contained in an open set
V in M . We argue by contradiction by assuming that

L4
({
x ∈ A; ∃γ ∈ ΩS

x,T such that γ(T ) ∈ Hc
})

> 0.

By Lemma 5, there is an analytic horizontal vector field X defined on V
generating singular minimizing geodesic defined on V .

A

•
x

Hc

ASt

•
ϕXεt(x)

Moreover, X vanishes on Hc. Then, for every x ∈ A, the flow of X
starting at x requires an infinite time to reach Hc, that is

ASt = ϕXεt(A) −→
t→∞

S ⊂ Hc.

Let t→∞, we obtain that L4(ASt ) −→ 0.
By Lemma (8), we have

L4(ASt ) ≥ exp(−C l(A, t))L4(A), ∀t ∈ [0, T ].
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By (38), we obtain
l(A, t) ≤ L,∀t ∈ [0, T ].

Hence,
L4(ASt ) ≥ exp(−CL)L4(A), ∀t ∈ [0, T ].

When t→ +∞, we obtain
L4(A) = 0,

which implies the contradiction.

In the spirit of [CH15], we have the following result.

Lemma 10. Let Λ1, Λ2 be two subsets of Γ such that

(i) P 1(Λ1) = P 1(Λ2) and P 1(Λi) ⊂MS,∀i = 1, 2.

(ii) P 2(Λ1) ∩ P 2(Λ2) = ∅.
Then, L4(P 1(Λ1)) = L4(P 1(Λ2)) = 0.

Proof of Lemma 10. Set A = P 1(Λ1) = P 1(Λ2). We can assume that A
is contained in an open set V in M . Let T > 0. For every i = 1, 2, we define

AS,Λi
t :=

{
ϕXεt(x)| ϕX0 (x) ∈ A and ϕXεT (x) ∈ P 2(Λi)

}
, ∀t ∈ [0, T ].

Since P 2(Λ1) ∩ P 2(Λ2) = ∅, we have

AS,Λ1
t ∩ AS,Λ2

t = ∅,∀t ∈ [0, T ].

For δ > 0 fixed, we define Aδ =
{
x : dSR(x,A) ≤ δ

}
.

A

P 2(Λ2)
P 2(Λ1)

AS,Λ1
t

AS,Λ2
t

Aδ
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L4(A) = lim
δ→0

supL4(Aδ)

≥ lim
t→0

supL4(AS,Λ1
t ∪ AS,Λ2

t )

= lim
t→0

sup[L4(AS,Λ1
t ) + L4(AS,Λ2

t )]

≥ 2 exp
(
−C l(A, t)

)
L4(A).

Since t→ 0, we have AS,Λi
t very close to A. So we can choose

l(A, t) > 0 sufficiently small, that is

exp
(
−C l(A, t)

)
>

1

2
.

Hence, we obtain L4(A) = 0.

We are ready to complete the proof of Proposition 2.

Consider the following set

E :=
{
x ∈MS : ΓS(x) is not a singleton

}
and assume that E has positive measure. It follows that there is k ∈ N

such that the set given by

Ek :=
{
x ∈ E : diam ΓS(x) >

1

k

}
has positive Lebesgue measure.

Without loss of generality, we can assume that the manifold M can be
covered by finitely many open balls (Ui)i∈I of diameter less or equal to 1/k.
From (Ui)i∈I , we construct a finite family of open sets (Vi)i∈I pairwise dis-
joint covering M by proceeding as follows

V1 = U1

V2 = U2\U1
...

Vn = Un\(U1 ∪ U2 ∪ · · · ∪ Un−1)
...
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such that
⋃
i∈I

Ui =
⋃
i∈I

Vi.

Therefore, for any x ∈ Ek, there are ix, jx ∈ I with ix 6= jx such that

ΓS(x) ∩ Vix 6= ∅ and ΓS(x) ∩ Vjx 6= ∅.

Denote by
Ek,i :=

⋃
x∈Ek

{x} × (ΓS(x) ∩ Vix)

and

Ek,j :=
⋃
x∈Ek

{x} × (ΓS(x) ∩ Vjx).

We notice that P 1(Ek,i) = P 1(Ek,j) = E such that

L4(E) > 0. (43)

We also have P 2(Ek,i)∩P 2(Ek,j) = ∅ since for any x ∈ Ek, Vix ∩Vjx = ∅, for
ix 6= jx. Using lemma 10, we obtain

L4(P 1(Ek)) = 0,

which contradicts assumption (43).

We conclude that for a.e. x ∈MS,ΓS(x) is a singleton.

4 End of the proof of Theorem 1
In the previous sections, we have shown that

∀x ∈MR,ΓR(x) is a singleton (see section 2),

and
∀x ∈MS,ΓS(x) is a singleton (see section 3).

To complete the proof of Theorem 1, it remains to prove that

∀x ∈MS ∩MR,Γ(x) is a singleton.
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For this purpose, we will use again the technique introduced by Cavalletti
and Huesmann [CH15]. First, we will show a localized contraction property
for regular horizontal curves.

Lemma 11. There is a positive constant C̃ such that for T > 0 and for
every set A inMR,

L4(ARt ) ≥ C̃L4(A), ∀t ∈ [0, T ] (44)

with
ARt :=

{
γ(t)| γ ∈ ΩR

x,T ; x ∈ A and γ(T ) ∈ ΓR(x)
}
.

Proof of Lemma 11. Let A be a compact set ofMR of positive measure.
SinceMR ⊂

⋃
k∈N

Wk (by Lemma 2), for every point x of A, there exists

k = k(x) ∈ N such that
x ∈ Ak := A ∩Wk,

so there is px ∈ R4 with |px| ≤ k verifying

ϕ(x) ≤ ϕ(z)− < px, x− z > +k|x− z|2, ∀z ∈ B(x, 1/k).

Let Ãk := Ak ∩B(x, 1/2k). As in section 2, we define the function

ϕ̃(z) =


ϕ(z) if z ∈ Ãk

sup
y∈Ãk

{
ϕ(y)+ < py, y − z > −k |y − z|2

}
if not

For any x ∈ A, ϕ̃ is locally semiconvex on B(x, 1/2k). By the Alexandrov
Theorem, ϕ̃ is twice differentiable at a.e. z ∈ B(x, 1/2k). Moreover, there
exists a constant Ck > 0 such that

Hesszϕ̃ ≥ −CkI4, a.e. z ∈ B(x, 1/2k) (45)

where I4 is the 4× 4 identity matrix.

We notice that A =
⋃
k∈N

Ãk. Denote by C̃ > 0 the constant given by

C̃ := sup
k∈N

Ck.
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Then,
Hessxϕ̃ ≥ −C̃I4, a.e. x ∈ A. (46)

By section 2, for almost every x ∈ A ⊂ MR, there exists a unique
y ∈ ΓR(x) given by

y := expx(−dxϕ̃).

Then, the curve γx(t) : [0, T ]→M defined by

γx(t) := expx(−tdxϕ̃), a.e. x ∈ A

is the unique regular minimizing geodesic joining x to y.

For every t ∈ [0, T ], we define the function

Tt : M −→ M
x 7−→ Tt(x) = γx(t) = expx(−tdxϕ̃)

.

Note that
∀t ∈ [0, T ], ARt =

{
Tt(z); z ∈ A

}
.

We have

L4(ARt ) =

∫
AR

t

dx =

∫{
Tt(z);z∈A

} dx =

∫
A

det(Jac Tt(x))dx. (47)

However, the function Tt results from the composition of the two following
functions

f : x ∈M → dxϕ̃ ∈ T ∗xM, and g : p ∈ T ∗M → expx(−tp) ∈M.

By computing the Jacobien of Tt, we obtain

Jac Tt(x) = Jac g(f(x))×Hessxϕ̃ .

Here, g is smooth on T ∗M and by (46), there is a constant C̃ > 0 such
that

Jac Tt(x) ≥ −C̃ I4, a.e. x ∈ A.
By (47), this implies

L4(ARt ) ≥ C̃L4(A),∀t ∈ [0, T ].
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We conclude with the following lemma.

Lemma 12. MR ∩MS has Lebesgue measure zero on M .

Proof of Lemma 12. Assume that there is a set A ofMR∩MS such that

L4(A) > 0. (48)

Let T > 0 and ε ∈ {−1,+1}. For every t ∈ [0, T ], we define the two
following intermediate subsets by

ARt :=
{
γx(t)| γx ∈ ΩR

x,T with x ∈ A and γRx (T ) ∈ ΓR(x)
}
,

and
ASt := ϕXεt(A).

For every x ∈ A, we have ΓR(x)∩ΓS(x) = ∅, then there is t = t(x) ∈]0, T [
such that

ϕXεs(x) 6= γx(s), ∀s ∈]t, T ].

As a matter of fact, regular minimizing geodesics are analytic as pro-
jections of the analytic sub-Riemannian Hamiltonian system and singular
minimizing geodesic are analytic as the analytic flow of X. Without loss of
generality, we can assume that there is t̄ ∈]0, 1[ such that for every x ∈ A

t = t(x) ≤ t̄ and ARs ∩ ASs = ∅, ∀s ∈]t̄, T ]

and
ARt̄ ∩ ASt̄ 6= ∅.

We denote by
Ā := ARt̄ ∪ ASt̄ .

We may assume that Ā has positive Lebesgue measure. Notice that for s ≥ t̄,
when s→ t̄, ARs and ASs converge to Ā, then one has

L4(Ā) = lim
δ→0

supL4(Āδ) ≥ lim
s→t̄+

supL4(AΛ1
s ∪ AΛ2

s )
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= lim
s→t̄+

supL4(ARs ∪ ASs )

= lim
s→t̄+

sup[L4(ARs ) + L4(ASs )]

≥ lim
s→t̄+

(
exp
(
−C l(Ā, s)

)
+ C̃

)
L4(Ā). (49)

where Āδ := {x; dSR(x, Ā) ≤ δ}, for a given δ > 0.

The inequality (49) follows from Lemmas 8 and 11 according to which we
have

L4(ARs ) ≥ C̃L4(Ā) and L4(ASs ) ≥ exp
(
−Cl(Ā, s)

)
L4(Ā),∀s ∈]t̄, T [.

As s→ t̄, we can choose l(Ā, s) > 0 sufficiently small, that is

exp
(
−C l(Ā, s)

)
+ C̃ > 1.

It implies that L4(Ā) = 0. And the conclusion follows.

A Proof of Lemma 1
It is sufficient to prove the result for x contained in an open set V ⊆M such
that there is an orthonormal family of m vector fields X1, . . . , Xm generating
∆(z), ∀z ∈ V . Let x ∈ S be fixed. By a change of coordinates if necessary,
we can write the vector fields as follows

X i =
∂

∂xi
+

n∑
j=1

aij
∂

∂xj
, ∀i = 1, . . . ,m.

We remark that for every y ∈ M , the function z ∈ M 7→ ϕc(y) − d2
SR(z, y)

is locally Lipschitz with respect to the sub-Riemannian distance. Then, ϕ is
also locally Lipschitz with respect to the sub-Riemannian distance. By the
Pansu-Rademacher theorem, since µ is absolutely continuous with respect
to the Lebesgue measure, ϕ is differentiable with respect to the vector fields
X1, . . . , Xm µ-almost everywhere on V . Hence, we have:

ϕ(y)− ϕ(x) =
m∑
i=1

X iϕ(x)(yi − xi) + o(dSR(x, y)), ∀y ∈ V .
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Let γxi : [0, 1] → M , i = 1, . . . ,m be the integral flow associated to X i

starting at x. Then, we denote by

li = lim
t→0

ϕ(γxi (t))− ϕ(x)

t
,∀i = 1, . . . ,m.

Recall that g(γxi (t), γxi (t)) = g(X i(γxi (t)), X i(γxi (t))) = 1, ∀t ∈ [0, 1].

It follows
dSR(x, γxi (t)) ≤ |t|,∀t ∈ [0, 1].

Then,

x ∈ Γ(x)⇒ ϕ(x)− ϕ(z) ≤ d2
SR(x, z),∀z ∈ V .

In particular,

ϕ(x)− ϕ(γxi (t)) ≤ d2
SR(x, γxi (t)) ≤ t2.

This implies that li = 0. Hence,

X iϕ(x) = 0,∀i = 1, . . . ,m. (50)

Assume now that there exists y ∈ Γ(x) such that y 6= x. So we have

ϕ(x)− ϕ(z) ≤ d2
SR(x, z)− d2

SR(x, y),∀z ∈ V .

Let γx,y : [0, 1] → M be a minimizing geodesic joining x to y. Then,
∀t ∈ [0, 1],

ϕ(x)− ϕ(γx,y(t)) ≤ d2
SR(x, γx,y(t))− d2

SR(x, y),

⇒ −o(dSR(x, γx,y(t))) ≤ d2
SR(x, γx,y(t))− d2

SR(x, y),

⇒ −o(t dSR(x, y)) ≤ (1− t)2d2
SR(x, y)− d2

SR(x, y),

⇒ −o(t dSR(x, y)) ≤ −2t d2
SR(x, y) + t2 d2

SR(x, y),

⇒ o(t dSR(x, y)) ≥ 2t d2
SR(x, y)− o(t dSR(x, y)),
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⇒ o(t dSR(x, y)) ≥ t d2
SR(x, y).

For t small enough,
o(t dSR(x, y))

t
tends to zero which implies that

d2
SR(x, y) = 0. This contradicts the fact that x 6= y.

�

B Local semiconvexity
Let (∆, g) be a sub-Riemannian structure of rank m ≤ n on the manifoldM .

We recall here the definition of local semiconvexity of a given function.

Definition 3. A function f : Ω → R, defined on the open set Ω ⊂ M , is
called locally semiconvex on Ω if for every x ∈ Ω there exist a neighborhood
Ωx of x and a smooth diffeomorphism ϕx : Ωx → ϕx(Ωx) such that f ◦ϕ−1

x is
locally semiconvex on the open subset Ω̃x = ϕx(Ωx) ⊂ Rn.

By the way, we recall that the function f̃ : Ω̃ → R is locally semiconvex
on the open subset Ω̃ ⊂ Rn if for every x̄ ∈ Ω̃ there exist C, δ > 0 such that

f
(
λx+ (1− λ)y

)
− λf(x)− (1− λ)f(y) ≤ λ(1− λ)C|x− y|2,

∀λ ∈ [0, 1], ∀x, y ∈ B(x̄, δ)

where B(x̄, δ) is the open ball in Rn centered at x̄ with radius δ.

The following result is useful to prove the local semiconvexity of a given
function.

Lemma 13. Let f : Ω → R be a function defined on an open set Ω ⊂ Rn.
Assume that for every x̄ ∈ Ω, there exist a neighborhood V ⊂ Ω of x̄ and a
positive real number σ such that, for every x ∈ V, there is px ∈ Rn such that

f(x) ≤ f(y)− < px, x− y > +σ|x− y|2, ∀y ∈ V .

Then, the function f is locally semiconvex on Ω.
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Proof of Lemma 13. Let x̄ ∈ Ω be fixed and V be the neighborhood given
by assumption. Without loss of generality, we can assume that V is an open
ball B. Let x, y ∈ B and λ ∈ [0, 1]. The point x̂ := λx+ (1− λ)y belongs to
B. By assumption, there exists p̂ ∈ Rn such that

f(x̂) ≤ f(z)− < p̂, x̂− z > +σ|x̂− z|2, ∀z ∈ B.

Hence, we easily get f(x̂) ≤ f(x)− (1− λ) < p̂, y − x > +σ(1− λ)|x− y|2

f(x̂) ≤ f(y)− λ < p̂, x− y > +σλ|x− y|2

⇒

 λf(x̂) ≤ λf(x) + λ(1− λ) < p̂, x− y > +σλ(1− λ)|x− y|2

(1− λ)f(x̂) ≤ (1− λ)f(y)− λ(1− λ) < p̂, x− y > +σλ(1− λ)|x− y|2

⇒ f(x̂) ≤ λf(x) + (1− λ)f(y) + 2λ(1− λ)σ|x− y|2

and the conclusion follows.

Remark 2. Thanks to Lemma 13, a way to prove that a given function
f : Ω → R is locally semiconvex on Ω is to show that for every x ∈ Ω, we
can put a support function φ of class C2 under the graph of f at x with a
uniform control of C2 norm of φ.

Let us derive another important consequence of the definition of semicon-
vexity.

Lemma 14. Let Ω be a subset of Rn and {uα}α∈A be a family of functions
defined on Ω and semiconvex. Then, the function u := sup

α∈A
uα is also semi-

convex on Ω.

Proof of Lemma 14. Take x, y ∈ Ω and λ ∈ [0, 1].
Given any ε > 0, we can find α such that

u(λx+ (1− λ)y) ≤ uα(λx+ (1− λ)y) + ε.
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Then we have, for Cα, δα > 0,

u(λx+ (1− λ)y)− λu(x)− (1− λ)u(y)

≤ uα(λx+ (1− λ)y) + ε− λuα(x)− (1− λ)uα(y)

≤ λ(1− λ)Cα|x− y|2 + ε,∀y ∈ B(x, δα).

Since ε > 0 is arbitrary, we obtain the assertion.

More details of local semiconvexity of a given function are given in the
textbook [CS04].
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