
MuLOT: Multi-level optimization of the canonical
polyadic tensor decomposition at large-scale

Annabelle Gillet1, Éric Leclercq1, and Nadine Cullot1

LIB EA 7534 Univ. Bourgogne Franche Comté, Dijon, France
annabelle.gillet@depinfo.u-bourgogne.fr, eric.leclercq@u-bourgogne.fr,

nadine.cullot@u-bourgogne.fr

Abstract. Tensors are used in a wide range of analytics tools and as inter-
mediary data structures in machine learning pipelines. Implementations
of tensor decompositions at large-scale often select only a specific type of
optimization, and neglect the possibility of combining different types of
optimizations. Therefore, they do not include all the improvements avail-
able, and are less effective than what they could be. We propose an algo-
rithm that uses both dense and sparse data structures and that leverages
coarse and fine grained optimizations in addition to incremental com-
putations in order to achieve large scale CP (CANDECOMP/PARAFAC)
tensor decomposition. We also provide an implementation in Scala using
Spark, MuLOT, that outperforms the baseline of large-scale CP decom-
position libraries by several orders of magnitude, and run experiments
to show its large-scale capability. We also study a typical use case of CP
decomposition on social network data.

Keywords: Tensor decomposition · Data mining · Multi-dimensional an-
alytics.

1 Introduction

Tensors are powerful mathematical objects, which bring capabilities to model
multi-dimensional data [8]. They are used in multiple analytics frameworks,
such as Tensorflow [1], PyTorch [23], Theano [3], TensorLy [18], where their
ability to represent various models is a great advantage. Furthermore, associ-
ated with powerful decompositions, they can be used to discover the hidden
value of Big Data. Tensor decompositions are used for various purposes such
as dimensionality reduction, noise elimination, identification of latent factors,
pattern discovery, ranking, recommendation and data completion. They are
applied in a wide range of applications, including genomics [14], analysis of
health records [29], graph mining [28] and complex networks analysis [19,4].
Papalexakis et al. in [21] review major usages of tensor decompositions in data
mining applications.

Most of tensor libraries that include decompositions work with tensors of
limited size, and do not consider the large-scale challenge. However, as tensors
model multi-dimensional data, their global size varies exponentially depending



2 A. Gillet et al.

on the number and size of their dimensions, making them sensitive to large-
scale issues. Some intermediate structures needed in the algorithms result in
data explosion, such as the Khatri-Rao product in the canonical polyadic de-
composition [15]. Thus, analyzing Big Data with tensors requires optimization
techniques and suitable implementations, able to scale up. These optimizations
are directed toward different computational aspects, such as the memory con-
sumption, the execution time or the scaling capabilities, and can follow different
principles, such as coarse grained optimizations, fine grained optimizations or
incremental computations.

In this article we focus on the canonical polyadic decomposition (also known
as CANDECOMP/PARAFAC or CP decomposition) that allows to factorize a
tensor into smaller and more usable sets of vectors [17], and which is largely
adopted in exploratory analyzes. Our contribution is twofold: 1) we propose an
optimized algorithm to achieve large scale CP decomposition, that uses dense or
sparse data structures depending on what suits best each step, and that leverages
incremental computation, coarse and fine grained optimizations to improve
every computation in the algorithm ; and 2) we provide an implementation in
Scala using Spark that outperforms the state of the art of large-scale tensor CP
decomposition libraries. The implementation is open source and available on
Github1, along with experimental evaluations to validate its efficiency especially
at large scale.

The rest of the article is organized as follows: section 2 presents an overview
of tensors including the CP decomposition, section 3 introduces a state of the art
of tensor manipulation libraries, section 4 describes our scalable and optimized
algorithm, section 5 details the experiments we ran to compare our algorithm
to other large-scale CP decomposition libraries, section 6 presents a study on
real data performed with our algorithm and finally section 7 concludes.

2 Overview of tensors and CP decomposition

Tensors are general abstract mathematical objects which can be considered ac-
cording to various points of view such as a multi-linear application, or as the
generalization of matrices to multiple dimensions. We will use the definition
of a tensor as an element of the set of the functions from the product of N sets
I j, j = 1, . . . ,N to R : X ∈ RI1×I2×···×IN , where N is the number of dimensions of
the tensor or its order or its mode. Table 1 summarizes the notations used in
this article.

Tensor operations, by analogy with operations on matrices and vectors, are
multiplications, transpositions, unfolding or matricizations and factorizations
(also named decompositions) [17,8]. The reader can consult these references
for an overview of the major operators. We only highlight the most significant
operators on tensors which are used in our algorithm. The mode-n matricization
of a tensor X ∈ RI1×I2×···×IN noted X(n) produces a matrix M ∈ RIn×Π j,nI j . The

1 https://github.com/AnnabelleGillet/MuLOT

https://github.com/AnnabelleGillet/MuLOT


MuLOT: Multi-level optimization of the CP decomposition at large-scale 3

Hadamard product of two matrices having the same size (i.e., I× J) noted A�∗ B
is the elementwise matrix product. The Kronecker product between a matrix
A ∈ RI×J and a matrix B ∈ RK×L noted A ⊗ B gives a matrix C ∈ R(IK)×(JL), where
each element of A is multiplied by B. The Khatri-Rao product of two matrices
having the same number of columns noted A � B is a columnwise Kronecker
product.

Symbol Definition Symbol Definition
X A tensor ◦ Outer product
X(n) Matricization of a tensor X

on mode-n
⊗ Kronecker product
�∗ Hadamard product

a A scalar � Hadamard division
v A column vector � Khatri-Rao product
M A matrix † Pseudo inverse

Table 1: Symbols and operators used

The canonical polyadic decomposition allows to factorize a tensor into
smaller and more exploitable sets of vectors [13,25]. Given a N-order tensor
X ∈ RI1×I2×···×IN and a rank R ∈ N, the CP decomposition factorizes the tensor
X into N column-normalized factor matrices A(i)

∈ RIi×R for i = 1, . . . ,N with
their scaling factors λ ∈ RR as follows:

X ' ~λ,A(1),A(2), . . . ,A(N)� =

R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

where a(i)
r are columns of A(i).

Algorithm 1 CP-ALS
Require: Tensor X ∈ RI1×I2×···×IN and target rank R
1: Initialize A(1), . . . ,A(N), with A(n)

∈ RIn×R

2: repeat
3: for n = 1, . . . ,N do
4: V← A(1)TA(1) �∗ . . . �∗ A(n−1)TA(n−1) �∗ A(n+1)TA(n+1) �∗ . . . �∗ A(N)TA(N)

5: A(n)
← X(n)(A(N)

� · · · �A(n+1)
�A(n−1)

� · · · �A(1))V†

6: normalize columns of A(n)

7: λ← norms of A(n)

8: end for
9: until < convergence >

Several algorithms have been proposed to compute the CP decomposi-
tion [26], we focus on the alternating least squares (ALS) one, described above
in algorithm 1. The Matricized Tensor Times Khatri-Rao Product (MTTKRP,
line 5 of the algorithm 1) is often the target of optimizations, because it involves
the tensor matricized of size RIn×J, with J = Π j,nI j, as well as the result of the
Khatri-Rao product of sizeRJ×R. It is thus computationally demanding and uses
a lot of memory to store the dense temporary matrix resulting of the Khatri-Rao
product [24].



4 A. Gillet et al.

3 State of the art

Several tensor libraries have been proposed. They can be classified according to
their capability of handling large tensors or not.

rTensor (http://jamesyili.github.io/rTensor/) provides users with standard
operators to manipulate tensors in R language including tensor decomposi-
tions, but does not support sparse tensors. Tensor Algebra Compiler (TACO)
provides optimized tensor operators in C++ [16]. High-Performance Tensor
Transpose [27] is a C++ library only for tensor transpositions, thus it lacks
lots of useful operators. Tensor libraries for MATLAB, such as TensorTool-
box (https://www.tensortoolbox.org/) or MATLAB Tensor Tools (MTT, https:
//github.com/andrewssobral/mtt), usually focus on operators including tensor
decompositions with optimization on CPU or GPU. TensorLy [18], written in
Python, allows to switch between tensor libraries back-ends such as TensorFlow
or PyTorch. All of these libraries do not take into account large tensors, which
cannot fit in memory.

On the other hand, some implementations focus on performing decompo-
sitions on large-scale tensors in a distributed setting. HaTen2 [15] is a Hadoop
implementation of the CP and Tucker decompositions using the map-reduce
paradigm. It was later improved with BigTensor [22]. SamBaTen [12] proposes
an incremental CP decomposition for evolving tensors. The authors developed
a Matlab and a Spark implementations. Gudibanda et al. in [11] developed a CP
decomposition for coupled tensors using Spark (i.e., different tensors having a
dimension in common). ParCube [20] is a parallel Matlab implementation of
the CP decomposition. CSTF [5] is based on Spark and proposes a distributed
CP decomposition.

As a conclusion, the study of the state of the art shows some limitations of the
proposed solutions. A majority of frameworks are limited to 3 or 4 dimensions
which is a drawback for analyzing large-scale, real and complex data. They focus
on a specific type of optimization, and use only sparse structures to satisfy the
sparsity of large tensors. This is a bottleneck to performance, as they do not
consider all the characteristics of the algorithm (i.e., the factor matrices are
dense). Furthermore, they are not really data centric, as they need an input
only with integer indexes, for dimensions and for values of dimensions. Thus
it reduces greatly the user-friendliness as the mapping between real values
(e.g., user name or timestamp) and indexes has to be supported by the user.
The Hadoop implementations need a particular input format, thus necessitate
data transformations to execute the decomposition and to interpret the results,
leading to laborious prerequisites and increasing the risk of mistakes when
working with the results. Moreover, not all of the implementations are open-
source, some only give the binary code.

4 Distrtibuted, scalable and optimized ALS for Apache Spark

Optimizing the CP ALS tensor decomposition induces several technical chal-
lenges, that gain importance proportionally to the size of the data. Thus, to
compute the decomposition at large scale, several issues have to be resolved.

http://jamesyili.github.io/rTensor/
https://www.tensortoolbox.org/
https://github.com/andrewssobral/mtt
https://github.com/andrewssobral/mtt


MuLOT: Multi-level optimization of the CP decomposition at large-scale 5

First, the data explosion of the MTTKRP is a serious computational bottle-
neck (line 5 of algorithm 1), that can overflow memory, and prevent to work
with large tensors, even if they are extremely sparse. Indeed, the matrix pro-
duced by the Khatri-Rao has J × R non-zero elements, with J = Π j,nI j, for an
input tensor of size RI1×I2×···×IN . We propose to reorder carefully this operation,
in order to avoid the data explosion and to improve significantly the execution
time (see algorithm 3).

The main operations in the ALS algorithm, i.e., the update of the factor
matrices, are not themselves parallelizable (lines 4 and 5 of algorithm 1). In
such a situation, it is profitable to think of other methods to take advantage
of parallelism, that could be applied on fine grained operations. For example,
leveraging parallelism for matrices multiplication is an optimization that can
be applied in many situations. This also eases the reuse of such optimizations,
without expecting specific characteristics from the algorithm (see section 4.2).

The nature of data structures used in the CP decomposition are mixed:
tensors are often sparse, while factor matrices are dense. Their needs to be
efficiently implemented diverge, so rather than sticking globally to sparse data
structures to match the sparsity of tensors, each structure should take advantage
of their particularities to improve the whole execution (see section 4.1). To the
best of our knowledge, this strategy has not been explored by others.

The stopping criterion can also be a bottleneck. In distributed implementa-
tions of the CP ALS, the main solutions used to stop the algorithm are to wait for
a fixed number of iterations, or to compute the Frobenius norm on the difference
between the input tensor and the tensor reconstructed from the factor matrices.
The first solution severely lacks in precision, and the second is computation-
ally demanding as it involves outer products between all the factor matrices.
However, an other option is available to check the convergence, and consists in
measuring the similarity of the factor matrices between two iterations, evoked
in [8,17]. It is a very efficient solution at large-scale, as it merges precision and
light computations (see section 4.3).

Finally, the implementation should facilitate the data loading, and avoid
data transformations only needed to fit the expected input of the algorithm.
It should also produce easily interpretable results, and minimize the risk of
errors induced by laborious data manipulations (see section 4.4). The study
of the state of the art of tensor libraries shows that tensors are often used as
multi dimensional arrays, that are manipulated through their indexes, even if
they represent real world data. The mapping between indexes and values is
delegated to the user, although being an error-prone step. As it is a common
task, it should be handled by the library.

To tackle these challenges, we leverage three optimization principles to de-
velop an efficient decomposition: coarse grained optimization, fine grained
optimization, and incremental computation. The coarse grained one relies on
specific data structures and capabilities of Spark to efficiently distribute oper-
ations. The incremental computation is used to avoid to compute the whole
Hadamard product at each iteration. The fine grained optimization is applied



6 A. Gillet et al.

on the MTTKRP to reduce the storage of large amount of data and costly compu-
tations. For this, we have extended Spark’s matrices with the operations needed
for the CP decomposition. In addition, we choose to use an adapted converging
criteria, efficient at large-scale. For the implementation of the algorithm, we
take a data centric point of view to facilitate the loading of data and the inter-
pretation of the results. Our CP decomposition implementation is thus able to
process tensors with billions of elements (i.e., non zero entries) on a mid-range
workstation, and small and medium size tensors can be processed in a short
time on a low-end personal computer.

4.1 Distributed and scalable matrix data structures

A simple but efficient sparse matrix storage structure is COO (COOrdinate stor-
age) [2,10]. The CoordinateMatrix, available in the mllib package of Spark [6],
is one of those structures, that stores only the coordinates and the value of each
existing element in a RDD (Resilient Distributed Datasets). It is well suited to
process sparse matrices.

X

Fig. 1: Blocks mapping for a multiplication between two BlockMatrix

Another useful structure is the BlockMatrix. It is composed of multiple
blocks containing each a fragment of the global matrix. Operations can be par-
allelized by executing it on each sub-matrix. For binary operations such as mul-
tiplication, only blocks from each BlockMatrix that will be associated are sent
to each other, and the result is then aggregated if needed (see figure 1). It is thus
an efficient structure for dense matrices, and allows distributed computations
to process all blocks.

Unfortunately, only some basic operations are available for BlockMatrix,
such as multiplication or addition. The more complex ones, such as the Hadamard
and Khatri-Rao products, are missing. We have extended Spark BlockMatrix
with more advanced operations, that keep the coarse grained optimization logic
of the multiplication. We also added new operations, that involve BlockMatrix
and CoordinateMatrix to take advantage of the both structures for our opti-
mized MTTKRP (see below).

4.2 Mixing three principles of optimization

Tensors have generally a high level of sparsity. In the CP decomposition, they
only appear under their matricized form, thus they are naturally manipulated
as CoordinateMatrix in our implementation. On the other hand, the factor
matrices A of the CP decomposition are dense, because they hold information



MuLOT: Multi-level optimization of the CP decomposition at large-scale 7

for each value of each dimension. They greatly benefit from the capabilities of
the extended BlockMatrix we developed. By using the most suitable structure
for each part of the algorithm, we leverage specific optimizations that can speed
up the whole algorithm.

Algorithm 2 CP-ALS adapted to Spark
Require: Tensor X ∈ RI1×I2×···×IN and target rank R
1: Initialize A(1), . . . ,A(N), with A(n)

∈ RIn×R

2: V← A(1)TA(1) �∗ . . . �∗ A(N)TA(N)

3: repeat
4: for n = 1, . . . ,N do
5: V← V �A(n)TA(n)

6: A(n)
←MTTKRP(X(n), (A(N), . . . ,A(n+1),A(n−1), . . . ,A(1)))V†

7: V← V �∗ A(n)TA(n)

8: normalize columns of A(n)

9: λ← norms of A(n)

10: end for
11: until < convergence >

Besides to using and improving Spark’s matrices according to the specifici-
ties of data, we also have introduced fine grained optimization and incremental
computing into the algorithm to avoid costly operations in terms of memory
and execution time. Those improvements are synthesized in algorithm 2 and
explained below.

First, to avoid computing V completely at each iteration for each dimension,
we propose to do it incrementally. Before iterating, we calculate the Hadamard
product for all A (line 2 of the algorithm 2). At the beginning of the iteration,
A(n)TA(n) is element-wise divided from V, giving the expected result at this step
(line 5 of the algorithm 2). At the end of the iteration, the Hadamard product
between the new A(n)TA(n) and V prepares V for the next iteration (line 7 of the
algorithm 2).

The MTTKRP part (line 6 of the algorithm 2) is sensitive to improvement,
as stated in section 2. Indeed, by focusing on the result rather than on the
operation, it can be easily reordered. For example, if we multiply a 3-order tensor
matricized on dimension 1 with the result of A(3)

� A(2), we can notice that in
the result, the indexes of the dimensions in the tensor X correspond directly to
those in the matrices A(3) and A(2). This behaviour is represented below — with
notation shortcut Bi = A(2)(i, 1) and Ci = A(3)(i, 1) — in an example simplified
with only one rank:

[
a1b1c1 a1b2c1 a1b1c2 a1b2c2
a2b1c1 a2b2c1 a2b1c2 a2b2c2

]
×


B1C1
B2C1
B1C2
B2C2

 =

[
a1b1c1.B1C1 + a1b2c1.B2C1 + a1b1c2.B1C2 + a1b2c2.B2C2
a2b1c1.B1C1 + a2b2c1.B2C1 + a2b1c2.B1C2 + a2b2c2.B2C2

]



8 A. Gillet et al.

Thus, rather than computing the full Khatri-Rao product and performing
the multiplication with the matricized tensor, we apply a fine grained opti-
mization that takes advantage of the mapping of indexes, and that anticipates
the construction of the final matrix. For each entry of the CoordinateMatrix
of the matricized tensor (i.e., all non-zero values), we find in each factor ma-
trix A which element will be used, and compute elements of the final matrix
(algorithm 3).

Algorithm 3 Detail of the MTTKRP
Require: The index of the factor matrix n, the matricized tensor X(n) ∈ RIn×J with J =

Π j,nI j and A(1), . . . ,A(n−1),A(n+1), . . . ,A(N), with A(i)
∈ RIi×R

1: Initialize A(n) at 0, with A(n)
∈ RIn×R

2: for each (x, y, v) in X(n) with x, y the coordinates and v the value do
3: for r = 1, . . . ,R do
4: value← v
5: for each A(i) with i , n do
6: c← extract A(i) coordinate from y
7: value← value ×A(i)(c, r)
8: end for
9: A(n)(x, r)← A(n)(x, r) + value

10: end for
11: end for

4.3 Stopping criterion

To evaluate the convergence of the algorithm and when it can be stopped, a
majority of CP decomposition implementations uses the Frobenius norm on
the difference between the original tensor and the reconstructed tensor from the
factor matrices. However, at large-scale the reconstruction of the tensor from the
factor matrices is an expensive computation, even more than the naive MTTKRP.
Waiting for a predetermined number of iterations is not very effective to avoid
unnecessary iterations. Thus, other stopping criteria such as the evaluation of
the difference between the factor matrices with those of the previous iteration
[8,17] are much more interesting, as they work on smaller chunks of data. To this
end, we use the Factor Match Score (FMS) [7] to measure the difference between
factor matrices of the current iteration (~λ,A(1),A(2), . . . ,A(N)�) and those of the
previous iteration (~λ̂, Â

(1)
, Â

(2)
, . . . , Â

(N)
�). The FMS is defined as follows:

FMS =
1
R

R∑
r=1

(
1 −

ξ − ξ̂

max(ξ, ξ̂)

) N∏
n=1

a(n)T
r â(n)

r

‖a(n)
r ‖.‖â

(n)
r ‖

where ξ = λr
∏N

n=1 ‖a
(n)
r ‖ and ξ̂ = λ̂r

∏N
n=1 ‖â

(n)
r ‖

4.4 Data centric implementation

Our implementation of the CP decomposition, in addition to being able to run
with any number of dimensions, is data centric: it takes a Spark DataFrame



MuLOT: Multi-level optimization of the CP decomposition at large-scale 9

as input to execute the CP directly on real data. Thus, it benefits from Spark
capabilities to retrieve data directly from various datasources.

A specific column of the DataFrame contains the values of the tensor and
all the other columns contain the values for each dimension. The CP opera-
tors returns a map associating the original names of the dimensions to a new
DataFramewith three columns for each dimension: the dimension’s values, the
rank, and the value computed by the CP decomposition. By using DataFrame
as input, we allow the use of any type as dimensions’ values. For example,
users could create a DataFrame with four columns: username, hashtag, time
and value, with username and hashtag being of type String in order to easily
interpret the decomposition result. This avoids having to handle an interme-
diate data structure containing the mapping between indexes and real values,
and thus reduces the risk of mistakes when transforming data.

5 Experiments

To validate our algorithm, we have run experiments on tensors produced by
varying the size of dimensions and the sparsity, on a Dell PowerEdge R740
server (Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz, 20 cores, 256GB RAM).
We compare our execution time to those of the baseline of distributed CP tensor
decomposition libraries available: HaTen2 [15], BigTensor [22], SamBaTen [12]
and CSTF [5]. Hadoop 2.6.0 was used to execute HaTen and BigTensor. We also
study the scalabiliy of MuLOT by varying the number of cores used by Spark.

Ti
m

e 
(s

ec
on

ds
)

Ti
m

e 
(s

ec
on

ds
)

Number of nnz Number of nnz

Fig. 2: Execution time for tensors with 3 dimensions of size 100 (top-left), 1 000
(top-right), 10 000 (bottom-left) and 100 000 (bottom-right). CSTF produces an
Out Of Memory exception for tensors with 1B elements



10 A. Gillet et al.

Tensors were created randomly with 3 dimensions of the same size, from 100
to 100k. The sparsity ranges from 10−1 to 10−9, and tensors were created only if
the number of non-zero elements is superior to 3 × size and inferior or equal to
1B (with dimensions of size 100 and 1 000, tensors can only have respectively
106 and 109 non-zero elements at most, with a sparsity up to 10−1 they cannot
reach 1B elements, but respectively 105 and 108 non-zero elements). We have
run the CP decomposition for 5 iterations, and have measured the execution
time. Results are shown in figure 2. The source code of the experiments and the
tool used to create tensors are available at https://github.com/AnnabelleGillet/
MuLOT/tree/main/experiments.

Our implementation clearly outperforms the state of the art, with speed-up
reaching several order of magnitude. CSTF keeps up concerning the execution
time of small tensors, but is no match for large tensors, and cannot compute
the decomposition for tensors with 1B elements. Execution times of MuLOT
are nearly linear following the number of non-zero elements. The optimization
techniques applied show efficient results even for very large tensors of billion
elements, with a maximum execution time for a 3-order tensor with dimensions
of size 100k of 62 minutes, while the closest, BigTensor, takes 547 minutes. It
also does not induce a high overhead for small tensors, as the decomposition
on those with dimensions of size 100 takes less than 10 seconds.

Fig. 3: Near-linear scalability of our algorithm

We also studied the scalability of our algorithm (figure 3). We measured
the speed-up depending on the number of cores used by Spark. Our algorithm
shows a sub-linear scalability, but without a big gap. The scalability is an im-
portant property for large-scale computations.

https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments
https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments


MuLOT: Multi-level optimization of the CP decomposition at large-scale 11

6 Real data study

We have experimented our decomposition in the context of Cocktail2, an in-
terdisciplinary research project aiming to study trends and weak signals in
discourses about food and health on Twitter. In order to test our decomposition
on real data, we focus on french tweets revolving around COVID-19 vaccines,
harvested with Hydre, a high performance plateforme to collect, store and an-
alyze tweets [9]. The corpus contains 9 millions of tweets from the period of
November 18th 2020 to January 26th 2021.

We would like to study the communication patterns in our corpus. To this
end, we have built a 3-order tensor, with a dimension representing the users,
another the hashtags and the last one the time (with a week granularity). For
each user, we kept only the hashtags that he had used at least five times on the
whole period. The size of the tensor is 10340 × 5469 × 80, with 135k non-zero
elements. We have run the CP decomposition with 20 ranks.

This decomposition allowed us to discover meaningful insights on our data,
some of the most interesting ranks have been represented in figure 4 (the ac-
counts have been anonymised). We have a background discourse talking about
lockdown and curfew, with some hashtags related to media and the French
Prime Minister. It corresponds to the major actuality subjects being discussed
around the vaccines.

It also reveals more subject-oriented patterns, with one being anti-Blanquer
(the French Minister of Education), where accounts that seem to belong to
highschool teachers use strong hashtags against the Minister (the translation
of some of the hashtags are: Blanquer lies, Blanquer quits, ghost protocol, the
protocol refers to the health protocol in french schools). We can identify in this
pattern a strong movement of disagreement, with teachers and parents worrying
about the efficiency and the applicability of the measures took to allow schools
to stay open during the pandemic.

Another pattern appears to be anti-government, with some signs of con-
spiracy. They use hashtags such as health dictatorship, great reset, deep state
corruption, wake up, we are the people, disobey, etc. Indeed, the pandemic
inspired a rise in doubt and opposition to some decisions of the government to
handle the situation, that sometimes lead to conspiracy theories.

It is interesting to see that the CP decomposition is able to highlight some
isolated patterns. With this capability, we identify a bot in our corpus, that
quotes tweets that it judges as conspiracy-oriented, and gives them a score to
measure the degree of conspiracy.

The CP decomposition is well-suited to real case studies. It is a great tool
for our project, as it shows promising capabilities to detect patterns in data
along tensor dimensions, with a good execution time. The results given by the
decomposition can be easily interpreted and visualized: they can be shared with
researchers in social science to specify the meaning of each rank, and thus giving
valuable insights on the corpus.

2 https://projet-cocktail.fr/

https://projet-cocktail.fr/


12 A. Gillet et al.

Fig. 4: Communication patterns in the vaccine corpus (from top to bottom): the
anti-Blanquer, the conspirators/anti-government, the background speech, and a
bot to measure conspiracy score of tweets



MuLOT: Multi-level optimization of the CP decomposition at large-scale 13

7 Conclusion

We have proposed an optimized algorithm for the CP decomposition at large-
scale. We have validated this algorithm with a Spark implementation, and shows
that it outperforms the state of the art by several orders of magnitude. We also
put data at the core of tensors, by taking care of the mapping between indexes
and values without involving the user, thus allowing to focus on data and
analyses. Through experiments, we proved that our library is well-suited for
small to large-scale tensors, and that it can be used to run the CP decomposition
on low-end computers for small and medium tensors, hence making possible a
wide range of use cases.

We plan to continue our work on tensor decompositions by 1) exploring their
use in social networks analyzes ; 2) developing other tensor decompositions
such as Tucker, HOSVD or DEDICOM ; and 3) studying the impact of the choice
of the norm for the scaling of the factor matrices.

Acknowledgments This work is supported by ISITE-BFC (ANR-15-IDEX-0003) co-
ordinated by G. Brachotte, CIMEOS Laboratory (EA 4177), University of Burgundy.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning.
In: 12th USENIX Symposium on Operating Systems Design and Implementation.
pp. 265–283 (2016)

2. Ahmed, N., Mateev, N., Pingali, K., Stodghill, P.: A framework for sparse matrix
code synthesis from high-level specifications. In: SC’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing. pp. 58–58. IEEE (2000)

3. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N.,
Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., et al.: Theano: A Python framework
for fast computation of mathematical expressions. arXiv:1605.02688 (2016)

4. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A.,
Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of temporal (‘comet’)
communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining.
pp. 271–283. Springer (2014)

5. Blanco, Z., Liu, B., Dehnavi, M.M.: Cstf: Large-scale sparse tensor factorizations
on distributed platforms. In: Proceedings of the 47th International Conference on
Parallel Processing. pp. 1–10 (2018)

6. Bosagh Zadeh, R., Meng, X., Ulanov, A., Yavuz, B., Pu, L., Venkataraman, S., Sparks,
E., Staple, A., Zaharia, M.: Matrix computations and optimization in apache spark.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 31–38 (2016)

7. Chi, E.C., Kolda, T.G.: On tensors, sparsity, and nonnegative factorizations. SIAM
Journal on Matrix Analysis and Applications 33(4), 1272–1299 (2012)

8. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and blind source
separation. John Wiley & Sons (2009)



14 A. Gillet et al.

9. Gillet, A., Leclercq, É., Cullot, N.: Lambda+, the renewal of the Lambda Architec-
ture: Category Theory to the rescue (to be published). In: Conference on Advanced
Information Systems Engineering (CAiSE). pp. 1–15 (2021)

10. Goharian, N., Jain, A., Sun, Q.: Comparative analysis of sparse matrix algorithms for
information retrieval. computer 2, 0–4 (2003)

11. Gudibanda, A., Henretty, T., Baskaran, M., Ezick, J., Lethin, R.: All-at-once decompo-
sition of coupled billion-scale tensors in apache spark. In: High Performance extreme
Computing Conference. pp. 1–8. IEEE (2018)

12. Gujral, E., Pasricha, R., Papalexakis, E.E.: Sambaten: Sampling-based batch incremen-
tal tensor decomposition. In: International Conference on Data Mining. pp. 387–395.
SIAM (2018)

13. Harshman, R.A., et al.: Foundations of the PARAFAC procedure: Models and con-
ditions for an” explanatory” multimodal factor analysis (1970)

14. Hore, V., Viñuela, A., Buil, A., Knight, J., McCarthy, M.I., Small, K., Marchini, J.: Tensor
decomposition for multiple-tissue gene expression experiments. Nature genetics
48(9), 1094–1100 (2016)

15. Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: Haten2: Billion-scale tensor de-
compositions. In: International Conference on Data Engineering. pp. 1047–1058. IEEE
(2015)

16. Kjolstad, F., Kamil, S., Chou, S., Lugato, D., Amarasinghe, S.: The tensor algebra
compiler. OOPSLA pp. 1–29 (2017)

17. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review
51(3), 455–500 (2009)

18. Kossaifi, J., Panagakis, Y., Anandkumar, A., Pantic, M.: Tensorly: Tensor learning in
python. The Journal of Machine Learning Research 20(1), 925–930 (2019)

19. Papalexakis, E.E., Akoglu, L., Ience, D.: Do more views of a graph help? community
detection and clustering in multi-graphs. In: International Conference on Informa-
tion Fusion. pp. 899–905. IEEE (2013)

20. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: Sparse parallelizable
CANDECOMP-PARAFAC tensor decomposition. ACM Transactions on Knowledge
Discovery from Data (TKDD) 10(1), 1–25 (2015)

21. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data
fusion: Models, applications, and scalable algorithms. Transactions on Intelligent
Systems and Technology (TIST) 8(2), 16 (2016)

22. Park, N., Jeon, B., Lee, J., Kang, U.: Bigtensor: Mining billion-scale tensor made easy.
In: ACM International on Conference on Information and Knowledge Management.
pp. 2457–2460 (2016)

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: PyTorch: An imperative style, high-performance
deep learning library. In: Advances in Neural Information Processing Systems. pp.
8024–8035 (2019)

24. Phan, A.H., Tichavskỳ, P., Cichocki, A.: Fast alternating ls algorithms for high order
candecomp/parafac tensor factorizations. Transactions on Signal Processing 61(19),
4834–4846 (2013)

25. Rabanser, S., Shchur, O., Günnemann, S.: Introduction to tensor decompositions and
their applications in machine learning. arXiv preprint arXiv:1711.10781 (2017)

26. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos,
C.: Tensor decomposition for signal processing and machine learning. Transactions
on Signal Processing 65(13), 3551–3582 (2017)



MuLOT: Multi-level optimization of the CP decomposition at large-scale 15

27. Springer, P., Su, T., Bientinesi, P.: Hptt: a high-performance tensor transposition c++
library. In: ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming. pp. 56–62 (2017)

28. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data
mining. pp. 374–383. ACM (2006)

29. Yang, K., Li, X., Liu, H., Mei, J., Xie, G., Zhao, J., Xie, B., Wang, F.: Tagited: Predictive
task guided tensor decomposition for representation learning from electronic health
records. In: Proc. of the Thirty-First AAAI Conference on Artificial Intelligence (2017)


	MuLOT: Multi-level optimization of the canonical polyadic tensor decomposition at large-scale

