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Abstract: The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG)
and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and
TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active
role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated
that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing
a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts
on specific cell surface receptors, which are then able to transmit their signals to other intracellular
components and modify gene expression. Cytokine production and activation of their receptors
induce mechanisms to recruit monocytes and neutrophils as well as endothelial cells. Data support
the role of an increased OPG/RANKL ratio as a possible marker of progression of endothelial
dysfunction in metabolic disorders in relationship with inflammatory marker levels. We review the
role of the OPG/RANKL/RANK triad in vascular function as well as molecular mechanisms related
to the etiology of vascular diseases. The potential therapeutic strategies may be very promising in
the future.
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1. Introduction

Among the numerous molecules being studied for their potential utility as biomarkers of
cardiovascular diseases (CVD), much attention is being given to the superfamily of tumor necrosis
factor (TNF) receptors. Members of this family include osteoprotegerin (OPG) and its ligands, which
are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing
ligand (TRAIL). TRAIL is a member of the TNF superfamily (TNFSF) and interacts with members of the
TNF receptor superfamily (TNFRSF) [1,2]. OPG expression is regulated both positively and negatively
by a wide array of factors, such as TNF and glucocorticoids. TNF is a central pro-inflammatory
cytokine that controls the expression of numerous signaling pathways implicated in the progression
of immunological reactions in relationship with the development of various diseases—vascular and
metabolic diseases. Increased OPG production represents an early event in the development of
diabetes mellitus and possibly contributes to diseases associated with endothelial cell (EC) dysfunction.
The plasma OPG level is significantly coupled with endothelial function and the OPG serum level has
a significant and independent predictive value for metabolic syndrome as a standard for cardiovascular
risk in osteoporotic patients [3].
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The balance between bone breakdown and reformation is modulated to a large extent by
the secreted soluble receptor OPG. Recent studies have elucidated the crosstalk between ECs and
osteoblasts during osteogenesis, thus connecting angiogenesis with osteogenesis. A relationship
between bone regulatory proteins and vascular biology is now proposed. It has been demonstrated
that OPG may mediate vascular calcification. Vascular calcification is a risk factor of cardiovascular
and all-cause mortality in diseased patients. However, the cellular mechanisms involved in the links
between vascular calcification and cardiovascular disease are mainly unknown, but growing evidence
suggests that the RANK/RANKL/OPG triad may play a significant role in vascular calcification.
In this article, we review the role of the OPG/RANKL/RANK/TSP/TRAIL system in endothelial
metabolism and function as well as molecular mechanisms involving OPG related to the development
of disease. New investigations are crucial to improving our knowledge in this area.

2. The OPG/RANKL/RANK/TRAIL System: Structures, Localization, and Characterization

OPG is a cytokine of the TNF receptor superfamily. It was named OPG because of its protective
effects in bone (in Latin, “os” is bone and “protegere” is to protect). OPG is also known as
osteoclastogenesis inhibitory factor (OCIF) or TNF receptor superfamily member 11b: (TNFRS11B).
OPG is encoded by the TNFRSF11B gene. RANKL (TNFSF11) and RANK (TNFRSF11A), a receptor
ligand pair of the TNF receptor superfamily, have emerged as the key molecular pathway in bone
metabolism. (Figure 1).

Figure 1. Critical role of the nuclear factor kappa-B/nuclear factor kappa-B ligand/osteoprotegerin
(RANK/RANKL/OPG) axis in the pathogenesis of inflammatory processes and vascular calcification.
OPG is produced by different cells—activated cells (immune system), osteoblasts in bone. The
inflammatory cells and immune cells up-regulate expression of receptor activator of the RANKL.
A soluble form of RANKL, sRANKL, also circulates in the blood. The interaction between RANK and
RANKL initiates a signaling and gene expression cascade, activating the transcription factor NF-κB.
OPG binds to RANKL and prevents the RANKL/RANK interaction. Tumor necrosis factor (TNF)
receptor-associated factors (TRAFs 2,5,6) to specific sites are present in the cytoplasmic domain of
RANK. Subendothelial retention of low-density lipoprotein (LDL) and its oxidative modification
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(OxLDL) represent the initial event in atherogenesis. Reactive oxygen species (ROS) generated by
monocytes contribute to the level of oxidation of LDL. OxLDLs induce endothelial cell (EC) expression
of adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1
(VCAM-1). Nitric oxide (NO) generated in the endothelium by the catalytic action of the enzyme nitric
oxide synthase (eNOS) reduces the endothelial expression of ICAM-1 and VCAM-1. In the nucleus
of ECs, via NF-κB and AP -1, OPG induces the expression of ICAM-1 and VCAM-1 and promotes
leukocyte adhesion, an early step in ECs dysfunction. Various pathways and mediators are involved
in vascular calcification depending on the etiology of the atherosclerosis. Vascular calcification is an
active cell-regulated process of mineralization implicating matrix mineral metabolism. Sensors and
effectors associated with shear stress regulate cellular functions and gene expression via the activation
of NF-κB target genes. Osteogenic differentiation of vascular smooth muscle cells (VSMC) plays a
pivotal role in the progression of vascular calcification. RANK-RANKL-OPG and other regulatory
proteins are major pathways in the progression of vascular calcification. Fibroblast growth factor21
(FGF21) and Ecto-5’-nucleotidase (CD73) contribute to the regulation of this calcification. FGF21
protects the vascular system by limiting VSMC calcification. CD73 hydrolyses extracellular AMP to
adenosine. Adenosine has been shown to play a protective role against calcification.
Biochemically, OPG is a basic secretory glycoprotein composed of 401 amino acids (aa) with a

monomeric weight of 60 kiloDaltons (kD). It is then assembled at the cys-400 residue in the heparin
binding domain to form a 120 kD disulfide-linked dimer for secretion. OPG contains seven structural
domains, which influence its biological activities in specific ways. Prior to secretion of the monomeric
and dimeric forms of OPG, the 21 aa signal peptide is cleaved from the N-terminal, rendering a 380 aa
mature OPG protein. Subsequently, circulating OPG exists either as a free monomer of 60 kD and a
disulfide bond-linked homodimer form of 120 kD or as OPG bound to its ligands, RANKL, and TRAIL.

RANKL is a transmembrane protein, but a soluble form (soluble RANKL is sRANKL) also
circulates in the blood. RANKL binds as a homotrimer to RANK on target cells, which triggers
activation of nuclear factor κB (NF-κB). A key preliminary step in downstream signaling after RANKL
ligation to RANK is the binding of TNF receptor-associated factors (TRAFs: 2,5,6) to specific sites in
the cytoplasmic domain of RANK. TRAFs 2, 5, and 6 all bind to RANK. Several signaling pathways
are activated by RANK/TRAF-mediated protein kinase signaling, such as NF-κB kinase (IKB)/NF-κB
and activator protein-1, AP-1. Recently, it has become increasingly clear that these signaling pathways
are present in various cells during vascular calcification [4].

OPG binds RANKL through its N-terminal cysteine-rich domains (CRD). The extracellular region
of OPG consists of four CRDs, and each domain contains topologically distinct modules. CRDs
are sufficient to inhibit RANKL [5]. Human RANK consists of 616 aa. These aa are divided into a
C-terminal cytoplasmic domain of 383 aa, an N-terminal extracellular domain of 184 aa, a signal peptide
of 28 aa, and a transmembrane domain of 21 aa, which contains four cysteine and two N-glycosylation
sites. RANKL generates multiple intracellular signals by binding to RANK-TRAIL. TRAIL and its
associated receptors exhibit broad tissue distribution. TRAIL mRNA and protein have been found
in vascular smooth muscle cells (VSMCs) and ECs. TRAIL is expressed as a type II transmembrane
protein. TRAIL also exists physiologically in a biologically active soluble homotrimeric form. TRAIL,
also known as Apo2 ligand, is detectable in the serum under physiological conditions. TRAIL in its
soluble form is detected at concentrations of 10–100 pg/mL in the serum/plasma. TRAIL can bind
up to five distinct receptors to activate complex signaling pathways. OPG has also been noted to
bind to TRAIL. An essential role of the TRAIL/TRAIL-R system is in the regulation and modulation
of apoptosis. TRAIL may have a dual function in the immune system by being able to kill infected
cells and by participating in the pathogenesis of multiple infections [6]. Interestingly, it has been
suggested that TRAIL may also play a role in atherosclerotic plaque development. TRAIL is expressed
in atherosclerotic lesions with increased levels seen at vulnerable plaque sites. Recent results suggest
that the elevated levels of TRAIL present in atherosclerotic plaque could be harmful by intensifying the
inflammatory response and reinforcing plaque formation. Some laboratories demonstrated increased
apoptosis in TRAIL-treated EC, while other groups have shown increased survival and proliferation of
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these cells in response to TRAIL. It appears that TRAIL has pleiotropic effects within the vasculature [7].
In the literature, a number of studies have shown that soluble TRAIL is able to induce the activation of
some signal transduction pathways, promoting the survival of VSMCs and ECs. TRAIL also exerts
a protective effect on the endothelium through its anti-inflammatory properties and the production of
local nitric oxide (NO) [8]. Recently, there has been outstanding progress in the development of novel
formulations to increase the circulatory half-life of TRAIL, thus improving the biological attributes of
TRAIL-based therapies.

Greater interest has been shown in improving our understanding of the interaction mechanism
between RANKL and OPG, as manipulation of the OPG/RANKL ratio could be the basis for the
development of new therapeutics. Besides binding RANK, OPG is able to interact with TRAIL and
induces apoptosis of tumor cells through the cell-surface receptors death receptor 4 (DR4) and DR5 in
the TNFRSF family [9]. The binding mode to RANKL was determined from computational docking and
molecular dynamics simulations [10,11]. OPG is expressed in vivo by ECs, VSMCs, and osteoblasts.
OPG has been detected by immunohistochemistry in aortic and coronary atherosclerotic plaques
within or in the proximity of VSMCs [12,13].

OPG is released under basal conditions by ECs upon stimulation with inflammatory cytokines,
hormones, and various circulating compounds. TNF-α and interleukin (IL)-1β were found to increase
OPG levels. Within ECs, OPG is associated with von Willebrand factor (vWF) within secretory granules
called Weibel-Palade bodies (WPBs). The size of vWF multimers can be controlled by the glycoprotein
thrombospondin-1 (TSP-1). TSP-1 acts from within the endoplasmic reticulum to activate nuclear
factor-E2-related factor 2 (Nrf2), inducing a protective antioxidant defense response against lipotoxic
stress [14].

In vitro experiments show that OPG can be produced and also released by blood cells such as
neutrophils and stem cells. Neutrophils produce OPG and IL-17. IL-17 increases the recruitment of
neutrophils at the site of inflammation and influences the production of various proinflammatory
mediators [15,16]. A recent study reported a significant elevation of circulating OPG in septic patients
with different levels of severity and in those who progressed to acute kidney injury; OPG thus appears
to be a reliable biomarker [17].

OPG is also released by various kinds of stem cells. Vascular stem/progenitor cells (VSCs) are
an important source of all types of vascular cells needed to build and repair blood vessels. There
are several types of VSCs, including endothelial progenitor cells (EPCs), smooth muscle progenitor
cells (SMPCs), mesenchymal stem cells, and adipose-stromal cells (ASCs). ASCs are one of the most
important and promising cell sources in the field of regenerative medicine. Recently, the production
of OPG by ASCs and its role in vascular pathophysiology were examined. It was demonstrated
that OPG generated apoptosis of EPCs by inducing oxidative stress. This effect was mediated by
syndecan-4 and oxidative stress. Syndecans are plasma membrane proteoglycans, and oxidative
stress alters syndecan-distribution in tissues. OPG-induced apoptosis was abolished by reactive
oxygen species (ROS) scavengers such as N-acetylcysteine and the NADPH oxidase (NOX) inhibitor,
diphenyleneiodonium. OPG increased ROS production through activation of NOX-2 and NOX-4 and
triggered phosphorylation of ERK-1/2 and p38 MAPK [18]. In ASCs, the link between oxidative stress,
apoptosis, and OPG was recently confirmed. Hydrogen peroxide (H2O2) significantly increased OPG
production by ASCs in vitro. OPG production by ASCs transplanted into ischemia–reperfusion-injured
hearts was also observed. It was suggested that OPG is one of the protector factors released by ASCs
contributing to ASC-mediated cardioprotection. However, the mechanisms of OPG-mediated cellular
protection have not yet been completely elucidated [19].

A number of polymorphisms in the promoter region of the OPG gene have been described in
different diseases. Each polymorphism has been evaluated in specific diseases. Various studies have
been designed to evaluate the association between polymorphisms of the OPG gene, the serum OPG
level, and the advance of atherosclerosis associated (or not) with rheumatoid arthritis (RA). One
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polymorphism of the TNFRSF11B gene has been coupled with the presence of coronary atherosclerosis
in patients with RA [20].

Finally, elevated OPG levels are associated with markers of inflammation, endothelial dysfunction,
oxidative stress, and CVD [2].

3. Interactions between OPG/RANKL/RANK and Endogenous Factors in the Heart: Incidences
on Metabolism and Functions of Endothelial Cells.

The human heart consists of a variety of cell types with fibroblasts and other connective tissue
cells being the most abundant [21]. The remaining cell mass consists of cardiomyocytes, EC, VSMCs,
mast cells, and immune-related cells. However, CM mass is approximately 25 times that of EC mass.
Cardiomyocytes are the major consumers of oxygen in the heart and account for approximately 75%
of normal myocardial volume, and there is at least one capillary adjacent to every cardiomyocyte.
Cardiomyocytes are outnumbered ≈3:1 by ECs in the microvasculature and small vessels in the
myocardium [22].

The endothelium is one of the largest “organs” in the body and probably also one of the most
heterogeneous. The endothelium includes a large collection of EC subtypes differing in phenotype,
function, and location. The different ECs adapt the flux through the metabolic pathways in relationship
with the specific energy sources, the redox balance, and precise metabolisms [23].

In healthy adults, ECs are quiescent and exert a barrier function and maintain tissue homeostasis.
They have the capacity to form new vasculature in response to angiogenic factors induced by injury
and/or pathological conditions, such as hypoxia or tissue damage. In the myocardium, capillary EC, in
situ, are able to change shape against a continuous flow and adapt to the contractive environment [23].
Metabolic activities in ECs are different from those in other cells, whose cellular bioenergetics are
linked to oxidative mitochondrial metabolism. ECs can alter their phenotypes and switch among
different states—migrating, proliferative, and quiescent.

ECs of the microcirculation are fundamental for myocardial function, which largely depends
on the ratio between energy metabolites received from the coronary circulation and their use by
cardiomyocytes. Endothelial tissue originating from different organs may differ in terms of its
metabolic profile. ECs have a smaller number of mitochondria than other cell types and therefore
consume lower amounts of oxygen. Likewise, the intracellular distribution of mitochondria varies
among the different EC and suggests their important regulatory roles in cellular homeostasis. ECs
generate up to 85% of their ATP through aerobic glycolysis. Interestingly, the rate of glycolysis differs
in EC subtypes. Arterial ECs are more oxidative, whereas microvascular ECs are more glycolytic [24].
Despite the adaptation of ECs to use glucose, they also need other metabolic sources of energy to carry
out their functions. Fatty acids (FAs) catabolized by fatty acid-beta-oxidation (FAO) are an important
fuel for ECs during sprouting [25]. The regulation of FAO is modulated by a variety of influences,
including the peroxisome proliferator-activated receptor (PPARs) family of transcription factors. High
FA levels activate PPAR-α and thereby increase FAO.

The heart is capable of remodeling metabolic pathways in chronic pathophysiological conditions,
which results in modulations of myocardial energetics and contractile function. Because high-energy
phosphate storage within the cardiomyocyte is minimal and only sufficient to maintain the heart beat
for a few seconds, a strong coupling of ATP production and heart contraction is necessary for normal
cardiac function [26]. To preserve its function, the heart, a high-energy organ, exhibits “plasticity” in
its ability to use multiple substrates for energy production, including FAs, carbohydrates, and ketone
bodies. In cardiomyocytes, FAs are predominantly used as an energy source.

In the normal heart, nearly 70% of ATP is produced from FA oxidation. The heart has a high
demand for FA, but it has a restricted capacity to synthesize FA and thus depends on an exogenous
source of FA. FAs are delivered inside the capillary lumen through the hydrolysis of triglyceride-rich
lipoproteins by lipoprotein lipase. In this context, ECs play a key function. In the heart, ECs express
the FA-binding proteins FABP4 and FABP5, which transport FAs across the endothelium [27]. Vascular
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endothelial growth factors-B (VEGF)-B secreted by cardiac and skeletal muscle and brown adipose
tissue produces the FA transport proteins via VEGF receptor 1 in capillary ECs [28].

Endothelial senescence could play a significant role in cardiac diseases such as hypertrophy, and in
this state, it is well established that cardiac metabolism undergoes reprogramming. These changes are
characterized by increased glucose metabolism and decreased FAO. Concerning the impact on glucose
metabolism, the upregulation of glucose uptake associated with decreases in overall ATP synthesis
by oxidative metabolism is observed, and glycolysis is thus increased [29]. While increased glucose
utilization appears to be beneficial for the failing heart, decreased FA supply to the hypertrophied
and failing heart seems to be detrimental. The shift in substrate preference to glucose in pathological
hypertrophy was considered adaptive given the theoretically higher oxygen efficiency of ATP synthesis
from glucose [30]. In conclusion, there is crosstalk between the endothelium and cardiomyocytes, and
metabolic maladaptation can impair cardiac function.

An interesting link exists between ATP/adenosine metabolism and the functions of the
OPG/RANK/RANKL triad. Adenosine may either be released from the intracellular space by
exocytosis or may generate by the enzymatic breakdown of extracellular ATP. Adenosine exerts
a variety of physiological effects by binding to cell surface G-protein-coupled receptor subtypes A1,
A2a, A2b, and A3. In various organs, the role of adenosine is to prevent tissue injury; it acts as
a cytoprotective modulator. In vitro, in a human osteoprogenitor cell line, it has been shown that
adenosine and adenosine receptor agonists inhibited OPG secretion [31]. In rheumatoid arthritis (RA)
patients, the OPG/RANKL ratio is elevated in blood samples and the A3AR is over-expressed in
inflammatory cells. These data reflect in these patients the autoimmune inflammatory disease [32,33].
RA accelerates atherosclerosis and increases occurrence of vascular diseases. The development of
metabolomic analysis is able to clarify the interactions between inflammation and metabolic changes
underlying many diseases, such as RA.

ECs produce high levels of OPG in response to stimulation by lipopolysaccharides or other
activators [34,35]. Yet, OPG affects the cytoskeletal organization of ECs via its molecular effects.
In vitro, treatment of ECs with OPG induced the reorganization of the cytoskeleton of endothelial
colony-forming cells (ECFCs). ECFCs, also termed late-outgrowth ECs, are a well-defined circulating
EPC type with an established role in vascular repair. OPG induced activation of αVβ3 integrin and
the regulation of its ligand, protein-disulfide-isomerase. In addition to its role in cell migration, αVβ3
integrin promotes the survival of stimulated ECs [36]. In this context, heparan sulfate proteoglycans
(HSPGs) may regulate OPG bioavailability. Proteoglycans of the syndecan family are involved
in modulating integrin-mediated tight adhesion of leukocytes to the endothelium. On the other
hand, HSPGs immobilize chemokines on luminal ECs, thus protecting them against mechanical or
hemodynamic variations [37].

Abnormalities of HSPGs have been found in mitral valve degeneration. Isolated human valve
ECs exhibited evidence of endothelial to mesenchymal transition (EndMT) [38]. Data reported in
a recent study validated the hypothesis that OPG might represent a novel actor in the progression
of this disease. The overexpression of OPG has been demonstrated during EndMT and linked to
autocrine effects characterized by the increased production of ROS. OPG interferes with correct valve
endothelial function by increasing proteoglycan and matrix metalloproteases (MMPs) levels [39].

Factors like RANKL, RANK, and OPG are involved in the process of atherosclerosis by altering
lipid metabolism. High Density Lipoproteins (HDL) subclasses may be indirect players in the
process of the atherosclerotic plaque through the regulation of the expression of genes that encode
pro- and anti-calcifying proteins. Data suggest that HDLs protect against the progression of atheroma
through mechanisms involving the regulation of genes. In this context, the role of the superfamily
of TNF receptors is suggested, and a member of this family—such as OPG—is suggested. In vitro,
the incubation of myofibroblasts with HDL for 24 and 48 h resulted in a time-dependent increase in
OPG secretion [40].
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Concerning the glucose metabolism, the uptake of extracellular glucose is regulated by the
transmembrane glucose gradient and the activity of glucose transporters in the plasma membrane.
Insulin leads to the relocation of glucose transporters to the plasma membrane with a subsequent
increase in capacity for glucose transport. Once in the cell, free glucose is rapidly phosphorylated by
hexokinase to form glucose-6-phosphate (G6P). G6P is used for glycogen synthesis or may undergo
glycolysis to pyruvate. As we reported, FAs are the preferred substrate for the myocardium; however,
during ischemia, glucose becomes the primary source of energy for the myocardium. Its metabolism
avoids the toxic end-products such as oxygen free radicals (OFR). Patients with diabetes mellitus have
impaired uptake of glucose. In diabetic situations, ECs cannot switch the excess glucose, and glycolytic
intermediates drift to side pathways, overall increasing oxidative stress. OFR, such as superoxide,
react with nitric oxide (NO) to yield peroxynitrite [41,42].

The growth factor system exerts various effects (on glucose metabolism in particular) in cells
of the vasculature through both endocrine and autocrine/paracrine mechanisms. The growth factor
system, which includes VEGFs and platelet-derived growth factor (PDGF), a basic fibroblast growth
factor, is a key regulator of EC permeability and metabolism. VEGFs and PDGF influence human EC
metabolism via Ca2+ signaling mechanisms. Mechanisms underlying the endothelial actions of these
factors are multiple, and they have been shown to participate in the initiation and development of
atherosclerosis. In vascular cells, PDGF upregulates OPG expression [43].

Statins have an impact on endothelial function by preventing oxidized LDL-induced reduction of
NO production and increased NO synthesis. Statins also diminish chronic inflammation by reducing
PDGF responsiveness and inhibiting not only smooth muscle cell proliferation but also monocyte
chemotaxis and migration [44].

4. OPG/RANKL/RANK and Vascular Signaling

The location of vascular ECs links them to various types of mechanical forces—hydrostatic
pressure, wall tension, and shear stress. Shear stress regulates cellular functions and gene expression,
thus showing the involvement of potential sensors and effectors. Intermediate responses to shear
include transcriptional activation of NF-κB target genes [45,46]. To our knowledge, nothing is known
about the specific effect of shear stress on the expression of OPG in vascular endothelium. In contrast,
it has been reported that shear stress upregulated OPG expression in osteocytes, downregulated
the effect of IL-17A on RANKL and TNF-α expression, and attenuated IL-17A-activated osteoclastic
differentiation [47].

With advancing age, the phenotype of VSMC and EC changes. Various stimuli promote the
development of advanced atherosclerotic lesions. The renin-angiotensin system (RAS) plays a central
role in the pathogenesis of vascular alterations and atherosclerosis in the elderly. RAS and its primary
mediator, angiotensin-II (Ang II), have a direct influence on the progression of the atherosclerotic
process via effects on endothelial function and inflammatory processes. Therapies that block Ang II
receptor type 1 induce vascular protection and thus reduce the incidence of cardiovascular events [48].
The stimulation of Ang II has been reported to increase the expression of VEGFs through the activation
of Ang II receptor type 1. Members of VEGF family, VEGF-A and VEGF-B, are involved in vascular
inflammation and remodeling through increased proinflammatory and angiogenic mechanisms. It was
demonstrated that OPG enhanced the proangiogenic effect of VEGFs. Additionally, OPG protects EC
from apoptosis induced by growth factor withdrawal [49].

In a recent study, atheroma samples obtained from patients undergoing carotid endarterectomy
were cultured with and without an Ang II type 1 receptor (ATR1) antagonist, irbesartan. Irbesartan
reduced concentrations of cytokines, IL-6, IL-8, and OPG in both atheroma and primary vascular cell
culture supernatants. In these experimental conditions, which used human dermal microvascular ECs,
ATR1 blockade with irbesartan also led to a decrease in the expression of extracellular signal regulated
kinases, ERK1 and ERK2. Similarly, a more recent study in mice showed that RANKL-induced ERK1/2
phosphorylation was suppressed by another ATR1 inhibitor, Losartan, suggesting a convergence of
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RANKL and angiotensin signaling at the level of ERK1/2 regulation [50,51]. OPG activates ERK 1/2,
which has been linked to angiogenesis.

5. OPG/RANKL/RANK and Regulation of Angiogenesis

It is now accepted that RANK and its ligand RANKL are involved in endothelial physiology.
The RANKL/RANK system plays an active role in pathological angiogenesis and inflammation in
addition to its role in cell survival. Growth factors can act on specific cell surface receptors that
are then able to transmit their growth signals to other intracellular components and modify gene
expression. One example of a protein growth factor with specific properties on EC is VEGF. VEGF
up-regulates the expression of RANK and increases angiogenic responses of ECs to RANKL. Moreover,
blocking PI3-kinase reversed the RANKL-induced survival effect on ECs [52]. RANK, in response to
the paracrine stimulus of RANKL, may play an important role in maintaining EC integrity through
the PI3-kinase/Akt signal transduction pathway. In the endothelium, PI3-kinase/Akt signaling is
triggered by VEGF and hormones such as insulin [53]. Findings suggest that OPG regulates at least
two distinct pathways—one that induces cell proliferation via ERK signaling and another that induces
angiogenesis via Src signaling [54]. Bone is a highly vascularized tissue reliant on the close spatial and
temporal connection between blood vessels and bone cells to maintain skeletal integrity. An intricate
connection between osteogenesis and angiogenesis exists. Decreasing activity of osteoblasts leads to
osteoporosis, and crosstalk between osteogenesis and angiogenesis has been shown to play a vital role
in bone regeneration [55,56]. Accumulating evidence supports the role of exosomes secreted EPCs
in stimulating angiogenesis, which is closely coupled with osteogenesis [57]. Taken together, these
results suggest that RANK is important for the maintenance of endothelial integrity in association
with metabolic adaptations.

6. OPG/RANKL/RANK and Inflammation

Numerous studies support the role of OPG in promoting inflammation. In the pro-atherosclerotic
apolipoprotein knock-out mouse, it was demonstrated that a deficiency of OPG was associated
with increased development of atherosclerosis [58]. In vitro studies confirmed that OPG plays an
important role in inflammatory cell chemotaxis. As previously stated, OPG stimulates changes
in vascular smooth muscle cells and endothelium, which are usually reported in atherosclerosis,
by promoting apoptosis and matrix metalloproteinase release. RANKL significantly increases the
activity of MMPs in VSMCs. OPG neutralizes the effect of RANKL on the induction of MMP activity
in VSMCs by inhibiting its binding to RANK [59,60]. One of the key steps during inflammation is
leukocyte infiltration, which, for neutrophils and monocytes, is controlled chiefly by chemokines.
The production of these chemokines is regulated by iNOS-derived NO [61]. OPG has been proposed
as a marker of endothelial dysfunction in relationship with the inflammatory process. OPG induces
the expression of intercellular adhesion molecules, such as vascular adhesion molecule-1 (VCAM-1)
and E-selectin, on ECs and thereby promotes leukocyte adhesion, an early step in EC dysfunction, thus
supporting the pro-atherosclerotic role of OPG. These local actions, which influence the velocity of
leukocyte recruitment from the blood to the tissue, contribute to the multifunctional role of various
modulators, such as HSPGs in inflammation [62]. The release of OPG is significantly triggered
by the culture of ECs with inflammatory cytokines and leads to the expression of EC adhesion
molecules, thereby contributing to the transmigration of monocytes and lymphocytes into the intima
of the vessel wall [63]. Cytokine production and activation of their receptors induce mechanisms to
recruit monocytes and neutrophils. Therefore, blocking pro-inflammatory interleukins is considered
a prime target in the management of some diseases. New molecules represent potential therapeutic
strategies. Canakinumab and evolocumab, human monoclonal antibodies that target interleukin-1β,
have anti-inflammatory effects and have been approved for clinical use in various disorders [64].
Sarilumab and tocilizumab are human monoclonal antibodies against IL-6 receptor-α (IL-6R α) [65].
Activation of IL-6R is protective and regenerative in some types of cells, but IL-6 signaling via the
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soluble IL-6R is rather pro-inflammatory. Interestingly, it was recently reported that in human breast
cancer cell lines, IL-1β induced OPG secretion, indicating a novel role for OPG as a mediator of
inflammation-promoted breast cancer progression. The increased cellular invasion promoted by IL-1β
and OPG involves MMP3 induction [66]. (Figure 2).
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Figure 2. Schema illustrating the relationship between the OPG/TRAIL/TRAIL-R system, pericytes,
growth factors, and the cytokines IL-1 and IL-6 on the balance between proliferation and apoptosis of
vascular smooth muscle cells (VSMC). In the presence of inflammatory cytokines IL-1β or IL-6 and
trauma or injury, activated cells express OPG. Activation of cytokine receptors IL-1R and IL-6R induces
the recruitment of monocytes and neutrophils. The growth factor system, which includes vascular
endothelial growth factors (VEGFs) and PDGF, influences the proliferation (angiogenesis) and OPG
expression in vascular cells. Associated with the microvasculature, pericytes secrete elevated amounts
of OPG. OPG also acts as a receptor for TRAIL. TRAIL binds to its receptors, TRAIL-Rs. The cellular
actions of TRAIL are tightly regulated in a balance between the apoptosis and proliferation of vascular
cells. TRAIL and RANKL increase matrix metalloproteinase (MMP) activity, leading to degradation of
the extracellular matrix. The cellular actions promoted by IL-1β induce MMP-3 production. MMP-3
is constitutively expressed in EC and VSMC. The human monoclonal antibodies canakinumab and
evolocumab, which target IL-1β, have anti-inflammatory effects. Sarilumab and tocilizumab are human
monoclonal antibodies against the IL-6 receptor-α. Intracellular signaling of IL-6 in response to receptor
activation is complex—anti-inflammatory protective but pro-inflammatory for the immune response.

Numerous studies have demonstrated that endothelial and inflammatory cells express RANKL.
RANKL significantly increases the activity of MMP in VSMCs, and OPG neutralizes the effect
of RANKL on the induction of MMP activity in VSMCs by inhibiting its binding to RANK [60].
Interestingly, in ECs, a relationship has been demonstrated between oxidative stress and RANKL.
Incubation of ECs with oxidized low density lipoprotein (OxLDL) and other pro-oxidant molecules,
such as H2O2, increased RANKL in a dose-dependent manner. Thus, oxidative stress-regulated
RANKL expression appears to be a general phenomenon [67]. The observation that OxLDL stimulated
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RANKL expression in different vascular cell types revealed one of the processes whereby vascular
alterations occurred in patients with an elevated OxLDL level [68]. RANKL was recently demonstrated
to potently activate human neutrophil degranulation via the binding to its transmembrane receptor
RANK, and RANKL was also shown to be protective against post-ischemic inflammation. Anti-RANKL
IgG was shown to exert a potential direct effect on the activation of cardioprotective RISK and SAFE
intracellular pathways [69,70]. In the presence of fibroblast growth factors (FGFs), such as FGF21, the
expression levels of proteins, including RANKL, were down-regulated, whereas the expression of OPG
increased. FGF21 was reported to play a protective role against oxidative stress-related endothelial
damage, atherosclerotic plaque formation, and ischemic injury of cardiomyocytes [71,72]. Adaptive
immunity appears crucial for endothelial functions. There is growing evidence that innate and adaptive
immunity are critical for the properties of the endothelium. In this field, growth differentiation factor 11
(GDF11), a secreted member of the transforming growth factor beta (TGF-β) superfamily, contributes
to the regulation of angiogenesis [73–75].

Concerning adaptive immunity, it has been reported that following administration of GDF11,
changes in cardiomyocytes are associated with activation of SMAD2, the ubiquitin-proteasome
pathway [76]. Finally, it is difficult to overstate the importance of the RANKL–RANK–OPG system
with respect to understanding how the TGF-superfamily is controlled.

7. OPG/RANKL/RANK and the Proteasome

Alterations in the ubiquitin-proteasome system (UPS) contribute to the pathogenesis of several
diseases, including cancer, neurodegenerative and immune diseases, and atherosclerosis in association
with processes of endothelial dysfunction. In vascular cells, a fundamental role has been assigned to the
interaction between the UPS and the oxidative stress response. Several data concern the participation
of the UPS in the regulation of eNOS expression and activity [77]. The UPS is also an important
molecular mechanism involved in regulating vascular and EC aging [78]. Increased ubiquitin staining
and reduced proteasome activities have been described in the pathogenesis of congestive heart failure.
Several mechanisms are involved in the decline of proteasome activities in these pathological hearts [79].
Interestingly, in experimental models of heart failure, significantly increased mRNA expression of
OPG was noted in both the ischemic and non-ischemic myocardium compared with that in subjects
without heart failure, suggesting a potential role of OPG in the adaptation of the myocardium to the
failure. The OPG/RANK/RANKL axis appears to be activated within the myocardium in the rat
model of post-infarction heart failure, implying a potential role for the RANKL/RANK interaction in
the pathogenesis of this cardiac disease [80,81]. Therefore, the proteasome pathway in relationship
with the OPG/RANK/RANKL axis may represent an effective therapeutic target for the prevention
and treatment of cardiac diseases.

8. OPG/RANKL/RANK and Cellular Senescence

Aging-related endothelial dysfunction involves increased oxidative stress, the activation of
inflammatory pathways, and impaired regeneration of ECs. Multiple mechanisms responsible for
cellular senescence have been proposed, among which the shortening of telomeres associated with
the increased oxidative stress appears to be the most important [82]. It is now recognized that OPG
participates in protection against atherosclerosis and vascular calcification. There is good evidence
to suggest that OPG is involved in cell survival and proliferation [83]. Recent results demonstrate
that irradiation-induced senescent tumor cells influence the tumor microenvironment by increasing
the production of cytokines, such as OPG. OPG is also considered a survival factor for tumor cells by
inhibiting tumor cell apoptosis [84]. OPG is able to induce the activation of the angiogenic signaling
pathways in ECs. In addition, OPG has pro-inflammatory effects that could be mediated by the
activation of the NF-κB pathway and expression of specific genes [85].
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9. OPG/RANKL/RANK and Vascular Calcification

Arterial calcification results from a highly regulated process that shares many similarities with
bone formation. The nature of the cells responsible for the formation of arterial calcification is not
precisely known. The development of vascular calcification is an active and complex process linked
with a multitude of signaling pathways [86]. SMC have been shown to have osteochondrogenic
potential. However, recent evidence suggests that various vascular cells—and particularly the
pericytes—play a role in this process. Resident vascular pericytes may have a protective effect against
the development of vascular calcification. They participate in association with other cells such as
monocytes/macrophages in regulating the balance of mineral formation [87].

Moreover, higher pericyte cell density was noted in asymptomatic lesions, suggesting that
pericytes could be actively involved in plaque stability. It has been suggested that exposure to
inflammatory atherosclerotic stress induces pericytes. Pericytes could be involved in the onset of
the mineralized structure in plaques and in the secretion of OPG. Human pericytes secrete elevated
amounts of OPG in comparison to SMCs and ECs [88,89]. One of the key functions of pericytes
in both skeletal and cardiac muscle is in the modulation of angiogenesis through the promotion of
EC survival and migration. Recent evidence suggests that in response to injury, pericytes are also
able to modulate local tissue immune responses via several independent pathways. In this area,
the OPG/RANK/RANKL axis in association with the functions of pericytes may be involved in
vasculogenesis. OPG-mediated angiogenesis involves the MAPK and Akt signaling pathways [90,91].
The ability of pericytes to enhance myocardial repair has been demonstrated. However, the underlying
mechanisms are less clear than those in skeletal muscle [92]. Injured hearts into which pericytes were
transplanted exhibited significant attenuation of the post-injury decline in cardiac pump function.
These effects are associated with decreased inflammation and increased angiogenesis [93]. OPG
appears to afford protection against vascular calcification since OPG−/− mice developed spontaneous
arterial calcification, and depleting OPG in ApoE-/- mice increased atherosclerotic lesion progression
and calcification [94]. Concerning the incidence of RANK/RANKL on vascular calcification, these
factors have roles in both promoting and inhibiting this process. There are many factors impacting
vascular calcification, which is a complex process in relation to an early stage of chronic kidney disease
(CKD). It is recognized that RANKL increases vascular smooth muscle cell calcification by binding
to RANK and increasing BMP4 production through activation of the alternative NF-κB pathway [95].
As RANKL is thought to promote vascular muscle cell calcification, RANKL inhibition by specific
agents, such as denosumab, have been tested for their ability to prevent vascular calcification [96].

As we previously reported, RANKL, RANK, and OPG are involved in the process of
atherosclerosis by altering lipid metabolism. HDLs protect against the progression of atheroma through
mechanisms involving the regulation of production of pro and anti-calcifying proteins. A correlation
between the calcium score and phospholipids of HDL subclasses was described. Coronary artery
calcification scores and lipid profiles are independent aspects of atherosclerosis, and only lipids may
be biomarkers of coronary calcification during the asymptomatic stages of the disease [97].

Vascular calcification is an active cell-mediated process, and like osteogenesis, it involves the
expression of bone-related proteins, such as alkaline phosphatase (ALP) and Runt-related transcription
factor-2 (Runx2), which are initiators of bone mineralization and SMC differentiation. Calcified
atherosclerotic lesions have been shown to express ALP [98]. Otherwise, high ALP levels are associated
with an increased risk of cardiovascular events and mortality in patients. This link between ALP
and the coronary artery calcium score is subject to several confounding factors, such as Glomerular
Filtration Rate (GFR), an inflammatory status with mediators acting on endothelial function. It is now
well-recognized that OPG is significantly associated with endothelial function and predicts early carotid
atherosclerosis in patients with coronary artery disease (CAD). The carotid intima-media thickness
(CIMT) is correlated with carotid atherosclerosis and is a significant predictor of cardiovascular
events. The OPG levels are associated with the CIMT in CAD patients [99,100]. OPG has been
proposed as a marker of endothelial dysfunction of early pathophysiological events. Among the tested
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12 inflammatory markers, only the OPG had significant prognostic value in predicting the occurrence
of atrial fibrillation (AF). The levels of OPG were significantly associated with incident AF [101,102].

In conclusion, it is evident that impaired bone metabolism has an important role in the
development of vascular calcification. Bones and vessels have mutual changes in mineralization;
this situation is called “the bone-vascular axis” and is associated with coronary diseases [103].

10. Summary

The existence of crosstalk between ECs and osteoblasts during osteogenesis was demonstrated,
thus establishing a link between angiogenesis and osteogenesis. A relationship concerning bone
regulatory proteins and vascular biology was proposed, and it was established that OPG mediates
vascular calcification. The RANKL/RANK system plays an effective role in cell survival under normal
and pathological conditions, angiogenesis and inflammation. A great effort was made to determine the
mechanism of interaction between RANKL and OPG and the initiation of diseases. The manipulation
of the OPG/RANKL ratio is the basis for developing new therapeutics.

New data showed the potency of innovative peptides as inhibitors of RANKL, and results
provided useful information for the development of various therapeutics. Previously, we reported
that RANKL inhibition by specific agents such as denosumab were tested for their ability to prevent
vascular calcification [96]. Evidence suggests that inhibition of RANKL does not only induce an
increase in bone mass and vascular calcification but also has anti-tumor effects [104]. RANKL and
RANK are expressed on cells of the immune system—in particular, B cells and activated T lymphocytes.
The expression of RANKL in cells of the immune system contributes to the pathogenesis of several
autoimmune diseases, such as rheumatoid arthritis. In vitro, a Jak1/2 inhibitor, baricitinib, inhibits
osteoclastogenesis by suppressing RANKL expression in osteoblasts [105]. While the role of the
RANKL/RANK/OPG axis in bone remodeling has been greatly studied, the role of this triad in the
central nervous system has only begun to arise. RANKL mRNA and RANK/RANKL expression are
localized to the brain. Thus, the OPG/RANKL/RANK axis appears to play a role in controlling the
central febrile response and inflammation in ischemic brain [69].

Concerning the potential clinical properties of TRAIL, the context is contradictory. Unlike serum
levels of OPG, those of TRAIL are significantly lower in patients affected by or predisposed to
CVD. Potentially, TRAIL is a “janus” molecule with two faces, the first able to induce apoptosis
and stimulate inflammation and the second likely to promote cell survival and inhibit inflammation.
These opposing effects depend on its concentration. The specific localization of the TRAIL receptor
complex may be another mechanism involved in the TRAIL-induced anti-apoptotic signaling events.
It was suggested that it would be useful to develop novel formulations to increase the circulatory
half-life of TRAIL with the aim to improve the beneficial actions attributed to TRAIL in various
therapies. Another future clinical direction concerns the genomic analysis of certain proteins related
to the inflammatory process and OPG signaling. For example, Ecto-5’-nucleotidase/CD73/NT5E,
the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from the
degradation of ATP. As we previously reported, in a human osteoprogenitor cell line in vitro, it has
been shown that adenosine and adenosine receptor agonists inhibited OPG secretion [31]. CD73 is
found in a variety of tissues including endothelium. The endothelial CD73 axis regulates hemostasis
by converting the local environment from a prothrombotic ATP/ADP-rich state to an antithrombotic,
adenosine-rich environment. Mutations in NT5E, which codes for Ecto-5’-nucleotidase (CD73), result
in calcifications of the lower-extremity arteries in patients with a syndrome called CALJA (calcification
of joints and arteries) [106]. Recent studies suggest that active processes contributing to vascular
calcification are compensated by calcification inhibitors. Genetic or pharmacological interventions
interfering with CD73 activity may prove useful in various diseases [107]. CD73 inhibitors such as
adenosine 5’-α,β-methylene-diphosphate present promising potential as a therapeutic target [108].
Pharmacogenomics is an area where genomic discoveries are able to improve clinical care.
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Abbreviations

AA Amino acid
ALP Alkaline phosphatase
Ang Angiotensin
AP-1 Activator protein-1
ASCs Adipose-stromal cells
CAD Coronary artery disease
CIMT Carotid intima-media thickness
CKD Chronic kidney disease
CVD Cardiovascular disease;
DR Death receptors;
EC Endothelial cell;
ECFC Endothelial colony-forming cell;
EndMT Endothelial to mesenchymal transition
EPC Endothelial progenitor cell
FA Fatty acid
FAO Fatty acid–beta-oxidation
FGFs Fibroblast growth factors
GDF-11 Growth differentiation factor-11
GFR Glomerular Filtration Rate
GLUT Glucose transporter
HDL High Density Lipoproteins
HSPGs Heparan sulfate proteoglycans
ICAM Intercellular adhesion molecule
IL Interleukin
kD kiloDalton
MMP Matrix metalloprotease
Nf-κB Nuclear factor κB
NO Nitric oxide
NOS NO synthetase
NOX NADPH oxidase
Nrf2 Nuclear factor-E2-related factor 2
OCIF Osteoclastogenesis inhibitory factor
OPG Osteoprotegerin
OxLDL Oxidized low density lipoprotein
PPARs Peroxisome proliferator-activated receptors
RA Rheumatoid arthritis
RANK Receptor activator of nuclear factor κ B
RANKL Receptor activator of nuclear factor κ B ligand
ROS Reactive oxygen species
SMPC Smooth muscle progenitor cells
TGF Transforming growth factor
TNF Tumor necrosis factor
TNFR Tumor necrosis factor receptor
TNFRS Tumor necrosis factor receptor superfamily
TRAF TNFR-associated factor
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
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TSP-1 Thrombospondin-1
VCAM Vascular adhesion molecule
VEGF Vascular endothelial growth factor
VSMC Vascular smooth muscle cells
vWF von Willebrand factor
WPB Weibel-Palade bodies
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