Effect of a Chronic Cholesterol-rich Diet on Vascular Structure and Oxidative Stress in LDLR<sup>-/-</sup> Mice - Université de Bourgogne Accéder directement au contenu
Article Dans Une Revue Cellular Physiology and Biochemistry Année : 2011

Effect of a Chronic Cholesterol-rich Diet on Vascular Structure and Oxidative Stress in LDLR-/- Mice

Résumé

Aims: There is conflicting evidence regarding the relationship between hypercholesterolemia and oxidative stress in vessels. To test the potential relationship, a mouse model of hypercholesterolemia was used. Methods: Low density lipoprotein receptor-deficient (LDLR(-/-)) and control (C57Bl/6) mice were fed a normal or (1.25%) high-cholesterol (HC) diet for 8 weeks, and the incidence of this chronic diet was evaluated on the degree of vascular oxidative stress and vascular structure (collagen content and lipid infiltration expressed in arbitrary units: AU=%/mm(2)). Results: Animals treated with the HC diet presented an increase in lipid infiltration (0.35±0.13 vs. 1.7±0.18 control and 1.04±0.16 vs. 1.84±0.23 LDLR(-/-), AU p<0.05) associated with higher collagen content (control: 2.13±0.40 vs. 3.46±0.36 and LDLR(-/-): 2.37±0.36 vs. 3.79±0.60; AU p<0.05 red Sirius staining). Interestingly, ROS production in the aorta was only increased in the LDLR(-/-) +cholesterol group (0.17±0.04 and 0.16±0.05 in the control groups, 0.14±0.02 vs. 0.34±0.06 in the LDLR(-/-) groups, p<0.05). C57Bl/6 and LDLR(-/-) mice presented altered vascular structure associated with the rich cholesterol diet, which was not necessarily associated with increased oxidative stress. Conclusion: These findings highlight the complex interrelation between oxidative stress and lipid metabolism in the circulatory tract.

Dates et versions

hal-03435411 , version 1 (18-11-2021)

Identifiants

Citer

Benjamin Lauzier, Stéphanie Delemasure, Bertrand Collin, Laurence Duvillard, Franck Menetrier, et al.. Effect of a Chronic Cholesterol-rich Diet on Vascular Structure and Oxidative Stress in LDLR-/- Mice. Cellular Physiology and Biochemistry, 2011, 27 (1), pp.31-36. ⟨10.1159/000325211⟩. ⟨hal-03435411⟩
11 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More