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Abstract
If the problems related to the parts and measurement strategy of Coordinate Measuring Machines (CMMs) are not taken into 
consideration, temperature variations become the main source of measurement uncertainties. Indeed, they may cause 
variations in geometry as well as reference point drift. The effect of drift is sometimes minimized by CMM users and is not 
well quantified in general. The aim of this paper is to present a physical method to determine the evolution of CMM 
geometry and drift which is based directly on CMM temperature variations and construction parameters, i.e. the position of 
the axes measurement scales and reference points of each axis. The method is applied to a Zeiss CMM Contura G2. The 
consequences of these CMM evolutions are simulated in the measurement of a sphere generated by a Renishaw Machine 
Checking Gauge. The proposed method falls within the framework of an uncertainty assessment methodology performed by 
multi-level Monte Carlo simulation, where the first level corresponds to the characterization of the CMM evolution.

Keywords: drift, thermal errors, coordinate measuring machine (CMM), geometry evolution, uncertainty, metrology

1. Introduction

The first Coordinate Measuring Machines (CMMs) appeared
in the 1960s [1]. The year 1973 was important in the devel-
opment of CMMs, with the emergence of both the Zeiss
UMM500, which can probably be considered the first mod-
ern CMM, as well as the TP1 Renishaw trigger probe. In the
1980s, the market for CMMs grew considerably. The most
common type is the bridge CMM [2] consisting of granite rails
and air bearings. Indeed, this configuration strikes a very good
balance in terms of accessibility, geometric quality, capacity
to fix the part directly on themachine and so on. The geometric
quality of the CMM, initially obtained by honing the granite
elements evolved considerably thanks to the introduction of

numerical geometry correction [3]. Starting in the mid-1980s,
the software underwent major improvements in terms of qual-
ity [4, 5] and validation of the algorithms [6–8].

The numerical correction of the CMM geometry is based
on three assumptions: first of all, for each guideway, the mov-
ing part (bridge, carriage, ram) has a rigid body behavior,
secondly, the rotation angles are so small that it is possible
to write that the cosine is equal to 1 and the sine equal to
the angle and, last, the description of geometrical errors of
one guideway is independent of the others [9]. In [10], the
notations for the description of the geometry are very strictly
written and the assumptions for rigid body behavior are stud-
ied especially about the stiffness of the granite table. These
assumptions work very well for a bridge machine but not, for
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example, for a moving ram horizontal-arm machine. For this
kind of machine, it is necessary to complete the model. In this
article, only bridge machines are considered and the three pre-
vious hypotheses are assumed to be valid for these machines.

Under these assumptions, six functions are necessary to
describe the geometry of one guideway. In fact, for an hori-
zontal guideway, the CMM defects can be called: linear posi-
tioning accuracy, horizontal straightness, vertical straightness,
roll, pitch and yaw. Thus, this means that 18 functions are
needed to describe the three guideways, to which three para-
meters (squareness) must be added.

On this basis, Kunzmann and al [11]. showed a metrolo-
gical traceability chain between the realization of the meas-
urement unit (meter) from its definition and the CMM thanks
to the correction model and by means of a ball plate.

Since the 1990s, the evaluation of uncertainties has been
the subject of a lot of published work [12–19]. Regarding
uncertainties, the main ideas are contained in the documents
of the Join Committee for Guides in Metrology, i.e. the GUM
(JCGM 100) and supplement 2 (JCGM 102) for an analytical
approach and supplement 1 (JCGM 101) [20] for a numer-
ical approach (Monte-Carlo method) [12]. and many others
proposed the concept of ‘Virtual machine’ which is a prac-
tical implementation of JCGM 101 for the CMMs [14]. is an
approach by constraints, it is a system based on the Maximum
Permissible Errors [21].

In the uncertainty budget due to the bridge machine, the
geometry is (normally) a small contributor after correction.
The most important contributors are thermal problems and (in
bad situation) the probe (for example, a very long stylus on a
touch trigger probe).

On CMMs and machine tools, thermal drift is a preponder-
ant source of uncertainty and there are some articles address-
ing this [22–30]. In [30], Balsamo and al. described in six steps
amethod to correct the thermal effect. The present subject con-
cerns the step B ‘Selection of the thermal model’ in the context
of uncertainties assessment. In [25], the authors gave formu-
las to correct the effect of temperature but a more systematic
model is proposed here about the effect of bending guideway,
fixed point drift, expansion of scales and so on.

The rules of conception are quite different for a CMM com-
pared with a machine-tool, a major reason is that the effort
between the ball tip and the part is in the order of 0.2 N. A
CMMmust be optimized to achieve excellent repeatability and
reproducibility of results. A solution is to use the concept of
isostatic coupling. The contact points are designed with an air
bearing mounted fixed on a ball joint that provides the equival-
ent of a point with a frictionless movement. To design a CMM
guideway, three contact points are using to make a plane sup-
port and two contact points to provide direction. The guideway
is completed by a linear scale.

The first objective of this paper is to evaluate the possible
and correlated evolution of all the defects of the CMM based
directly on the design of the machine studied and thermal vari-
ations of the environment.

The second objective is to show that our method is part
of a new approach of the concept of virtual machine named
Multi Levels Monte Carlo Simulation (MLMCS). This new

approach is intended to describe as precisely as possible the
physic behavior of the CMM in order to take into account the
covariances as accurately as possible. A summary of the pos-
sible complete modeling of a measurement process on CMMs
will be presented in this paper.

To summarize, this paper deals with the physical determina-
tion of geometry and drift evolution of a CMM. It corresponds
to the first level of the MLMCS used to evaluate uncertainties
of any measurand on CMMs. The research was performed as
part of a French accreditation group for the CETIM (Technical
Center for Mechanical Industries).

2. Subject and methods

2.1. Methodology

The methodology, based on MLMCS [31], is described fig-
ure 1. The 18 functions and three constants for squareness are
determined to calibrate the bridge CMM. During these oper-
ations, the temperatures and the gradients are measured. A
study of temperatures and gradients is carried out over a long
period of time which allow to choose the probability distribu-
tions for the Monte Carlo simulations more representative and
different to the calibration conditions. A reference correction
can be implemented.

For each simulation, the bending and the dilatation of the
guideways and of the mechanical structure can be estimated.
With these data, the displacements of the aerostatic bearings
and the evolution of the scales are calculated and so, the modi-
fication of the error components which describe the geometry
of the CMM. This means that the drift is directly integrated
with the CMM geometrical evolutions during the simulations.

2.2. Definition of the machine coordinate system

ISO 10 360 is the reference standard for the CMM. In 10 360–1
[1], neither the order nor the names of the axes were defined. It
is even noted, after the schematic diagram in Annex I, Figure
A.2 that ‘The indicated directions are given for information
only. Other approaches exist’. In fact, there are several desig-
nations for CMM axes according to the manufacturer of the
machine.

In France, the classical denomination of the CMMaxes was
given in the NF E 11–151 [32] standard. This standard, which
had the advantage of standardizing the ratings, was suppressed
in 2003 due to lack of actual use. Therefore, eachmanufacturer
uses its own conventions. The lack of uniqueness of the nota-
tions is a notable constraint for the development of a standard
software. The notations of the CMMaxes defined in this earlier
standard will be used in this paper. It is interesting to note that
VCMM developers [12, 13] have made the same choice.

The standard refers to X as the work piece holder (or the
slide directly connected to the work piece holder), Z as the
probe holder and the Y axis as the complementary axis. The
use of X, Y, Z is a direct coordinate system that makes it pos-
sible to create a standard system, regardless of the CMM, a
noted universal coordinate system.
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Figure 1. Schematization of the method.

The coordinate system used by Zeiss on the CMM studied
(CONTURA G2) is referenced as the machine tool coordinate
system, but it does not correspond to the universal coordinate
system defined (figure 2).

To convert any coordinate system to the defined univer-
sal coordinate system, one simply has to write the corres-
ponding homogeneous transformation matrix. Thus the trans-
formation from ZEISS coordinates to universal coordinates is

written:





0 −1 0
1 0 0
0 0 1









x
y
z



=





−y
x
z



.

2.3. Geometric evaluation of CMM

2.3.1. Generalities and recommendations To check the 3D
geometry of a CMM, there are several well-known methods
today, namely:

- Sphere plate artifact.
- Direct interferometry and electronic levels for rotations

(conventionally used by manufacturers).
- Laser tracer (currently being evaluated).
- Step gauge and rule (used for French accreditation by the

authors for the CETIM for example).
Machine geometry is generally characterized by 18 func-

tions and 3 perpendicularities, schematized in figure 3. Other
functions can be added for some machines having, because
of their construction, variations of roll or pitch, for example.
The objective is to physically represent the defects of the
machine. So, it is not conceivable to interpolate each defect
of the CMM by too high degree polynomial functions in
order to approach the physical geometry of the machine.
This must also be decoupled from other aspects related to
the automatic control or errors of determination. Therefore,
it is optimal to interpolate the variations of the defects of
the CMM due to thermal phenomena by a low-level polyno-
mial, a degree of 3 is sufficient [33]. The periodic system-
atic errors can be taken into account by Fourier series func-
tions calculated on the residues of the function defects of
the CMM. Nevertheless, it is important to perform repeat-
ability on each of the geometrical functions of the CMM.

Figure 2. Zeiss coordinate system based on machine tool
coordinate system compared to the universal coordinate system.

Indeed, on a CMM, it is conventional to have periodic sys-
tematic errors due to, for example, the recirculating ball screw
mechanism defects. Nevertheless, not all periodic errors are
repeatable, notably linked to stick-slip and hysteresis. Theses
periodic non-repeatable errors are then taken into account
in uncertainties.

2.3.2. Setting up geometry and conventions With the defin-
ition of the axes presented in §2.2, the machine’s geometry can
be implemented. So, in figure 2, point Q is at the center of the
ball of the working probe. Points O1, O2 and O3 are defined
so that point O3 belongs to the Z probe-bearing axis. Point O3
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Figure 3. Schematic representation of CMM defects.

is, by convention, the center of the ball of a theoretical probe
whose lever arm O3Q is zero, that is to say on the axis of the
slide. Point O2 coincides with point O3 when the dimension
Z is zero. Point O1 coincides with point O3 when Y and Z are
null. This type of notation has been used by Zhang et al since
1985 [10].

With these notations, rotation and translation vectors
for the X-axis could be noted in equation (1) and (2)
respectively:

−→wx = (xRx, xRy,xRz) = (roll, pitch, yaw) (1)

ε⃗O1 = (xTx, xTy, xTz) =

(linear accuracy error, straightness, straightness) . (2)

The same principle applies to Y and Z axes.
The perpendicularity is then corrected and taken into

account by adding a constant on the following rotations:

• xRz: perpendicularity between X and Y axes.
• yRx: perpendicularity between Y and Z axes.
• xRy: perpendicularity between Z and X axes.

The basic idea for modeling geometry of a bridge CMM
is based on the assumption of the mechanics of the solid
body, that is to say that each axis behaves like a solid, mov-
ing independently of others. Therefore, with the positions of
O1, O2, O3 and Q defined in figure 2 and the formalism of
torsors, the contribution to displacement of point Q linked to
axes X, Y and Z respectively is expressed in the equations (3)
and (4).

−→εx (Q) =
−→εx (O1) +

−→wx Λ
−−→
O1Q

−→εy (Q) =
−→εy (O2)

+−→wy Λ
−−→
O2Q

−→εz (Q) =
−→εz (O3)

+−→wz Λ
−−→
O3Q.

(3)

As a result, the global displacement is:

ε⃗(Q) =
−→εx (Q) +

−→εy (Q) +
−→εz (Q). (4)

Figure 4. Parametrization for deformation calculation.

2.4. Model for deforming CMM structures

The purpose of this section is to determine the function gov-
erning the deformation of a beam subjected to a temperature
gradient. In fact, CMM guideways are subject to bending
effects related to temperature variations.

So, the equation of heat propagation by conduction, accord-
ing to Fourier, in stationary thermal conditions, is written:
d2T/dx2 = 0.With this hypothesis, if a beam has a temperature
difference∆T between one face and the other, the temperature
distribution is linear.

Assuming that the bottom of the solid is at the reference
temperature and corresponds to the length L then, with the
notations of the figure 4, the equation (5) can be written.

L= 2Rφ. (5)

The equation (6) is written for the upper fiber.

L+αL∆T= 2(R+ h)φ. (6)

In this equation (6), α is the coefficient of thermal expansion
and h the granite height.

The difference between the equation (5) and (6) allows to
obtain the equation (7)

αL∆T= 2hφ. (7)

In this model, the bending f (figure 4) could be defined by
the equation (8)

f= (R+ h)(1− cos(φ)) . (8)
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Figure 5. Characterization of the gradients and temperature
variations.

Using Taylor simplification (h≪R), the equation (8) can be
simplified to obtain the approximate bending f, defined in the
equation (9).

f≈ R
φ2

2
=

αL2∆T
8h

. (9)

With the assumption that the deformation of the granite is para-
bolic and that the bending is maximum and has a value f in the
middle of the granite, the vertical bending in the X-axis at a x
position can be defined by the equation (10).

αL2∆T
8h

(

1−

(

2x
L

)2
)

. (10)

To be able to evaluate the deformations, it is necessary to note
the dimensions of the main elements of the CMM (table 1) and
identify the thermal variations to measure (figure 5).

3. Characteristic data of the CMM

3.1. Points governing the geometry of the machine

For each axis of a CMM, there are five degrees of freedom
fixed. Therefore, the guiding of the CMM must be taken into
account for five characteristic points. In general, three points
constitute a plane and two other aligned with the axis consti-
tute an annular linear connection. These points (P1x to P5x for

Figure 6. Explanation of the reference points to the X axis.

the X-axis for example) are related directly to the aerostatic
bearings or the guiding device used.

A sixth point (P6x for example for the X-axis) is associated
to correspond to the position of the reading head on the scale,
when the axis in question is at its original position.

A pointOi corresponds to the position of the point at the end
of the reference probe. It is important to note that the positions
are measured from a fixed point (figure 6) on the axis under
consideration, i.e. the fixed point of the linear scale.

These reference points (P1i to P5i with i is the considered
axis) are important because they directly contribute to the geo-
metry of the machine. The first step is to identify them. Then,
depending on the deformations of the structure due to the effect
of gradients and thermal expansion, it is possible to know
physically the evolution of the geometry of the machine.

3.2. X-axis reference points

Figure 6 is a schematic representation of the CMM studied. In
this figure, the reference points are identified for the X-axis.

Consequently, for the characterization of the guiding along
the X-axis, note:

- P1x and P2x are the two aerostatic bearings of normal Z
on the guideway of the conventional X-axis of the machine
(main driving side of the axis—right of bridge). P1x is the
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Table 1. Building materials and dimensions of the elements—Zeiss Contura G2.

Dimensions of the axis (mm)
Axis considered

Along X Along Y Along Z
Material of the
considered axis

Thermal expansion
coefficient of the entity (K−1)

Thermal expansion
coefficient of the scale (K−1)

X LX = 1650 HHX = 1185 HVX = 205 Granite ∝x = 6.0 10–6 ∝Rx = 5 10–8

Y HHY = 76 LY = 1140 HVY = 203 Ceramic ∝y = 3,9 10–6 ∝Ry= 5 10–8

Z HDX = 63 HDY = 63 LZ = 950 Ceramic ∝z = 3,9 10–6 ∝Rz = 5 10–8

aerostatic bearing closest to X1. The X-axis guideway is posi-
tioned on the right side of the XY granite. The guideway pro-
trudes 60 mm laterally (outer right side).

- P3x corresponds to the aerostatic bearing of normal Z
under the left jamb of the bridge.

- P4x and P5x are the 2 lateral bearings of normal Y on the
guideway of the conventional X axis of the machine (main
driving side of the axis—right jamb of the bridge). P4x is the
bearing closest to X1.

- P6x is the position of the X-axis scale (reference of the
encoder of the scale). This scale is positioned on the guideway
along the X-axis.

3.3. Reference entities of the CMM

The samemethod is used for the Y and Z axis as for the X-axis.
Table 2 summarizes the characteristic points of the CMM

studied and the normal vectors associated at these points.

4. Consistent determination of the evolution of
machine defects

4.1. Bending effect and axes thermal expansion

The bending and dilatation effects on the axes are summarized
in table 3. Hence, the thermal deformations of the machine
result from the 9 thermal variations identified (figure 5).

4.2. Effects of thermal variations on the X-axis

The principle involves considering that the displacement of the
characteristic points of the axis (the bearings P1x to P5x and
the reading head of the scale P6x) corresponds to six small dis-
placements which are expressedwith the point considered, that
is to say in O1 for the X axis, O2 for the Y axis and O3 for the
Z axis.

In this way, with the equations defined at §2.3.2., the equa-
tion (11) is the expression of the torsor in O1 of the different
points Pix for the X-axis.

−−−→
ε(Pi) =

∣

∣

∣

∣

∣

∣

xTx(x)
xTy(x)
xTz(x)

+

∣

∣

∣

∣

∣

∣

xRx(x)
xRy(x)
xRz(x)

Λ
−−→
O1Pi with i ∈ {1,6} .

(11)

4.2.1. Effects of TVX on the X-axis defects With table 3 and
the equation (10), it is then possible to solve the series of 6
equations which makes it possible to determine the TVX influ-
ence on the defects of the X-axis of the machine. This is

described in the system of equations (12)



















































































∝x.LX
2TVX

8HVX



1−

(−−−→
X1Pix.

−→nx + x− LX
2

LX
2

)2




=
(

ε⃗O1 +
−→wxΛ

−−−→
O1Pix

)

.−→nPix

with i= {1 to 3} and−→nPix =
−→nz

0=
(

ε⃗O1 +
−→wxΛ

−−−→
O1Pix

)

.−→nPix
with i= {4 to 5} and−→nPix =

−→ny

0
=
(

ε⃗O1 +
−→wxΛ

−−−→
O1P6x

)

.−−→nP6x
with−−→nP6x =

−→nx .

(12)

Thus, the TVX effects on the defects xTx, xTy, xTz, xRx, xRy,
xRz, calculated with the real data of the CMM studied, are
shown in table 4. It is interesting to note that TVX has no influ-
ence on the yaw xRz.

4.2.2. Effects of THXon the X-axis defects From table 3, THX
influence on the defects of the X-axis is obtained by the resol-
ution of the system of equations (13)
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ε⃗O1 +
−→wxΛ
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O1Pix
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.−→nPix
with i= {1 to 3} and−→nPix =
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∝x.LX
2THX

8HHX
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1−

(

−−→
X1Pix.

−→nx+x−
LX
2

LX
2

)2
)

=
(

ε⃗O1 +
−→wxΛ

−−−→
O1Pix

)

.−→nPix
with i= {4 to 5} and−→nPix =

−→ny

0=
(

ε⃗O1 +
−→wxΛ

−−−→
O1P6x

)

.−−→nP6x
with−−→nP6x =

−→nx .

(13)

Thus, THX effects on xTx, xTy, xTz, xRx, xRy, xRz are
shown in table 4. It is important to note that only the accuracy
error on the axis, the Y-straightness and the yaw are impacted
by THX.
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Table 2. Characteristic points of the CMM studied—Zeiss Contura G2.

Conventional local coordinates Associated conventional normals
Axis considered Reference entities

X (mm) Y (mm) Z (mm) nX nY nZ

Point O1 −1230 −920 575 – – –
Aerostatic Bearing P1x −1077,5 0 0 0 0 1
Aerostatic Bearing P2x −1547,5 0 0 0 0 1
Aerostatic Bearing P3x −1312.5 −1117.5 −120 0 0 1
Aerostatic Bearing P4x −1077,5 85 −43 0 1 0
Aerostatic Bearing P5x −1547,5 85 −43 0 1 0

X

P6x: Scale X −1205 −67 −100 1 0 0

Point O2 140 230 −380 – – –
Aerostatic Bearing P1y −38.5 102 0 0 0 1
Aerostatic Bearing P2y −38.5 339 0 0 0 1
Aerostatic Bearing P3y 0 220.5 −42.5 1 0 0
Aerostatic Bearing P4y 0 175.5 −160.5 1 0 0
Aerostatic Bearing P5y 0 265.5 −160.5 1 0 0

Y

P6y: Scale Y −76 371 −100 0 1 0

Point O3 −31.5 31.5 −145 – – –
Aerostatic Bearing P1z −31.5 0 410 0 −1 0
Aerostatic Bearing P2z −15.5 0 215 0 −1 0
Aerostatic Bearing P3z −47.5 0 215 0 −1 0
Aerostatic Bearing P4z −63 31.5 215 −1 0 0
Aerostatic Bearing P5z −63 31.5 410 −1 0 0

Z

P6z: Scale Z −31.5 0 270 0 0 1

Table 3. Bending effects and axes dilatations.

Bending effectThermal
Variations Bending

Value
Points directly
impacted

Dilatation effect
on the axis

TVX
∝x.L

2
X.TVX

8.HVX
P1x (

−→n z)
P2x (

−→n z)
P3x (

−→n z)

THX
∝x.L

2
x .THX

8.HHX
P4x (

−→n y)
P5x (

−→n y)
TRX ∝Rx.TRX.x

TVY
∝y.L

2
y .TVY

8.HVY
P1y (

−→n z)
P2y (

−→n z)
P3y (

−→n z)

THY
∝y.L

2
x .THY

8.HHY
P4y (

−→n x)
P5y (

−→n x)
TRY ∝Ry.TRY.y

TDX
∝z.L

2
Z.TDX

8.HDX
P1z (

−→n y)
P2z (

−→n y)
P3z (

−→n y)

TDY
∝z.L

2
Z.TDY

8.HDY
P4z (

−→n x)
P5z (

−→n x)
TRZ ∝Rz.TRZ.z

4.2.3. Effects of TRXon X-axis defects The TRX effects could
be obtained by solving the system of equations (14)































































0=
(

ε⃗O1 +
−→wxΛ

−−−→
O1Pix

)

.−→nPix
with i= {1 to 3} and−→nPix =

−→nz

0=
(

ε⃗O1 +
−→wxΛ

−−−→
O1Pix

)

.−→nPix
with i= {4 to 5} and−→nPix =

−→ny

∝RxTRXx=
(

ε⃗O1 +
−→wxΛ

−−−→
O1P6x

)

.−−→nP6x
with−−→nP6x =

−→nx .

(14)

However, it is evident that TRX only has an influ-
ence on the linear xTx defect. The result is given
in table 4.

4.3. Effects of thermal variations on the Y and Z-axis

The same resolution of the X-axis is performed on the Y and
Z axis. The results, applied to the CMM studied, are stored
directly in table 4.

4.4. Summary of the effects on the thermal variations

To sum up, in order to characterize the evolution on the
CMM, it is necessary to solve nine series of six equations.
Table 4 summarizes the different effects of thermal variations
on the evolution of the CMM defects. The values in the
Table correspond to the polynomial coefficients used to take
into account the changes in the geometry of the machine.
It is necessary to multiply these coefficients by the term of
the corresponding temperature, measured in the area around
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Table 4. Impact on the CMM defects and value associed in mm.K−1 for each thermal variations.

the CMM. These terms generate errors in mm.K−1. Four
boxes in table 4 have been grayed out because these vari-
ations have no impact on the overall geometry of the machine

(constant rotation). All the other variations obtained have
been interpreted in terms of corresponding CMM deforma-
tions.
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Table 5. Thermal variation considered.

Thermal effect TVX THX TRX TVY THY TRY Tdx Tdy TRZ

Maximum thermal variations (◦C) 0.3 0.3 0.4 0.05 0.05 0.3 0.05 0.05 0.4

Table 6. Sphere evaluation—Monte Carlo simulation on MCG.

Simulation of the impact of the thermal variations on MCG 

measurement 

Correction of the center position by least square method for 

each simulation to suppress the drift of reference point 

5. Results and analysis

The calibration of the CMM geometry was performed by
interferometry and electronic levels for rotations, at least
for xRx and yRy. A specific measurement must be made
for zRz. The machine was instrumented using temperat-
ure sensors (PT 100 wiring in four wires on an Agi-
lent 34 972 A power plant) to estimate thermal gradi-
ents and axes thermal expansion. The different maximum
thermal variations estimated on the CMM are reported
in table 5.

So, it is possible to carry out a Monte Carlo simulation in
order to estimate the CMM variations. The results are presen-
ted in Appendices I, II and III.

Table 6 presents the effects of the CMM geometrical
evolution due to thermal variations on the sphere gener-
ated by a Machine Checking Gauge (MCG) of 452 mm
in diameter. These representations correspond to the exper-
imental measurement of 72 regularly distributed points on
which a Monte Carlo simulation is carry out to assess
the impact of thermal variations on measurement. The left
column shows the simulated errors without treatment. In
the right column, a least square refocusing was performed
on each of the measurements to remove errors related to
the fixed point offset. These thermal drift errors, corres-
pond to the main source of errors during thermal CMM
evolutions.

6. Conclusion

This paper presents a physical method for determining the
thermal evolutions of the machine’s defects based on an ana-
lysis of the basic elements of CMM construction. The cor-
rection of the bending of the granite table is well-known but
this study generalizes the possibilities for the correction of the
machines and allows the problem of drift in the points of ref-
erence to be better taken into account.

With this method, it is also possible to account for the
deformation of the machine caused by the weight of the meas-
ured part (deformation of the granite table) in the evaluation
of uncertainties. To achieve this, it is sufficient to calculate the
bending of the granite support and to carry out similar types of
computations. It is also possible to evaluate the impact of the
variation of the air film thickness of the aerostatic bearings.

Table 4 identified defects impacted by gradients and
thermal variations around the CMM. This analysis is interest-
ing in the design of a CMM. It also provides a better under-
standing of the evolution of the CMM defects and in particular
the problems of drift. These are important and harmful in the
context of the use of a rotary table for example over long peri-
ods of time.

Finally, this study (carried out for the French CETIM)
forms the base of a MLMCS, which allows us to evaluate the
uncertainties of any measurand on CMMs [31]. The MLMCS
is carrying out on two levels, namely:
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Appendix I. Geometrical evolution on the CMM – X-axis.
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Appendix II. Geometrical evolution on the CMM – Y-axis.
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Appendix III. Geometrical evolution on the CMM—Z-axis.
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-The first level takes into account CMM defects and their
evolutions caused by thermal variations (the principle topic of
this paper) or other reasons. Dynamic effects and defects in
the probing system are also added at this level.

-The second level concerns the part and the evaluation
of the measurands. This level takes into account the effects
related to reference entities, resolutions, repeatability, rough-
ness, uncertainties on the determination of CMM defects.
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