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Abstract: The paper deals in the Computer-Aided Design or Computer-Aided Manufacturing domain with
the Dupin cyclides as well as the Bézier curves. It shows that the same algorithms can be used either for
subdivisions of ring Dupin cyclides or Bézier curves. The Bézier curves are described with mass points
here. The Dupin cyclides are considered in the Minkowski-Lorentz space. This makes a Dupin cyclide
as the union of two conics on the unit pseudo-hypersphere, called the space of spheres. And the conics
are quadratic Bézier curves modelled by mass points. The subdivision of any Dupin cyclide, is equivalent
to subdivide two curves of degree 2, independently, whereas in the 3D Euclidean space, the same work
implies the subdivision of a rational quadratic Bézier surface and resolutions of systems of three linear
equations. The first part of this work is to consider ring Dupin cyclides because the conics are bounded
circles which look like ellipses.

Key-Words: Mass points, Rational quadratic Bézier curves, Conics, Subdivisions, Space of spheres,
Minkowski-Lorentz space, Ring Dupin cyclides

1 Introduction
Dupin cyclides are algebraic surfaces introduced in
1822 by the french mathematician Pierre-Charles
Dupin [1] and were introduced in Computer Aided
Design (C.A.D.) by R. Martin in 1982 [2]. They
have a low algebraic degree: at most 4. These
Dupin cyclides have a parametric equation and
two equivalent implicit equations [3, 4] and they
have been studied by a lot of mathematicians
[4, 5, 6]. Since a score of years, much of authors
used them in Computer Aided Geometric Design
(C.A.G.D.). In previous studies [7, 8, 9, 10], Dupin
cyclides are represented by Rational Biquadratic
Bézier Surfaces (R.B.B.S.) in the usual 3D Eu-
clidean affine space E3. Four patches are neces-
sary to model the whole cyclide. Then, the condi-
tions of the control points of a R.B.B.S. that can
represent a Dupin cyclide patch have been given
[11, 12, 13, 14, 15, 16]. A similar construction is

possible in the space of spheres [17].
In C.A.D., rational Bézier curves are the ba-

sis for the standard Non-Uniform Rational Bézier
Splines (N.U.R.B.S.) representation. In partic-
ular, second order rational Bézier curves model
conic arcs [18, 19, 14, 20]. However, since point
on Bézier curve are expressed as barycenters of a
set of the control points, they are, in the classical
setting, limited to modeling bounded arcs. Un-
bounded conics arcs, like parabola or hyperbola
branches, may be modeled by considering the joint
space of weighted points and vectors [21]. In this
space, vectors correspond to points associated the
weight zero. Here, we propose to further inves-
tigate this general setting to propose an original
subdivision algorithm for bounded and unbounded
conic arcs1 and the subdivision is independent of
the rational parameterization. The subdivision

1The work will be presented in a future paper.
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theorems in Paragraph 4, lay on Theorem 5 which
offers to change mass points. The Theorem 5 in
B.2.3 and his Corollary 1 give a way to build a
conic arc that eases the calculation of the conic
invariants [20, 22, 23].

The space of spheres was introduced in vari-
ous ways. For example, M. Berger [6] works in
the projective space of the quadratic forms on the
affine Euclidean space, M. Paluszny [24] works in
a four dimensional projective space using the hy-
persphere of Moebius. While U. Hertrich-Jeromin
[25], T. Cecil [26], R. Langevin and P. Walczak
[27] use a four dimensional quadric Λ4 in the five
dimensional Minkowski-Lorentz space which is en-
dowed with a non-degenerate indefinite quadratic
form of signature (4, 1). That space is a gen-
eralization of the space-time used in Einstein’s
theory, equipped of the non-degenerate indefinite
quadratic form

QM (−→u ) = x2 + y2 + z2 − c2 t2

where (x, y, z) are the spacial components of the
vector −→u and t is the time component of −→u and c is
the constant of the speed of light. The Minkowski-
Lorentz space permits to solve the three contact
condition problem [28] whereas the other space
leads to nothing: with the projective spaces, the
orientations of the spheres are lost. In these pro-
jective space, from two spheres of centers O0 and
O1 and of non-null radius r, we can not distin-
guish a cone and a cylinder. In the Minkowski-
Lorentz spheres, the two spheres of centers O0 and
O1 and of non-null radius r lead to a circular cylin-
der whereas the sphere of center O0 and of radius
r and a sphere of center O1 and radius −r lead to
a circular cone.

In the Minkowski-Lorentz space, a Dupin cy-
clide is the union of two conics, see Definition 1
and Table 1. We can choose a vector using perpen-
dicular conditions and pseudo-metric conditions to
determine a Bézier curve which models a circle
for the non-degenerate indefinite quadratic form
and this circle looks like an ellipse or hyperbola
with an Euclidean point of view. Some recalls
about the Minkowski-Lorentz spaces L4,1 and −−→L4,1

can be found in [29, 30, 31, 32, 33, 34, 17, 28].
Some formulae are given in Appendix A. The use
of Minkowski-Lorentz space permits to simplify
the subdivision algorithms developed by L. Gar-
nier and C. Gentil [15]. One can note that an in-
version is not an affine, transformation and so, the
control points of the image of a Bézier curve are
not the images of the control points of the original
Bézier curve. Then, the general Dupin cyclide case
and torus case must be distinguish. Some recalls

about mass points and Bézier curves can be found
in [21, 35, 36, 29, 30], to facilitate the read of this
paper, some formulae are given in Appendix B.

The paper is organized as follows: Section 2
presents Dupin cyclides in the 3-dimensional Eu-
clidean affine space E3 and in the Minkowkski-
Lorentz space. In section 3, the authors present
the adaptation of De Casteljau algorithm to Bézier
curves with mass points. Section 4 presents meth-
ods to subdivide Bézier curves which model el-
lipse arcs and then Ring Dupin Cyclide. Be-
fore the conclusion and the perspectives, in sec-
tion 5, the authors present the method to sub-
divide Ring Dupin cyclides patches. The Ap-
pendix A (resp. B) presents some fundamental re-
calls about Minkowski-Lorentz space (resp. Bézier
curves with mass points) to clarify this paper.

2 Dupin cyclide in the
Minkowkski-Lorentz space

An Euclidean sphere S of the 3-dimensional usual
affine Euclidean space E3 of center Ω and of radius
r defines two oriented spheres S+ and S− of center
Ω and of radius ρ = r and ρ = −r respectively.
For any point M belonging to the sphere S+ or
S−, we have

−−→
ΩM = ρ

−→
N (1)

where −→
N is the unit normal vector to the consid-

ered sphere at the point M .
The space of spheres Λ4 is the 4-dimensional

pseudo-unit hypersphere of the Minkowkski-
Lorentz space, see Appendix A.

Dupin cyclides can be defined in different
ways [4, 3]. Using the space of spheres in the
Minkowski-Lorentz space, we use the following
definition:

Definition 1 :
A Dupin cyclide is, in two different ways, the

envelope of an one-parameter family of oriented
spheres. Each family of spheres can be seen as a
conic in the space of spheres Λ4. These two conics
are called brother circles.

We can distinguish five kinds of Dupin cyclides
and the type of the conic in the Minkowkski-
Lorentz space depends of the number of singular
points of these surfaces [2, 7, 37, 38], see Table 1.
A Ring Dupin cyclide is a Dupin cyclide without
singular points, see Fig. 1.

The representation of a Ring Dupin cyclide in
the space of spheres Λ4 is the union of two circles
which look like ellipses (with an Euclidean point
of view), Fig. 2. In a second paper, we will deal
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Table 1: Kinds of Dupin cyclides and their representations in the Minkowski-Lorentz space.

Name of Number of Lorentz Euclidean
Dupin cyclide singular point(s) property point of view

Ring 0 Two circles Two ellipses
Horned 2 Two circles An ellipse and
Spindle a hyperbola

One-singularity spindle 1 A circle and An ellipse and
Singly horned a parabola a parabola

(a) (b) (c)

Figure 1: Three ring Dupin cyclides in E3. (a): torus. (b): general quartic Dupin cyclide. (c): cubic
Dupin cyclide.

with the other Dupin cyclides represented by a cir-
cle which looks like an ellipse and an other conic:
a circle which looks like a hyperbola or an affine
parabola isometric to a line [39]. For i in {1, 2},
let Ωi be the center of the circle Ci which is con-
tained into the affine 2-plane Pi. Then, the planes
Pi and P3−i are perpendicular, the line (Ω1Ω2) is
perpendicular to Pi.

From the Minkowski-Lorentz spaces, the set
L̃4,1 of mass points (A, a) are defined, see Ap-
pendix B, where

• a = 0 implies that A is a vector of −−→L4,1;
• a ̸= 0 implies that A is a point of L4,1.

3 The De Casteljau algorithm
adapted to L̃4,1

A recall about the rational quadratic Bézier curve
with mass points of control (P0;ω0), (P1;ω1) and
(P2;ω2) is done in Appendix B.2. To simplify the
rest of this paper, we introduce the following no-
tation:
Notation 1 :
BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)} denotes a ra-
tional quadratic Bézier curve with the following
control mass points (P0;ω0), (P1;ω1) and (P2;ω2).

r

b

r

C2

Ω1

−→e−

Λ4

Cl

O5
C1

Ω2

P1

P2

Figure 2: Representation of a ring Dupin cyclide
on Λ4: the two brother circles C1 and C2 look like
ellipses.

Given that the law ⊕, defined in Appendix B,
is associative, the De Casteljau algorithm can be
generalized to the Bézier curve in the space of mass
points, Algorithm 1.
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Algorithm 1 The De Casteljau algorithm in the
space of mass points.
Input : Three mass points (P0;ω0), (P1;ω1) and
(P2;ω2) not collinear.

1. Choice of t in ]0; 1[

2. Calculation of:
(N1;ϖ1) = (1− t)⊙ (P0;ω0)⊕ t⊙ (P1;ω1)

3. Calculation of:
(N2;ϖ2) = (1− t)⊙ (P1;ω1)⊕ t⊙ (P2;ω2)

4. Calculation of:
(N3;ϖ3) = (1− t)⊙ (N1;ϖ1)⊕ t⊙ (N2;ϖ2)

Output : A mass point (N3;ϖ3) be-
longing to the conic arc modeled by
BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)}

From Algorithm 1, it yields:

(N3;ϖ3) = B0 (t)⊙ (P0;ω0)
⊕ B1 (t)⊙ (P1;ω1)
⊕ B2 (t)⊙ (P2;ω2)

(2)

In the following, we point out regular subdivi-
sions (e.g. t0 =

1
2 in Algorithm 1) and distinguish

weighted points and vectors. It is not possible to
obtain directly this result with the Algorithm 1 :
given that for each step of iteration the weights
added implies a disturbance, see [40]. The use of
Theorem 5 or the Corollary 1, see B.2.3 or [20, 23],
provides a regular subdivision (the weighted point
N3 belongs to the L4,1-perpendicular bisector from
P1 in the triangle P0P1P2). We impose that:
• if the endpoint is a weighted point, its weight

equals 1;

• if the endpoint is a vector, its first component
is 1, see Table 2 in Appendix A.2. The repre-
sentation of a point M0 (x0, y0, z0) ∈ E3 in the
Minkowski-Lorentz space is the light-like vec-

tor −→m0

(
1, x0, y0, z0,

x20 + y20 + z20
2

)
∈
−−→L4,1.

Moreover if (N3;ϖ3) is a weighted point the
straight line defined by the mass points (N3;ϖ3)
and (N1;ϖ1) or (N2;ϖ2) represent the tangent
line to the BR curve at N3.

4 Regular iterative subdivision of
Dupin cyclides or Bézier curves

Using the Theorem 5 or the Corollary 1, we de-
fine two homographies h0 and h1 from [0; 1] into

[
0; 12
]

and
[
1
2 ; 1
]

respectively. For i in [[0; 1]], hi
is defined by four real numbers and we have two
degrees of freedom. Let us give more details about
these homographies.

4.1 Homography h0

We have

h0 (u) =
a0 (1− u) + b0 u

c0 (1− u) + d0 u
(3)

and we have to solve{
h0 (0) = 0
h0 (1) = 1

2
(4)

which leads to {
a0 = 0
d0 = 2 b0

(5)

and the homography becomes

h0 (u) =
b0 u

c0 (1− u) + 2 b0 u
(6)

with (b0, c0) ∈ (R+)
2.

Let (P0;ω0), (P1;ω1) and (P2;ω2) be the con-
trol mass points of the Bézier curve γ. Using the
Theorem 5, the control mass points of the Bézier
curve γ ◦ h0 are (Q0;ϖ0), (Q1;ϖ1) and (Q2;ϖ2)
with 

(Q0;ϖ0) = c20 ⊙ (P0;ω0)

(Q1;ϖ1) = c0 b0 ⊙ (P0;ω0)

⊕ b0 c0 ⊙ (P1;ω1)

(Q2;ϖ2) = b20 ⊙ (P0;ω0)

⊕ 2 b20 ⊙ (P1;ω1)

⊕ b20 ⊙ (P2;ω2)

(7)

Since we want that the first control mass point
of the two curves γ and γ ◦h0 is the same, we have
c0 = 1. If ω0+2ω1+ω2 ̸= 0, the last control mass
point is a weighted point, in order to have ϖ2 = 1,
we choose

b0 =
1√

ω0 + 2ω1 + ω2
(8)

else the computation of b0 depends on the vector−→
Q2: either −→

Q2 is −→e∞ or its first component equals
1.
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4.2 Homography h1

In the same way, we have

h1 (u) =
a1 (1− u) + b1 u

c1 (1− u) + d1 u
(9)

and we have to solve h1 (0) =
1

2

h1 (1) = 1
(10)

which leads to {
c1 = 2 a1
d1 = b1

(11)

and the homography becomes

h1 (u) =
a1 (1− u) + b1 u

2 a1 (1− u) + b1 u
(12)

with (a1, b1) ∈ (R+)
2.

Let (P0;ω0), (P1;ω1) and (P2;ω2) be the con-
trol mass points of the Bézier curve γ. Using the
Theorem 5, the control mass points of the Bézier
curve γ ◦ h1 are (Q0;ϖ0), (Q1;ϖ1) and (Q2;ϖ2)
with 

(Q0;ϖ0) = a21 ⊙ (P0;ω0)

⊕ 2 a21 ⊙ (P1;ω1)
⊕ a21 ⊙ (P2;ω2)

(Q1;ϖ1) = a1 b1 ⊙ (P1;ω1)

⊕ a1 b1 ⊙ (P2;ω2)

(Q2;ϖ2) = b21 ⊙ (P2;ω2)

(13)

Since we want that the last control mass point
of the two curves γ and γ ◦h1 is the same, we have
b1 = 1. If ω0+2ω1+ω2 ̸= 0, the first control mass
point is a weighted point, in order to have ϖ0 = 1,
we choose

a1 =
1√

ω0 + 2ω1 + ω2
(14)

else the computation of a1 depends on the vector−→
Q0: either −→

Q0 is −→e∞ or its first component is 1.
From Table 4, one can see that Bézier curves

are ellipse arcs if the weights (ω0;ω1;ω2) belong
to {1} × ]−1, 1[× {1}.

4.3 Subdivision methods
We distinct two cases:

1. the segment [P0P2] is not a diameter of the el-
lipse2 and the intermediate control mass point
is a weighted point;

2The curve is a circle for the Lorentz metric in L4,1

2. the Bézier curve is a semi-ellipse3 and the in-
termediate control mass point is a vector.

Since the rational quadratic Bézier curve with
mass points of control (P0;ω0), (P1;ω1) and
(P2;ω2) is a circle arc in the Minkowski-Lorentz
space and an ellipse arc in the usual Euclidean
affine plane, our methods do not depend on the
metric of the space.

4.3.1 Case with 3 weighted points :
(ω0;ω1;ω2) ∈ {1} × ]−1, 1[− {0} × {1}

Let us recall that

Bar {(Ak;ωk)}

designates the barycentre of the weighted points
{(Ak;ωk)}.

Theorem 1 Let γ be a Bézier curve with control
mass points (σ0; 1), (P1;ω1) and (σ2; 1) laying on
the conic C.

Let h0 : [0, 1] →
[
0, 12
]

defined by :

h0 : u 7−→

1√
2 + 2ω1

u

(1− u) + 2
1√

2 + 2ω1
u

(15)

then γ◦h0 equals a Bézier curve with control mass
points (σ00; 1), (P10;ϖ10) and (σ20; 1) laying on
the conic C with :



(σ00; 1) = (σ0; 1)

P10 = Bar {(σ0; 1) ; (P1;ω1)}

ϖ10 =

√
1 + ω1

2

σ20 = Bar {(σ0; 1) ; (P1; 2ω1) ; (σ2; 1)}
ϖ10 = 1

(16)

Proof: by the use of Formula (7) with

b0 =
1√

2 + 2ω1

and c0 = 1.
■
Note that ϖ1 =

√
1+ω1

2 is the well known the
recurrence equation in the Euclidean case. For
symmetry reasons, we can formulate,

3The curve is a semi-circle for the Lorentz metric in L4,1
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Theorem 2 Let γ be a Bézier curve with control
mass points (σ0; 1), (P1;ω1) and (σ2; 1) laying on
the conic C.

Let h1 : [0, 1] →
[
1
2 , 1
]

defined by

h1 : u 7−→

1√
2 + 2ω1

(1− u) + u

2
1√

2 + 2ω1
(1− u) + u

(17)

then γ◦h1 equals a Bézier curve with control mass
points (σ01; 1), (P11;ϖ11) et (σ21; 1) laying on the
conic C with :



σ01 = Bar {(σ0; 1) ; (P1; 2ω1) ; (σ2; 1)}
ϖ01 = 1

P11 = Bar {(P1;ω1) ; (σ2; 1)}

ϖ11 =

√
1 + ω1

2

(σ21; 1) = (σ2; 1)

(18)

The Fig. 3 shows an iteration of the subdivision
algorithm based on theorems 1 and 2 thus we have
σ20 = σ01, σ0 = σ00 and σ2 = σ21. The Bézier
curve of control mass points (σ0; 1), (P1;ω1) and
(σ2; 1) is subdivided into two Bézier curves γ ◦ h0
and γ ◦ h1. The control mass points of γ ◦ h0 are
(σ00; 1), (P10;ω1) and (σ20; 1). The control mass
points of γ ◦h1 are (σ01; 1), (P01;ω1) and (σ21; 1).

4.3.2 Case of two endpoints and a intermediate
vector: (ω0;ω1;ω2) = (1; 0; 1)

The curve in the Minkowski-Lorentz space is a
semi-circle which looks like an Euclidean semi-
ellipse. The endpoints of the Bézier curve are the
weighted points (σ0; 1) and (σ2; 1), the intermedi-
ate control mass point is the vector

(−→
P1; 0

)
and

we have {
4
−→
P1

2 = −−→σ2σ0
2

−→
P1 �−−→σ2σ0 = 0

(19)

Theorem 3 Let a Bézier curve γ with control mass
points (σ0; 1),

(−→
P1; 0

)
and (σ2; 1) laying on the

conic C.
Let Ω1 be the midpoint of the segment [σ0;σ2].
Let h0 defined by

h0 : u 7−→

√
2

2
u

(1− u) +
√
2u

(20)

r

b

b

r

rb

σ20 = σ01

P1 P10

σ2 = σ21

P11

σ0 = σ00

Figure 3: One step of an iterative subdivision of a
conic arc γ on Λ4. The endpoints are σ0 and σ2.
The tangent lines at the endpoints are the straight
lines (σ0P1) and (σ2P1) where the weighted point
(P1;ω1) verifies 0 < |ω1| < 1.

then γ ◦ h0 is a Bézier curve with control mass
points (σ00; 1), (P10;ϖ10) and (σ20; 1) laying on
the conic C with:

(σ00; 1) = (σ0; 1)

(P10;ϖ10) =

(
T−→
P1

(σ0) ;

√
2

2

)
(σ20; 1) =

(
T−→
P1

(Ω1) ; 1
) (21)

Proof: by the use of Formula (7) with b0 =
√
2
2

and c0 = 1.
■
For symmetric reasons, we can formulate

Theorem 4 Let a Bézier curve γ with control mass
points (σ0; 1),

(−→
P1; 0

)
and (σ2; 1) laying on the

conic C.
Let Ω1 be the midpoint of the segment [σ0;σ2].
Let h1 defined by

h1 : u 7−→

√
2

2
(1− u) + u

√
2 (1− u) + u

(22)

then γ ◦ h1 is a Bézier curve with control mass
points (σ01; 1), (P11;ϖ11) and (σ21; 1) laying on
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the conic C with:
(σ01; 1) =

(
T−→
P1

(Ω1) ; 1
)

(P11;ϖ11) =

(
T−→
P1

(σ2) ;

√
2

2

)
(σ21; 1) = (σ2; 1)

(23)

The Fig. 4 shows an iteration of the subdivision
of a semi-circle based on the Theorems 3 and 4.

4.3.3 Synthesis
The Fig. 5 shows a graph which synthesizes the
links between the theorems which permit the sub-
divisions of a connected circle (an ellipse with an
Euclidean point of view).

5 Subdivision of a Dupin cyclide
patch

In this section, the algorithms given in [15] are
simplified using the representation of the brother
circles on Λ4. These curves are modeled using
Bézier curves. The same method is applied to all
ring Dupin cyclides (non-degenerate or torus). Let
σ0 and τ0 be two representations of spheres which
define the Dupin cyclide, if they do not belong to
the same brother circle on Λ4, then the light-like
vector −−→σ0τ0 defines the Dupin cyclide point.

Fig. 6 shows a subdivision of a Dupin cyclide
patch. The first (resp. second) family of spheres
is defined by the Bézier curve with control mass
points (σ0; 1), (P1;ω1) and (σ2; 1) (resp. (τ0; 1),
(Q1;ϖ1) and (τ2; 1)). The vertex P00, P02, P20

and P22 of the Dupin cyclide patch are defined by
the light-like vectors −−→σ0τ0, −−→σ0τ2, −−→σ2τ0 and −−→σ2τ2.

First, the Bézier curve with control mass points
(σ0; 1), (P1;ω1) and (σ2; 1) is subdivided to obtain
the two Bézier curves with control mass points
(σ0; 1), (P10;ω10) and (σ01; 1) on one hand and
(σ01; 1), (P11;ω11) and (σ2; 1) on the other hand.
Two new points P010 and P012 are computed in E3
by using the light-like vectors −−−→σ01τ0 and −−−→σ01τ2.

In the same way, the Bézier curve with control
mass points (τ0; 1), (Q1;ϖ1) and (τ2; 1) is subdi-
vided to obtain the two Bézier curve with con-
trol mass points (τ0; 1), (Q10;ϖ10) and (τ01; 1) on
one hand and (τ01; 1), (Q11;ϖ11) and (τ2; 1) on
the other hand. Two new points P001 and P201

are computed in E3 by using the light-like vectors−−−→σ0τ01 and −−−→σ2τ01.
Finally, the point P0101 is computed in E3 by

using the light-like vector −−−→σ01τ01. In Fig. 7, the
patch of vertices P00P20P22P02 is replaced by the
four patches of vertices

• P00, P010, P0101 and P001,

• P010, P20, P201 and P0101,

• P0101, P201, P22 and P012,

• P012, P02, P001 and P0101.

The original spheres S0 and S2 are defined by
the points σ0 and σ2 whereas the sphere S01 is
defined by the construction of the point σ01.

Using the same algorithm, the Fig. 8 shows the
subdivision of a path of ring torus. Let us recall
than in [15], the algorithms depend on the type
of the surface (torus or non-degenerate Dupin cy-
clide) and then, the first work provides the deter-
mination of the Dupin cyclide. Moreover, there is
two algorithms to subdivide a torus, one for the
meridians and one for the parallels.

6 Conclusion and future works
In this paper, we have given methods to subdi-
vide Bézier curves representing ellipse arc or semi-
ellipse using mass points. These conics repre-
senting Dupin cyclides are circles on the space of
spheres in the Minkowski-Lorentz space: one conic
is a family of spheres which generates the Dupin
cyclide i.e. a canal surface. Using the two circles,
the same algorithms permit to subdivide Dupin
cyclide patches too than can be used in patch sur-
faces.

In a second paper, we will give methods to sub-
divide Dupin cyclides having one or two singular
points i.e. subdivide Bézier curves which repre-
sent parabolae or hyperbolae arcs in the usual Eu-
clidean affine plane.
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(σ20; 1) = (σ01; 1)
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(
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√
2
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)

Figure 4: One iteration of a connected semi-circle defined by a BR curve of control mass points (σ0; 1),(−→
P1; 0

)
and (σ2; 1).

 ω0 = 1
ω1 = 0
ω2 = 1

Semi-circle

 ω0 = 1
0 < |ω1| < 1

ω2 = 1

Classic arc of circle

Theorem 1

Theorem 2

Theorem 3

Theorem 4

Figure 5: Graph which synthesizes the subdivisions of a connected circle (an ellipse with an Euclidean
point of view).
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Figure 6: One iteration of a subdivision of a Dupin cyclide patch. Each Bézier curves represents the
spheres whose Dupin cyclide is the envelope.
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Figure 7: Subdivision of a Dupin cyclide patch: the patch of vertices P00P20P22P02 is replaced by the four
patches of vertices P00P010P0101P001, P010P20P201P0101, P0101P201P22P012 and P012P02P001P0101.

Figure 8: Subdivision of a path of ring torus.
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Appendices

A Recalls of Minkowski-Lorentz
space and space of spheres

The Minkowski-Lorentz space is a generaliza-
tion of the Spacetime used in Einstein’s rela-
tivity theory.

A.1 Construction of Minkowski-Lorentz
space and space of spheres

The Minkowski-Lorentz space −−→L4,1 is the real
vector space of dimension 5. The sym-
metric bilinear form L4,1 denoted by a dot
product, is defined on the canonical basis
(−→e−,−→e1 ,−→e2 ,−→e3 ,−→e+) as follows

−→ei �−→ej = 0 if i ̸= j
−→e− �−→e− = −1
−→ei �−→ei = 1 if i ̸= −

(24)

with i ∈ {1, 2, 3,+} and j ∈ {−, 1, 2, 3,+}.
The affine Minkowski-Lorentz space L4,1 is

defined by the point O5 = (0, 0, 0, 0, 0) and
−−→L4,1.
A new basis (−→eo ,−→e1 ,−→e2 ,−→e3 ,−→e∞) with{ −→eo = −→e− −−→e+

−→e∞ = 1
2
(−→e− +−→e+)

eases to embed the usual 3D Euclidean affine
space E3 in the Minkowski-Lorentz space. The
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reader will check that
−→eo �−→eo = −→e∞ �−→e∞ = 0

and
−→eo �−→e∞ = −1

The origin point O3 of E3 is obtained by
−→eo =

−−−→
O5O3 and the vector −→e∞ represents the

point at infinity of E3.
According to Minkowski definitions, any

vector −→u ∈
−−→L4,1 such that −→u 2 is negative, pos-

itive or zero is qualified as a time-like, space-
like or light-like vector respectively. The light-
cone Cl is the set of the points M which verify

−−−→
O5M

2 = 0 (25)

i.e. −−−→
O5M is an isotropic vector, is perpendic-

ular to itself, and the pseudo-distance between
O5 and M is null.

A.2 Equivalent representations of elements
in E3 and Minkowski-Lorentz space

The Table 2 gives important Formulae to de-
termine the representation of elements of E3.
The space of spheres Λ4 is the set of points σ

such as −−→
O5σ

2 = 1. This space represents the
oriented spheres and oriented planes of E3.

A.3 Properties of points and spheres
The Table 3 gives some properties of the repre-
sentations of element of E3 in the Minkowski-
Lorentz spaces. If the orientation of the tan-
gent spheres S1 and S2 at P is the same, then

−−→
O5σ1 �

−−→
O5σ2 = 1 (26)

and
−−→σ1σ2

2 = 0 (27)
and the vectors −−→σ1σ2 and −→p are parallel.

Moreover, the direction of the vector −−→σ1σ2 in−−→L4,1 defines, in E3, the point of tangency be-
tween the spheres S1 and S2.

A one parameter family of oriented spheres
is a curve on Λ4. The derivative spheres can
be defined as follows.

Definition 2 : Derivative sphere

Let γ be a C1 curve, defined on an interval
I, on Λ4. The parameterization of the curve
satisfies the following conditions:

• the curve is at least C1 ;

• the tangent vectors to the curve are always
space-like vectors.

The intersection between Λ4 and the line

defined by O5 and
−→
∂γ

∂θ
(θ0) is a sphere

•
γ (θ0)

which is orthogonal to the sphere γ (θ0) e.g.
−−−−−→
O5

•
γ (θ0) �

−−−−−→
O5γ (θ0) = 0 (28)

Moreover, if
•

γ (θ0) (resp. γ (θ0)) represents the
sphere

•
S (resp. S), then

•
S ∩ S is a circle, called

characteristic circle if γ models a canal sur-
face. The canal Surface and the sphere γ (θ0)

are tangent along the circle
•
S ∩ S.

B Mass points and
Minkowski-Lorentz spaces

B.1 The set of mass points
A mass point is a couple (M,m) such that: if
the mass m is equal to 0, −→M is a vector belong-
ing to −−→L4,1 otherwise M is a point belonging
to the affine space L4,1. So, a mass point is a
weighted point or a vector and the set of these
mass points is denoted L̃4,1 i.e.

L̃4,1 =
−−→L4,1 × {0} ∪ L4,1×R∗ (29)

The notation Bar {(M ;ω) ; (N ;µ)} de-
notes the barycenter of the weighted points
(M ;ω) and (N ;µ) and for any points A and
B in L4,1 we have:

Bar {(A;−1) ; (B; 1)} is −→
AB ∈

−−→L4,1 (30)

We define a stable addition ⊕ in L̃4,1, such
that

(
L̃4,1,⊕

)
is a commutative group:
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Table 2: correspondence between elements of E3 and points or vectors in the Minkowski-Lorentz spaces

Type E3 ∪ {∞} L4,1 or −−→L4,1 Property

Point P ∈ E3 −→p = −→eo +
−−→
O3P +

∥∥∥−−→O3P
∥∥∥2

2
−→e∞ −→p 2 = 0

∞ −→e∞ −→e∞2 = 0

Sphere Center Ω
−−→
O5σ =

1

ρ

(
−→eo +

−→
Ω +

1

2

(∥∥∥−→Ω∥∥∥2 − ρ2
)
−→e∞
)

−−→
O5σ

2 = 1

Radius ρ

Plane L4,1 Normal vector −→
N

−−→
O5π =

−→
N +

(−→
N • −→P

) −→e∞
−−→
O5π

2 = 1

Point P ∈ L4,1

Table 3: Properties of the representations of points, planes and spheres in Minkowski-Lorentz spaces.

Type E3 ∪ {∞} L4,1 or −−→L4,1 Property

Point P −→p P ∈ S ⇐⇒ −→p �−−→O5σ = 0

Sphere S σ ∈ Λ4 P ∈ L4,1 ⇐⇒ −→p �−−→O5π = 0

Plane P π ∈ Λ4 −→e∞ �−−→O5π = 0

Sphere S1 σ1 S1 ⊥ S2 ⇐⇒ −−−→
O5σ1 �

−−−→
O5σ2 = 0

# (S1 ∩ S2) > {1} ⇐⇒
∣∣∣−−−→O5σ1 �

−−−→
O5σ2

∣∣∣ < 1

Sphere S2 σ2 S1 and S2 are tangent⇐⇒
∣∣∣−−−→O5σ1 �

−−−→
O5σ2

∣∣∣ = 1

S1 ∩ S2 = ∅ ⇐⇒
∣∣∣−−−→O5σ1 �

−−−→
O5σ2

∣∣∣ > 1

• (M ;ω)⊕ (N ;−ω) =
(
ω

−−→
NM ; 0

)
;

• (−→u ; 0)⊕ (−→v ; 0) = (−→u +−→v ; 0);
• if ω ̸= 0 and ω + µ ̸= 0, then
(M ;ω) ⊕ (N ;µ) =(
Bar

{
(M ;ω) ; (N ;µ)

}
;ω + µ

)
;

• if ω ̸= 0 then (M ;ω) ⊕ (−→u ; 0) =(
T 1

ω
−→u (M) ;ω

)
where T−→w is the transla-

tion of L4,1 of vector −→w .

In order to define
(

L̃4,1,⊕,⊙
)

as a vector
space, we define the multiplication by a scalar
⊙ as follow:

• if ω ̸= 0, 0⊙ (M ;ω) =
(−→
0 ; 0

)

• α ̸= 0 =⇒ α⊙ (M ;ω) = (M ;α ω)

• α⊙ (−→u ; 0) = (α−→u ; 0)

For more details on the space of mass
points, the reader can refer to books of Fiorot
and Jeannin [21, 35] or the paper of Garnier
and al. [30, 23].
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B.2 Rational quadratic Bézier curves in L̃4,1

B.2.1 Definition
Let us recall the definition of quadratic Bern-
stein polynomials

B0 (t) = (1− t)2 ,

B1 (t) = 2 t (1− t) ,

B2 (t) = t2

(31)

with t ∈ [0, 1].
Now, we can define a rational quadratic

Bézier curves with three control mass points
(P0;ω0), (P1;ω1) and (P2;ω2):

Definition 3 : Rational quadratic Bézier curve
(BR curve) in L̃4,1.
Let ω0, ω1 and ω2 be three non-zero values.

Let (P0;ω0), (P1;ω1) and (P2;ω2) be three
mass points in L̃4,1, these points are not
collinear.

Let us define two sets I = {i ∈ [[0, 2]] | ωi ̸= 0}

J = {i ∈ [[0, 2]] | ωi = 0}
(32)

Let us define the function ωf as follows

ωf : [0, 1] −→ R

t 7−→
∑
i∈I

ωi ×Bi (t) (33)

A mass point (M ;ω) or (−→u ; 0) belongs to
the quadratic Bézier curve defined by the
three control mass points (P0;ω0), (P1;ω1)
and (P2;ω2), if there is a parameter t0 in [0; 1]
such that:

• if ωf (t0) ̸= 0 then we have

−−→
OM =

1

ωf (t0)

(∑
i∈I

ωiBi (t0)
−−→
OPi

)

+
1

ωf (t0)

(∑
i∈J

Bi (t0)
−→
Pi

)
ω = ωf (t0)

(34)

• if ωf (t0) = 0 then we have

−→u =
∑

i∈I ωiBi (t0)
−−→
OPi

+
∑

i∈J Bi (t0)
−→
Pi

(35)

Note that a Bézier curve with mass points of
control mixes affine properties

1∑
i∈I

ωi Bi (t0)

(∑
i∈I

Bi (t0) ωi

−−→
OPi

)
(36)

and vector properties

1

ωf (t0)

(∑
i∈J

Bi (t0)
−→
Pi

)
(37)

B.2.2 Some properties
If J = ∅, we do not modify the Bézier curve
if we multiply all the weights by a non-zero
constant value. More generally, the following
lemma holds:

Lemma 1 Let (P0;ω0), (P1;ω1) and (P2;ω2)

be three mass points L̃4,1.
Let λ be a non-zero value.
If
∑
i∈I

ωiBi (t0) ̸= 0, we have

BR

{
(Pi;ωi)i∈I ;

(−→
Pj; 0

)
j∈J

}
=

BR

{
(Pi;λ ωi)i∈I ;

(
λ
−→
Pj; 0

)
j∈J

} (38)

Proof:
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1∑
i∈I

ωi ×Bi (t0)

(∑
i∈I

ωiBi (t0)
−−→
OPi

)
+

1∑
i∈I

ωi ×Bi (t0)

(∑
j∈J

Bj (t0)
−→
Pi

)
=

1∑
i∈I

λωi ×Bi (t0)

(∑
i∈I

λωiBi (t0)
−−→
OPi

)
+

1∑
i∈I

λωi ×Bi (t0)

(∑
j∈J

λBj (t0)
−→
Pi

)

■
Without loss of generality, using Theo-

rem 5, if a weight is equal to 0, the others
weights belong to {0, 1}. The table 4 gives
the type of the conic defined by a quadratic
Bézier curve with mass points.

B.2.3 Homographic Parameter Change
The Bézier curve and the Bézier curve ob-
tained by this homographic parameter change
model two different arcs of the same given
conic.

Theorem 5 : Homographic Parameter
Change

Let γ be a Bézier curve with control mass
points (P0;ω0), (P1;ω1) and (P2;ω2) laying on
the conic C. Let a, b, c and d be four real
numbers satisfying∣∣∣∣ a b

c d

∣∣∣∣ ̸= 0 (39)

Let h be defined by

h : R −→ R

u 7−→ a (1− u) + b u

c (1− u) + d u

(40)

then γ ◦ h is a Bézier curve of control mass
points (Q0;ϖ0), (Q1;ϖ1) and (Q2;ϖ2) with



(Q0;ϖ0) =

(c− a)2 ⊙ (P0;ω0) ⊕
2 a (c− a)⊙ (P1;ω1) ⊕

a2 ⊙ (P2;ω2)

(Q1;ϖ1) =

(c− a) (d− b)⊙ (P0;ω0) ⊕
(b c− 2 a b+ a d)⊙ (P1;ω1) ⊕

a b⊙ (P2;ω2)

(Q2;ϖ2) =

(d− b)2 ⊙ (P0;ω0) ⊕
2 b (d− b)⊙ (P1;ω1) ⊕

b2 ⊙ (P2;ω2)

(41)

Proof: see [20, 41]. ■
The following corollary of Theorem 5 offers

to keep the endpoints.

Corollary 1 : Homographic Parameter
Change with 0 and 1 unmodified.

Let γ be a Bézier curve with mass control
points (P0;ω0), (P1;ω1) and (P2;ω2) laying on
the conic C. Let b and c be two non-zero num-
bers. Let h be defined by :

h : R −→ R

u 7−→ b u

c (1− u) + b u

(42)

then γ ◦h is a Bézier curve with mass control
points (Q0;ϖ0), (Q1;ϖ1) and (Q2;ϖ2) on the
same conic C with


(Q0;ϖ0) = c2 ⊙ (P0;ω0)

(Q1;ϖ1) = b c⊙ (P1;ω1)

(Q2;ϖ2) = b2 ⊙ (P2;ω2)

(43)

Proof: see [20].
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Table 4: Type of the conic according the weights of the control mass points.

Weights (ω0, ω1, ω2) ∆ = ω2
1 − ω2 ω0 Euclidean type of the conic

+ ω1 > 1: connected hyperbola arc
0 ω1 = 1: connected parabola arc
− ω1 = 0: semi-ellipse

(1;ω1; 1) − 0 < |ω1| < 1: ellipse arc
0 ω1 = −1: not connected parabola arc
+ ω1 < −1: not connected hyperbola arc

(0; 1; 1) or (1; 1; 0) 1 connected hyperbola arc
(0; 0; 1)or (1; 0; 0) 0 connected parabola arc

(0; 1; 0) 1 hyperbola branch

The denominator of a rational quadratic
Bézier curve defined by the mass points
(P0;ω0), (P1;ω1) and (P2;ω2) is

(ω0 − 2ω1 + ω2) t
2 + 2 (ω1 − ω0) t+ ω0 (44)

and the sign of the discriminant of this poly-
nomial is

ω2
1 − ω2 ω0 (45)
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