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Gated Recurrent Unit-Based RNN for Remote Photoplethysmography Signal Segmentation

Remote Photoplethysmography (rPPG) enables quantifying blood volume variations in the skin tissues from an input video recording, using a regular RGB camera. Obtained pulse signals often contain noisy portions due to motion, leading researchers to put aside a great number of rPPG signals in their studies. In this paper, an approach using a Gated Recurrent Unit-based neural network model in order to identify reliable portions in rPPG signals is proposed. This is done by classifying rPPG signal samples into reliable and unreliable samples. For this purpose, rPPG and electrocardiography signals (ECG) were collected from 11 participants, rPPG signal samples were labeled (ECG was used as ground truth), and data were augmented to reach a total number of 11000 1-minute-long rPPG signals. We developed a model composed of a unidimensional CNN and a Bidirectional GRU (1D-CNN+B-GRU) for this study, and obtained an accuracy rate of 85.88%.

Introduction

Blood volume pulse (BVP) signals describe blood volume changes in vessels over time. They can be measured using an optical technique called photoplethysmography (PPG), whose principle is to expose a skin surface to a light source, and to quantify the light reflected or transmitted by the skin tissue. Changes of the light quantity reflects blood volume variations that are provoked by the cardiac activity. PPG was originally integrated in pulse oximeters, and was recently generalized to non-medical applications (sport [START_REF] Wu | A contactless sport training monitor based on facial expression and remote-ppg[END_REF], driving [START_REF] Lee | Tracking driver's heart rate by continuous-wave Doppler radar[END_REF], daily activities [START_REF] Shin | A novel headset with a transmissive ppg sensor for heart rate measurement[END_REF], etc) and was embedded in several supports such as ear sensors, wristbands or mobile phones [START_REF] Pedrana | Development of a wearable in-ear ppg system for continuous monitoring[END_REF][START_REF] Poh | Cardiovascular monitoring using earphones and a mobile device[END_REF][START_REF] Sun | Photoplethysmography revisited: from contact to non contact, from point to imaging[END_REF].

Remote photoplethysmography (rPPG) is a completely non-invasive version of reflexive PPG: ambient light constitutes the light source and a camera photosensitive matrix plays the role of the receptor. rPPG allows to follow the quantity of light reflected by a skin surface (usually the face) filmed with a regular camera over time. Indeed, reflected light depends on the continuous blood volume variations within the skin tissues, which lead to subtle changes in the skin color over time [START_REF] Sun | Photoplethysmography revisited: from contact to non contact, from point to imaging[END_REF][START_REF] Wang | Algorithmic principles of remote-PPG[END_REF].

The classic algorithmic chain for rPPG signal extraction follows several image and signal processing steps. First, the region of interest (ROI) is detected and located in the input video images [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF][START_REF] Poh | Advancements in noncontact, multiparameter physiological measurements using a webcam[END_REF]. Then, skin pixels are selected, and RGB values are spatially averaged over the ROI [START_REF] Bobbia | Remote photoplethysmography based on implicit living skin tissue segmentation[END_REF][START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF]25,[START_REF] Wang | A novel algorithm for remote photoplethysmography : Spatial subspace rotation[END_REF]. Next, RGB average values are concatenated and form three temporal traces that can be combined to extract the rPPG signal. Usual RGB fusion methods comprise blind source separation [START_REF] Lewandowska | Measuring pulse rate with a webcam -a non-contact method for evaluating cardiac activity[END_REF][START_REF] Macwan | Parameter-free adaptive step-size multi-objective optimization applied to remote photoplethysmography[END_REF][START_REF] Macwan | Remote photoplethysmography with constrained ica using periodicity and chrominance constraints[END_REF] and chrominancebased approaches [START_REF] De Haan | Robust pulse-rate from chrominance-based rPPG[END_REF]. Emergence and popularization of deep learning methods urged a number of researchers to propose deep learning based models for rPPG signal extraction [6-8, 16, 27, 28, 48]. Several physiological parameters can be extracted from a BVP signal, such as heart rate, respiratory rate, or pulse rate variability (PRV) [START_REF] Humphreys | Non contact simultaneous dual wavelength photoplethysmography : A further step toward non contact pulse oximetry[END_REF][START_REF] Luguern | An assessment of algorithms to estimate respiratory rate from the remote photoplethysmogram[END_REF][START_REF] Sun | Non contact imaging photoplethysmography to effectively access pulse rate variability[END_REF]. However, the PPG and rPPG techniques can be sensitive to noise induced by motion [START_REF] Po | Motion-resistant remote imaging photoplethysmography based on the optical properties of skin[END_REF]14,[START_REF] Spetlık | Visual heart rate estimation with convolutional neural network[END_REF][START_REF] Sun | Photoplethysmography revisited: from contact to non contact, from point to imaging[END_REF].

Recurrent neural networks (RNNs) are a type of artificial neural networks suited for sequence processing. Sequences can be time sequences (such us speech signals or a piece of music), logical sequences, text, etc. RNNs can be used for instance for key-word detection, element prediction in order to complete an input sequence (a musical note to be added to a music score for example), text translation, or sequence classification problems. RNNs are constituted of a set of units, each connected to an element from the input sequence. Every unit is also linked to the previous and the following unit, hence the recurrence qualification for this type of neural networks.

Basic RNNs are confronted, due to their usual substantial size, to the vanishing gradient problem, leading the network to lose information along its units. To palliate this problem, two sorts of units were proposed to replace basic RNN units: long-short term memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] and gated recurrent units (GRU) [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF], both including a memorization capacity to capture information for longer periods. GRU can be seen as a simplified version of LSTM units, giving the opportunity to build models with less parameters to learn, making them faster to train, for performances often comparable to LSTM models [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF].

For cardiac signal processing applications, several researchers integrated RNNs in ECG signal classification problems for instance. In [START_REF] Abrishami | Supervised ECG interval segmentation using lstm neural network[END_REF], the objective is to determine whether an ECG portion represents the P wave, the QRS complex or the T wave. To this end, authors propose an RNN constituted of two bidirectional LSTM layers (B-LSTM). A. Malali et al. [START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF] classify ECG signal samples according to their belonging part of the ECG signals (P wave, QRS complex, T wave or neutral) using a unidimensional convolutional neural network (1D-CNN) combined to B-LSTM layers. In [4], three types of networks for QRS complex segmentation are compared: a B-LSTM-based network, a 1D-CNN-based network and a bidimensional CNNbased network taking images representing ECG signals as inputs.

Other studies used RNNs for cardiac pathology detection from cardiac signals. For example, B. Ballinger et al. predict in [START_REF] Ballinger | Deepheart: Semi-supervised sequence learning for cardiovascular risk prediction[END_REF] cardiovascular risk by detecting one or several pathologies among diabetes, high cholesterol, hypertension and sleep apnea. They developed for this purpose a network model based on 1D-CNN and B-LSTM layers, taking as input different sequences, including the heart rate measured by PPG. In [START_REF] Pereira | Deep learning approaches for plethysmography signal quality assessment in the presence of atrial fibrillation[END_REF], a group of common machine and deep learning models are applied for PPG signal classification depending on atrial fibrillation detection. In the same category, the 2017 PhysioNet/Computing in Cardiology (CinC) challenge organized by G.D. Clifford et al. [START_REF] Clifford | Af classification from a short single lead ECG recording: the physionet/computing in cardiology challenge 2017[END_REF] focused on atrial fibrillation detection in short ECG signals (with durations lower or equal to 61s). The winning team [START_REF] Teijeiro | Arrythmia classification from the abductive interpretation of short single-lead ECG records[END_REF] conceived a model combing two classification models, including one based on LSTM layers.

Studies applying RNNs to rPPG signals are less common. An application that we cite in this paper is rPPG signal filtering, realized by D. Botina-Monsalve et al. [5]. The authors proposed a three-LSTM-layer model able to learn the shape of an rPPG signal. They compared its performance to signals filtered using a band-pass filter and a wavelet-based filter, and worked with PPG signals as ground-truth.

Since BVP signals are subject to noise related to a person's motion when measured by some PPG devices or by rPPG, we developed a GRU-based neural network to locate noisy portions in these signals. Signal segmentation seems to be relevant as simple filtering, as in [5], may be insufficient. In fact, in [START_REF] Sabour | UBFC-Phys: A multimodal database for psychophysiological studies of social stress[END_REF], authors were not able to use their whole dataset because of noisy contact and remote BVP signals. Usually, it is more accurate to eliminate a noisy BVP signal from a study than to unprecisely use it to extract features. Hence, segmentation would allow to make physiological parameter estimation from BVP signals more reliable. The article is organized as follows: in Section 2, the method followed to conduct this study is explained, from data acquisition in Section 2.1, labeling in Section 2.2 and augmentation in Section 2.3 to the model definition in Section 2.4. Obtained results are presented and discussed in Section 3, and a conclusion is given in Section 4.

Method

As explained in the introduction, rPPG signals are sensitive to noise induced by motion. To palliate this weakness, we propose to use an RNN model to estimate reliable portions in noisy rPPG signals. To do so, data were collected and labeled. Due to the relatively low number of obtained signals, we augmented our data before our GRUbased model was developed for this study.

Data acquisition

A dataset was built for this study, by collecting rPPG and ECG signals from 11 participants (2 women and 9 men), data are available on request. ECG signals served as a ground truth for data labeling. ECG are known to be more resilient to motion, contrary to BVP signals that can be affected by noise induced by motion. Participants were PhD students aged between 24 and 30, and did not suffer from cardiac pathologies. They were sitting in front of a screen with a fixed RGB camera that was used to film them (at a distance of nearly 80cm).

Camera used for this study was the c920HDpro from Logitech, with a number of frames per second of 30 and a full HD resolution (1080p). rPPG signals were extracted using a real-time rPPG measuring algorithm from an input video stream. This algorithm follows the same computing steps as in [START_REF] Sabour | UBFC-Phys: A Multimodal Database for Psychophysiological Studies OF Social Stress[END_REF]. ECG signals were collected using the Polar H10 sensor1 , equipped with electrodes and maintained in contact with the skin via a belt (furnished with the sensor) worn around participants' chest. The combination formed by the sensor and the belt weighted 60g, and did not created any discomfort among participants during signal measurement. The Polar Sensor Logger2 , available in Android App Store, was downloaded on a mobile phone and used to choose the data to be measured (ECG in our study).

ECG and rPPG measures were acquired in parallel. In the meantime, participants were invited to keep seated, and were allowed to work on their laptop or talk at times, as long as their faces remained directed towards the camera and their movements limited (noisy data within rPPG sig-nals were necessary for this study). Measured signals lasted in average 29min06s, more details are given in Table 2.

Data labeling

Since our goal is to build an RNN model in order to classify rPPG signal samples into reliable and unreliable, acquired data labeling was essential, and was conducted according to following steps:

• First rPPG peak labeling: collected ECG signals served as ground truth for rPPG data labeling. First, ECG and rPPG signals were aligned for each participant, then peaks of both signals were detected. These peaks correspond to heart beats in ECG signals, and to blood pulsations in rPPG signals. A first rPPG peak labeling was realized by comparing peak occurring times with those of ECG peaks. Next, a difference d was computed between each rPPG peak occurring time and its nearest ECG peak occurring time. Thereafter, following condition was applied: for each rPPG peak, if d was lower than a fixed threshold, the rPPG peak was considered as reliable, and as unreliable otherwise (threshold was set to 0.1s) ;

• Second rPPG peak labeling after visual inspection: the first labeling step is based on occurring times and does not take into account rPPG signal shape, yet this can be a key element in rPPG signal analysis, as in [START_REF] Orphanidou | Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring[END_REF] where a Signal Quality Index (SQI) is defined based on ECG and PPG signal shapes. In fact, authors of [START_REF] Orphanidou | Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring[END_REF] evaluate the correlation between PPG waves that constitute a PPG signal. This led us to visually inspect rPPG peak labels defined following the first labeling step, in order to correct mislabeled peaks when necessary ;

• rPPG sample labeling: labeled rPPG peaks were used to label rPPG signal samples. To that end, the algorithm presented in Algorithm 1 was developed, and involved following data:

Table 2 gives the length of measured rPPG signals and the percentage of samples labeled as reliable in each signal. Signal lengths range between 23min27s and 30min34s, and average reliable sample percentage is 74.53%. rPPG signal with the highest percentage of reliable samples belongs to participant 2, whereas signal pertaining to participant 7 does not include any reliable sample. To augment our data, rPPG signals were separated into 20s and 30s-long segments. 20s segments were next combined by sets of 3 segments, and 30s segments by sets of 2 segments, in order to form signals with 1min lengths. Generated signals were individual and originated from (20s or 30s) segments pertaining to each participant separately. Respecting this condition seemed primordial for purposes of preserving the coherence of rPPG measurements associated to each person in terms of shape characteristics (frequency, amplitude, etc). Besides, from a physiological point of view, combining signals that reflect the cardiac activity of distinct people intuitively appears to be inconsistent.

Data augmentation

Since measured rPPG signals were mostly constituted of reliable samples (as shown in Table 2), we sought at increasing the number of unreliable samples. Thus, all possible combinations of 30s segments containing unreliable samples were considered, generating a total number of 3311 1min-long rPPG signals.

For all participants except participant 7, whom rPPG peaks were totally labeled as unreliable, 20s segments should contain at least 10% of unreliable samples. Defining a threshold allowed to avoid generating too many signals with few unreliable samples, as our goal was to increase the proportion of unreliable samples within our data. Besides, combining all 20s segments would have led to an excessively great number of generated signals, contrary to 30s segments. 30 segments to be merged to form 1min signals were selected in the following manner: for each participant, among all possible combinations of segments containing unreliable samples, combinations with successive segments in the original rPPG signals were eliminated in order to avoid redundancy in our data. For each pair of segments s 1 and s 2 retained for a fusion (s 1 and s 2 respectively represent the first and the last 30s of the generated signal), their derivatives s ′ 1 and s ′ 2 are computed. Samples e 1 and e 2 corresponding to the last sign change of s ′ 1 and to the first sign change of s ′ 2 are located. Samples following e 1 were removed from s 1 and those preceding e 2 were removed from s 2 , then the signs of s ′ 1 (e 1 ) and s ′ 2 (e 2 ) were compared and s 1 and s 2 were combined only if s ′ 1 (e 1 ) and s ′ 2 (e 2 ) were different for the purposes of avoiding signal discontinuity. Triplets of 20s segments s 1 , s 2 and s 3 to be merged in order to constitute 1min-long signals were selected according to the same process.

20s and 30s segments were combined following Algorithm 2, which merges two input segments into one output signal s. Algorithm 2 was applied twice for 20s segments since they necessitated two fusions to form a 1min signal. In Algorithm Algorithm 2: segment fusion algorithm input : segments s 1 and s 2 of respective lengths L 1 and L 2 output: generated signal s Examples of generated and labeled rPPG signals by original signal divison in 1min segments as well as by 20s and 30s segment combination are given in Figure 2. Sample labeling forms reliable and unreliable portions (i.e. groups of samples labeled as reliable and unreliable respectively).

1 x ← min(|s 1 (L 1 )|, |s 2 (1)|); 2 if x = |s 1 (L 1 )| then 3 Find time t so that: |s 2 (t + 1)| ≤ x ≤ |s 2 (t)|; 4 s 2 ← s 2 (t + 1 : L 2 );

Model definition

After data labeling and augmentation, we defined our RNN model, composed of a unidimensional CNN, followed by a bidirectional GRU, which we denote as 1D-CNN+B-GRU and present in this subsection.

Input sequences that were given to our model were rPPG temporal traces, their time-frequency representation as well as the concatenation of these two modalities. Timefrequency representations of rPPG signals were obtained using the Fourier Synchrosqueezed Transform (FSST) [START_REF] Oberlin | The fourier-based synchrosqueezing transform[END_REF].

FSST computes an amplitude spectrum over windows of the rPPG signal that are centered around each sample, thus allowing to access spectral information while keeping the same signal time resolution. Including frequency components in the analysis of sequential data enables taking into account frequency properties, and is often used in deep learning models for sequence processing. This is the case for example in [START_REF] Salamon | Deep convolutional neural networks and data augmentation for environmental sound classification[END_REF], where a CNN is developed for audio signal classifications operating their time-frequency representation, and in [START_REF] Yamamoto | Small-footprint magic word detection method using convolutional lstm neural network[END_REF] where authors combine CNN and RNN networks for a magic word detection in speech signals by analyzing their time-frequency content. In our study, FSST was applied with Kaiser windows (width = 64 and β = 10). Figure 3 gives an example of an rPPG signal time-frequency representation from our data.

Figure 4 shows the global architecture of the 1D-CNN+B-GRU model. Input sequences of shape (L, d) (L and d being the length and the width of the sequences) are given to the model through batches. As previously mentioned, L = 1742 while d depends on the input modality: d = 1 for time sequences, d = 33 for time-frequency sequences and d = 34 for the concatenation of both modalities. The first layer is a unidimensional CNN (1D-CNN) comprised of 4 filters, each of a kernel size equal to 5 and gives four output batches each of shape (L, d). A flatten layer groups these outputs into a batch of shape (L, 4 × d), which is transmitted to a bidirectional GRU (B-GRU). The B-GRU combines the outputs of two GRU networks (with 128 units each) that process sequences in opposite directions, allowing for each sample to take into account both preceding and following samples. A batch normalization step is then applied, followed by a dropout of 20%. Next, a dense layer combines the output of previous layers into a shape of (L, 1). Finally, a probability (between 0 and 1) of a sample being reliable or unreliable for times t between 1 and L is given with a sigmoid function σ. Retained labels are reliable if σ(t) > 0.5 and unreliable otherwise.

Results and discussion

Our 1D-CNN+B-GRU model was trained and tested on our data, through three modalities: temporal sequences, time-frequency sequences and combination of time and time-frequency sequences by concatenation. As precised in Section 2.3, the training set was composed of 10000 se- The optimization algorithm chosen for model training was Adam, with the recommended values of α, β 1 and β 2 in [START_REF] Kingma | A method for stochastic optimization[END_REF] (α = 0.001, β 1 = 0.9 and β 2 = 0.999). Selected loss function was binary cross entropy, which is adapted for binary classification problems as it is the case for our study.

We fixed the maximum number of training epochs at 600. From the 500th epoch, an early stopping condition was integrated so that the model ended learning if a defined metric stopped evolving. The metric chosen in our study was the test set accuracy, and training was paused if it did not increase for consecutive 40 epochs. Input batches contained 128 sequences for each modality.

Figure 5 gives the curves of the training accuracy and loss evolution over the first 400 epochs for sequences combining time and time-frequency rPPG data. Increasing accuracy indicates that the model improved its capacity to correctly classify rPPG samples over time, while decreasing loss shows that predicted label distribution bonded that of true labels.

Table 3 presents rPPG sample classification results using the 1D-CNN+B-GRU model on temporal sequences (de- noted as time), time-frequency representation of rPPG signals (denoted as time-frequency), and the combination of these two modalities (time + time-frequency).

The best classification accuracy rate of 85.88% was obtained using rPPG time sequences from the test set. Timefrequency representation seems to be at its own insufficient for our classification problem, and combining it to the temporal sequences allowed to reach similar results as with the temporal sequences alone, without exceeding them for our maximum training duration (600 epochs in our study).

Obtained accuracy rate can be justified by the use of the B-GRU layer, as it takes into consideration the neighborhood of each sample before labeling it, knowing that an rPPG sample is luckily to have the same label as its near neighbors. Furthermore, the 1D-CNN layer allows the model to learn local patterns over the input sequences, to which the B-GRU layer adds temporal dependencies.

Figure 6 shows the confusion matrix of rPPG segmentation using the 1D-CNN+B-GRU model, indicating the percentage of correctly labeled and mislabeled samples according to the true labels. The confusion matrix gives the sensitivity (percentage of true positives), and the specificity (percentage of true negatives), which are in our case of 93% and 77% respectively. Figure 7 illustrates two examples of rPPG signals from the test set, both with their true and predicted labels. Visually, segmentation results are promising and it can be seen that the model learned to locate reliable and unreliable samples. Sensitivity and specificity values given by Figure 6 suggest that our model recognize reliable sample more frequently that it does with unreliable samples. This can be observed in Figure 7, as for both examples, the model seems to locate quite well the beginning and ending of non reliable portions, yet it attributes a reliable label to some samples within these portions.

Conclusion and perspectives

Being able to define noisy pulse signal portions because of a person's motion led us to explore the feasibility of segmentation method based on a recurrent neural network model. To this end, rPPG and ECG signals were collected from 11 participants. ECG signals were used to label rPPG samples through two phases (peak labeling and sample labeling). A data augmentation step was realized by dividing original rPPG signals into 1min-long segments, as well as by defining a 20s segment and 30s segment fusion algorithm, allowing to reach a total number of 11000 signals (10000 and 1000 signals for model training and testing respectively).

Model developed in our study is constituted of two major layers: a unidimensional CNN (1D-CNN), and a bidirectional GRU (B-GRU). Our model was trained on rPPG time sequences, time-frequency representation of the rPPG signals (obtained by applying the FSST), and the concate- nation of these two modalities. The best accuracy rate of 85.88% was reached by the time sequences, and predicted labels are visually close to true labels.

Locating noisy portions of rPPG signals allows not only to directly extract reliable portions instead of eliminating noisy signals, but also to correctly extract related data (such as features of PRV signals). However, our model can be improved by making its architecture more complex (an attention mechanism can be included for example), or precisely fine tuning the hyperparameters, so as to avoid mislabeling samples within noisy portions.

Further works have to be led in order to either group all the reliable portions found in an rPPG signals, taking into account discontinuity-related problems, or define reliable features that can hold rPPG information over ultra short durations.
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 21 Figure 1. Application of Algorithm 2 steps: left figure shows s1(L1) (L1 is the length of s1) and s2(1) values. Minimum value x of their absolute values is computed and time t so that |s2(t + 1)| ≤ x ≤ |s2(t)| is determined (middle figure). Lastly, s1 is concatenated to the portion of s2 between times t + 1 and L2 (L2 is the length of s2) to generate signal s.
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 2 Figure 2. Examples of generated and labeled rPPG signals. Signals were generated by: original signal division into 1min segments (top figure), 30s segment fusion (middle figure) and 20s segment fusion (bottom figure).
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 3 Figure 3. Amplitude spectrum of an rPPG signal by application of the FSST.
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 4 Figure 4. Architecture of the 1D-CNN + B-GRU model.
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 53 Figure 5. Training accuracy and loss of the 1D-CNN+B-GRU model on rPPG time-frequency sequences.
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 6 Figure 6. Confusion matrix of rPPG time sequence segmentation using the 1D-CNN+B-GRU model.
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 7 Figure 7. Two examples of rPPG signal segmentation using the 1D-CNN+B-GRU (input sequences are temporal signals from the test set).
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 1 As mentioned in the previous section, 11 rPPG signals lasting from 23min to 31min were collected. These durations are considerable, necessitating large RNNs, which Notation of data involved in the rPPG sample labeling.

	notation	signification
	s	input rPPG signal
	e	input rPPG signal samples (e i is the i th sample, s(e i ) is its rPPG value)
	L	input rPPG signal length
	p	input rPPG signal peaks (p j is the j th peak)
	N	number of input rPPG signal peaks
	E {e→e ′ }	set of input rPPG signal samples between sample e and sample e ′
		labeling function, common to rPPG
	l(e)	samples and peaks (l(e) = 1 if sample e
		is reliable and l(e) = 0 otherwise)
	Algorithm 1: rPPG sample labeling algorithm
	input : labeled rPPG peaks of length L, rPPG
		signal s
	output: labeled samples of signal s

1 l(E {e1→p1} ) ← l(p 1 ); // assign first peak label to preceding samples 2 l(E {p N →e L } ) ← l(p N ); // assign last peak label to following samples

3 foreach p i with i ∈ [2, N ] do 4 if l(p i ) ̸ = l(p i-1 ) then 5 if l(p i ) =

0 then 6 Find first sample e with s(e) < 0 in E {pi-1→pi} ; 7 l(E {e→pi} ) ← 0; 8 l(E {pi-1)→e} ← 1; 9 else 10 Find last sample e with s(e) < 0 in E {pi-1→pi} ; 11 l(E {pi-1→e} ) ← 0; 12 l(E {e→pi} ) ← 1;

Table 2 .

 2 Duration and reliable sample percentage of measured rPPG signals for our study. led us to 316 signals, partitioned over the 11 participants. This constitutes a relatively low number comparing to data sizes that are usually used in deep learning models. To address this problem, we decided to augment our data by generating new signals based on measured rPPG signals. Data augmentation allows to reduce overfitting, preventing the model from learning to reproduce training data while giving weak prediction results with testing data. In fact, by increasing data size, a model is exposed to more observations, and generalizes more easily its learning to unknown data.

  The value of 10% was fixed based on the histogram of unreliable samples present in 20s segments derived from measured rPPG signals except the signal from participant 7 (70% of 20s segments contained less than 10% unreliable samples).

	20s segments from all the participants except participant
	7. 2039 signals were kept among possible combinations
	of 20s segments from participant 7's rPPG signal, in order
	to reach a total number of 11000 signals, distributed for our
	RNN model training and test as follows: 10000 signals con-
	stituted the training set, while the 1000 remaining signals
	were used to test our model.
	5334 1min-long signals were obtained by combining
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