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THE QUADRATIC LINKING DEGREE

CLEMENTINE LEMARIE--RIEUSSET

ABSTRACT. By using motivic homotopy theory, we introduce an analogue in algebraic geometry
of oriented links and their linking numbers. After constructing the quadratic linking degree —
our analogue of the linking number which takes values in the Witt group of the ground field —
and exploring some of its properties, we give a method to explicitly compute it. We illustrate
this method on a family of examples which are analogues of torus links, in particular of the
Hopf and Solomon links.
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1. INTRODUCTION
In 1999, Morel and Voevodsky founded motivic homotopy theory (see | |) in order to

import topological methods into algebraic geometry. The goal of this paper is to explore the
possibility of defining an analogue of knot theory in algebraic geometry by using motivic homo-
topy theory. Specifically, we define analogues, over a perfect field F', of oriented links with two
components. We replace the circle St with A% \ {0} and the 3-sphere S? with A%\ {0}. We
then define an analogue of the linking number, which in knot theory is an invariant of oriented
links with two components: the number of times one of the oriented components turns around
the other oriented component. We call this analogue the quadratic linking degree.

Theorem-Definition 1.1 (Quadratic linking degree). Let Z = A%\ {0}UAZ\ {0} C AL\{0} be
an oriented link with two components (see Definition 2.2). There exist two elements of the Chow-
——1
Witt group CH ((A%\{0})\ Z) — called Seifert classes (see Definition 2.6) — such that their
—2 ——2
intersection product in CH ((A%L\{0})\ Z) and its image by the boundary map 0 : CH ((A%\
2020 Mathematics Subject Classification. Primary 14F42, 57K10; Secondary 11E81, 14C25, 19E15.
Key words and phrases. Motivic homotopy theory, Knot theory, Links, Witt groups, Milnor-Witt K-theory,

Rost-Schmid complex.
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{oH\ 2) — H(Z, K%qw{det(NZ/A%\{o})}) — called the quadratic linking class (see Definition
2.8) — only depend on the oriented link Z. Denoting by W(F) the Witt group of F, we call
the image of the quadratic linking class by the isomorphism Hl(Z,K%lw{det(NZ/A%\{o})}) —
W(F)® W(F) the quadratic linking degree (see Definition 2.11).

Note that this definition is similar to the definition in knot theory of the linking class
(nlwr, ], —nlwk,]) € HY (K1 U Ks) = Zwk,] ® Z]wk,] of an oriented link K7 LI Ko (of volume
forms wg, ,wk,) of linking number n.

Let us illustrate this definition on the Hopf link Z = {x = y = 0} U{z = ¢t = 0}
Spec(F[z,y,z,t]) \ {0} (see Example 4.1). TIts Seifert classes are the classes of (z) ® T* an

(z) ®T" in Cf‘\l%/ll((Aj%J \ {0}) \ Z), their intersection product is the class of (r2) ® (" A F*) in

C’H2((Aj§, \ {0}) \ Z) and the quadratic linking class is the class of —(z)n ® (£ AT* AT*) @
(x)n® (T AZ*AE) in Hl(Z,Kgﬂw{det(NZ/A%\{o})}), which gives (—=1,1) € W(F) ® W(F) as
quadratic linking degree.

In Section 2, we give the definitions of the quadratic linking class and degree then we deter-
mine how they depend on choices of orientations and of parametrizations of A%\ {0} — A%\ {0}
(see Lemma 2.13) and deduce invariants of the quadratic linking degree (see Corollarles 2. 14 and
2.15 and Theorem 2.17). For instance, in the case F' = R, the absolute values of the compo-
nents of the quadratic linking degree (which are in W( ) ~ Z) are invariant under changes of
orientations and of parametrizations of A%\ {0} — A%\ {0}. This is similar to the fact that the
absolute value of the linking number does not depend on choices of orientations. In the general
case, the ranks modulo 2 of the components of the quadratic linking degree are invariants and

more importantly we have the following lemma-definition and theorem:
n

Lemma-Definition 1.2. Let d = Z(az) € W(F). There exists a unique sequence of abelian
i=1
groups Qg and of elements ¥y(d) € Qq ), where k ranges over the nonnegative even integers,
such that:
[ de = W(F) and Eo(d) =1€ Qd,();
e for each positive even integer k, Qg is the quotient group Qqr—2/(Xk—2(d));
e for each positive even integer k, Y (d) = Z ( H ai;) € Qak-

1<ip<-<ip<n 1<j<k

a N

Theorem 1.3. Let .Z be an oriented link with two components and k be a positive even integer.
We denote the quadratic linking degree of £ by Qld oy = (d1,d2) € W(F) @ W(F). Then X (d1)
and i (d2) are invariant under changes of orientations and of parametrizations of A% \ {0} —
Ap\{0}.

In Section 3 we give a method to explicitly compute the quadratic linking class (see Theorem
3.1) and the quadratic linking degree (see Theorem 3.2) when the link Z; U Zy C A%\ {0} is
such that for each i € {1,2} the closure Z; C A% of Z; is given by two irreducible equations
{fi =0,9; = 0} such that {g; =0, g2 = 0} is of codimension 2 in (A% \ {0})\ (Z1 U Z2) and for
each generic point p of an irreducible component of {g1 = 0,92 = 0}, f1 and fo are units in the
residue field k(p).

In Section 4 we compute the quadratic linking class and the quadratic linking degree on
several examples. The Examples 4.2 (which we call binary links) showcase the usefulness of
the invariant X9 by showing that it can distinguish between an infinity of different links. The
Examples 4.3 are inspired by the torus links 7'(2, 2n) of linking number n (the Hopf link if n = 1,
the Solomon link if n = 2 and the n-gonal link (two intertwined n-gons) if n > 3).

In Appendix A we give an explicit definition (i.e. one which allows computations) of the
residue morphisms of Milnor-Witt K-theory (see Theorem A.10), which is used in Sections 3
and 4.

In Appendix B we recall some useful notions about the Rost-Schmid complex and its groups.
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2. THE QUADRATIC LINKING DEGREE

In this section, we define oriented links with two components, oriented fundamental classes
(and cycles), Seifert classes (and divisors) relative to the link, the quadratic linking class and
the quadratic linking degree of the link. We then explicit how the quadratic linking class
and the quadratic linking degree depend on choices of orientations and of parametrizations of
AZ\ {0} — A%\ {0} and deduce a series of invariants of the quadratic linking degree.

2.1. Conventions and notations. Throughout this section, F' is a perfect field, we put A% =
Spec(F[u,v]), AL = Spec(F|z,y,2,t]) and X := A%\ {0}.

For Z a smooth closed subscheme of a smooth scheme Y, we denote by N, z/y the normal
sheaf of Z in Y, i.e. the dual of the Oz-module JZ/fZQ with .#; the ideal sheaf of Z in Y.

We denote the usual generators of the Milnor-Witt K-theory ring of F' by [a] € KMV (F) (with
a € F*) and n € KMW(F) (see | , Definition 3.1]). We put (a) := 1+ n[a] € K}'W(F).

For Y a smooth F-scheme, j € Z and £ an invertible Oy-module, we denote the Rost-Schmid
complex by C(Y, K;VIW{E}) (see Definition B.2) and the i-th Rost-Schmid group of this complex
by H'(Y, Ky"™{L}) (see Definition B.5).

We identify H(AZ\ {0}, K}™) with W(F) via the (noncanonical) isomorphism ¢ : H*(AZ\
{0}, KMW) — W(F) which factorizes as follows:

0 %=1
H' (AR {0}, K§™) —= HO({0}, KXY {det(Ngy a2 )}) — KBV (F) —= W(F)
where the map in the middle is induced by the isomorphism det(/\/{o}/A%) — Og0y ® Oygy which
sends ©* AT* to 1 ® 1 (see Definition B.17).

2.2. Definitions of the quadratic linking class and degree. In this subsection, we give a
series of definitions which conclude with the definitions of the quadratic linking class and the
quadratic linking degree of an oriented link with two components.

In order to define oriented links with two components, we need the following definition (which
was given by Morel in | D-

Definition 2.1 (Orientation of a locally free module). An orientation of a locally free module
V of constant finite rank r over an F-scheme Y is an isomorphism o : det(V) = A"(V) - L® L
where £ is an invertible Oy-module.

Two orientations o : det(V) — L ® L,0' : det(V) — L' @ L' are said to be equivalent if there
exists an isomorphism v : £ — £’ such that (¢ ® 1) oo = o/. The equivalence class of o, denoted
0, is called the orientation class of o.

Definition 2.2 (Oriented link with two components). An oriented link £ with two components
is the following data:

e a couple of closed immersions ; : A%\ {0} — X with disjoint images Z;;
e for i € {1,2}, an orientation class 0; of the normal sheaf N, x, represented by an
isomorphism o; : vz, := det(Ny, /x) = L; ® L;.
We denote Z := Z1 U Zs, vz = det(Ny/x).

Remark 2.3. The canonical morphisms ; : Z; — Z induce an isomorphism
Vi ey s HY(Z, K" {vz}) = H'(Z1, K" {vz,}) & H' (Z2, K3 {v2,})

which allows us to identify H*(Z, K}V {vz}) with H'(Z1, K}"™{vz,}) ® H'(Z2, K}V {vz,}).
3



Definition 2.4 (Oriented fundamental class and cycles). Let .2 be an oriented link with two
components and ¢ € {1,2}. The oriented fundamental class of the i-th component of ., denoted
by [0], is the unique element of H°(Z;, KMV {v,.}) which is sent to n € H(Z;, KMV) by the
isomorphism H®(Z;, KMWV{vz.}) — H(Z;, KMV) induced by o; (see Lemma B.13).

Furthermore, an oriented fundamental cycle of the i-th component of .Z is a representative
in CO(Z;, KMW{vz.}) of the oriented fundamental class [o;].

Remark 2.5. Note that if o; and o} represent the same orientation class then the isomorphism
HO(Z;, KMV{v; 1) — HY(Z;, KMV) induced by o} is the same as the one induced by o;, hence
the oriented fundamental class [o;] only depends on the orientation class o;.

Recall that the boundary map 0 : HY(X \ Z, KYW) — H°(Z, KMV {vz}) (see Definition
B.11) is an isomorphism (see the localization long exact sequence (in Theorem B.12) and note
that the groups H'(X, K}'W) and H?(X, KMW) vanish (see Proposition B.15)).

Definition 2.6 (Seifert class and Seifert divisors). Let .2 be an oriented link with two com-
ponents. The couple of Seifert classes of £ is the couple (S,,,S,,), or (S1,S2) for short, of
elements of H'(X \ Z, K}W) such that 9(S1) = ([01],0) and 9(S2) = (0, [02]).

For ¢ € {1,2}, we call S; the Seifert class of Z; relative to the link .Z. Furthermore, a Seifert
divisor of Z; relative to the link .Z is a representative in C*(X \ Z, K)MW) of S;.

Remark 2.7. For i € {1,2}, the Seifert class of Z; relative to % depends on Z and not only on
Z; (and its orientation class 0;). We could define a weaker notion of Seifert class of Z;, which
would only depend on Z; (and 0;), but it is important for what follows to have this stronger
notion of Seifert class.

See Appendix B.3 for recollections on the intersection product.

Definition 2.8 (Quadratic linking class). Let .2 be an oriented link with two components.
The quadratic linking class of £, denoted by Qlc g, is the image of the intersection product
of the Seifert class S; with the Seifert class Sy by the boundary map 9 : H*(X \ Z, K}™) —
HY(Z, KY"™ {vz}). Wedenote Qlcy = (01,09 ¢) € H'(Z1, K™ {vz, DO HY(Z2, KNV {vz,})
(see Remark 2.3).

Remark 2.9. Note that the quadratic linking class Qlc, contains as much information as the
intersection product Sj - S since the boundary map 9 : H*(X \ Z, KY™W) — 0Y(Z, K}™{v;})
is injective (see the localization long exact sequence (in Theorem B.12) and note that the group
H?(X, K™ vanishes (see Proposition B.15)). Also note that Qlcy € ker(i,) since the image
of d is the kernel of i, : H'(Z, K} {vz}) — H3(X, K}™W), where i, is the push-forward of the
closed immersion i : Z — X (see the localization long exact sequence (in Theorem B.12)).

Notation 2.10. For i € {1,2}, we denote by 6; the isomorphism H'(Z;, KYW{vz}) —
HY(Z;, K™Y induced by o; (see Lemma B.13) and by ¢! the isomorphism H'(Z;, K§'™) —
HY(AZ\ {0}, K§™) induced by ¢;.

Recall that we fixed an isomorphism ¢ : H'(AZ \ {0}, K}™) — W(F) (see Subsection 2.1).

Definition 2.11 (Quadratic linking degree). Let £ be an oriented link with two components.
The quadratic linking degree of £, denoted by Qld &, is the image of the quadratic linking class
of £ by the isomorphism (¢ @ ¢) o (¢} @ ¢3) 0 (01 ® 62) : HY(Z, KNV {vz}) = W(F) & W(F).

2.3. Invariants of the quadratic linking degree. By construction, the quadratic linking
degree depends on choices of orientations and of parametrizations of A%\ {0} — X. In this
Subsection we determine how it depends on such choices and construct invariants from the
quadratic linking degree.

Throughout this Subsection, . is an oriented link with two components and we denote
Qldy = (di,d2) € W(F) & W(F).

We start by recalling how orientation classes can change.
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Lemma 2.12. Let i € {1,2} and 0, : vz, — L, ® L be an orientation of the normal sheaf of
Z; in X. There exists a € F* such that the orientation class of 0 is the orientation class of
0; O (><a).

Proof. Recall that every invertible 042 -module is isomorphic to O,z (since A% is factorial)
and that every invertible OA% \{oy-module is the restriction of an invertible OA% -module hence

every invertible Oz \(g;-module is isomorphic to Oz, (). Since Z; ~ A2\ {0}, there exist
isomorphisms ¢ : £L; = Oz, and ¢’ : L, — Og,. From Definition 2.1, (¢ ® ) 0o 0; = 0; and

(¢ @) o0, = of. Denoting by m : Oz, ® Oz, — Oy, the multiplication, the morphism
mo ((/ @) ool)o((p®1)oo;) tom™! is an automorphism of O, hence is the multiplication

by an element of I'(Z;, 0% ), i.e. by an element of F*. The result follows directly. O

Recall that automorphisms of A2\ {0} are restrictions of automorphisms of A% which preserve
the origin, hence they induce changes of coordinates of A% = Spec(F[u,v]). We denote by J,
the Jacobian determinant of an automorphism 1 of A% \ {0}; note that Jy is in F* since
(Flu,v]))* = F*.

Lemma 2.13. Let a = (a1,a2) be a couple of elements of F* and ¢ = (11,12) be a couple of
automorphisms of A%\ {0}.
(1) Let £, be the link obtained from £ by changing the orientation o1 into o10(xay) and the
orientation oy into 0oz0(xaz). Then Qlcy = (a1a2) Qlcy and Qldg, = ((a2)d1, (a1)ds).
(2) Let £y be the link obtained from & by changing o1 : A%\ {0} — X into o1 01 and
Y2 A%—, \ {0} — X into @2 O ¢2. Then Q].ng = Qng and Qldgw = (<Jw1>d1, <J¢2>d2).
(3) Let £ be the link obtained from £ by changing the order of the components. Then
Qlcyr = —Qlcy and Qld o = (—da, —dy).
Proof. (1) Note that for all i € {1,2}, [0; o (xa;)] = (a; ")[0i] = (a;)[0;] hence, by Proposition
A.2 and Proposition B.18:
Solo(xa1) = <a1>501 and Sogo(><a2) = <a2>802
Solo(xal) 'SOQO(Xag) = <a1a2>801 '802
a(‘5.010(><a1) 'SO2O(><a2)) = <a1a2>6(501 ’ 802)
Qlcy, = (a1a2) Qlcy

Note that 01/2_(/><a1)(<a1a2>017‘g) = (a1)o1({ara2)01 ) = <a%a2>0~1(01,$) = (a2)01(01,#) and

similarly o2 o (xaz)({a1a2)02 ¥) = (a1)02(02, ). It follows that Qld, = ({az2)d1, (a1)d2).

(2) From the definitions, Qlcy, = Qlcy and (01 ® 02)(Qley,) = (01 ® 02)(Qlcy). Let
i € {1,2}. We denote by ¢} : H'(AZ\ {0}, K)™) — H'(AZ \ {0}, KM™W) the isomorphism
induced by ;. Note that (y;0v;)*(0i(0i,.2)) = V7 (¢} (0i(0i,#))) and that the following diagram
is commutative:

H' (A% {0}, K}™Y) —2~ HO({0}, KM {det(Nogy 2 ) })

[03/%
; R
H' (A7 {0}, K§™) —= HO({0}, KX}V {det(N gy 02 )})

Definition B.17 that Qld g, = ({(Jy,)d1, (Jy
(3) By Proposition B.19, Sy - §1 = (—1)(S1 - S2) hence by Proposition A.2, 9(Ss - &) =
(—1)0(S1 - S2) = —0(S1 - S2) hence Qlc g = — Qlc . It follows that Qld o = (—da, —d1). O

We directly get the following invariants.



Corollary 2.14. The rank modulo 2 of di and the rank modulo 2 of do are invariant under
changes of orientations o1, 09 and under changes of @1, po : A% \ {0} — X.

Proof. For all a € F*, the rank modulo 2 of an element of the Witt ring W(F') is invariant under
the multiplication by (a). The result follows directly from Lemma 2.13. U

Recall that W(R) ~ Z (via the signature). See Examples 4.3 for an illustration of the use of
the following invariant.

Corollary 2.15. If F = R then the absolute value of di and the absolute value of do are invariant
under changes of orientations 01,09 and under changes of p1,p2 : A2\ {0} — X.

Proof. For all a € R*, (a) = (1) =1 or (a) = (—1) = —1 since every real number is a square or
the opposite of a square. The result follows directly from Lemma 2.13. (]

The following Lemma-Definition is an inductive definition. For each d € W(F'), with k ranging
over the nonnegative even integers, we define an abelian group Qg j and an element ¥(d) € Qg -
In Theorem 2.17 we will see that X (dy) and 3g(dz) are invariants.

n
Lemma-Definition 2.16. Lel d = Z(aﬁ € W(F). There exists a unique sequence of abelian
i=1
groups Qa, and of elements Yy (d) € Qqr, where k ranges over the nonnegative even integers,
such that:

® Qao=W(F) and Zo(d) =1 € Qa,;
e for each positive even integer k, Qq is the quotient group Qqr—2/(Xr—2(d));
e for each positive even integer k, Y (d) = Z ( H ai;) € Qd k-

1<) << <n 1<5<k

Proof. Recall the following presentation of the abelian group W(F'): its generators are the (a)
for a € F* and its relations are the following:

(1) (ab?) = {(a) for all a,b € F*;
(2) (a) 4+ (b) = (a+b) + ((a + b)ab) for all a,b € F* such that a + b # 0;
3) (1) +{-1) =0.

We denote by G the free abelian group of generators the (a) for a € F*, by G the quotient of
G by the first relation above and by G2 the quotient of G; by the second relation above.

Let k£ be a nonnegative even integer such that for all nonnegative even integers | < k, Qg
is an abelian group and ¥;(d) € Qq4; which verify the conditions of the statement. Note that
the quotient of the abelian group Qg x—2 by its subgroup (X;_2(d)) is well-defined, so we can

n

fix Qur = Qar—2/(Xk—2(d)). Let Z(ai) € G. Note that Z ( H ai;) € Qa is well-
i=1 1<y <-<ig<n 1<j<k
defined (since it is well-defined in G and Qg is obtained from G by quotienting several times).
n

In fact, Z ( H ai;) € Qq depends only on the class of Z(ai> in G since for all

1<in < <ip<n 1<j<k i—1
2
be F*, > (a0® T ai)+ > (] @) = > (I @) € Qak—2
2<ip < <ig<n 2<j<k 2<iy <-<ig<n 1<j<k 1<i <-<ig<n 1<j<k

(since this equality is already true in W(F') and Qg is obtained from W(F) by quotienting
several times) and similarly for other indices.
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n
Furthermore, Z ( H ai;) € Qqx depends only on the class of Z(ai> in G4 since
1<y <-<ip<n 1<j<k i=1
if a1 + a2 # 0 then in Qg :

Z ((a1 + as2)*araz H a;;) + Z { H ai,)

3<ig<-<ip<n 3<j<k 3<iy < <ip<n 1<j<k
+ Y (ata) [ e+ D ((a+aaay [] aiy)

3<io << <n 2<j<k 3<ip << <n 2<j<k
= 2 me JL e+ 3 (]] @)

3<ig<-<ip<n 3<j<k 3<iy <--<ip<n 1<j<k
+ ({a1 + ag) + (a1 + a2)araz)) > ((a1+a2) ] as)

3<ig << <n 2<j<k

= 2 me JT e+ 3 (]I @)

3<ig<-<ip<n 3<j<k 3<iy <--<ip<n 1<j<k
+((a1) +(a2)) > ((ata) [] ai)

3<ip<-<ix<n 2<j<k

- > 1L w)

1<t << <n 1<5<k

(since these equalities are already true in W(F')) and similarly for other indices.

Finally, Z ( H ai;) € Qg depends only on the class of Z(aﬁ in W(F) (i.e. on

1<iy <--<ip<n 1<j<k i=1
d) since, with the convention that Z ( H ai;) =1,
1<iz<--<iz<n 3<j<2
Yo A e+t > ([T e+ > T e
1<ip < <ip<n 1<j<k 1<ia << <n 2<5<k 1<iz < <ip<n 3<j<k
is equal to Z ( H ai;) —Yx—2(d) in Qg (since this equality is already true in W(F))
1<iy <--<i<n 1<j<k

which is equal to Z ( H ai;) in Qar = Qak—2/(Xr—2(d)). Thus we can fix Y(d) =

1<ip < <ip<n 1<j<k

> (I @) € Qun O

1<y <--<ip<n 1<j<k

It follows from Lemma-Definition 2.16 that we have a map ¥; : W(F) — U Q@ which
dEW (F)
verifies that for all d € W(F'), £,(d) € Qqx. This provides new invariants of the quadratic
linking degree. See Examples 4.2 for an illustration of the use of ¥o : W(F') — W(F)/(1).

Theorem 2.17. Let £ be an oriented link with two components and k be a positive even
integer. We denote the quadratic linking degree of £ by Qldy = (di,d2) € W(F) & W(F).
Then Y (dy) and Yk (da) are invariant under changes of orientations o1, 09 and under changes

of p1,¢2: AL\ {0} — X.

Proof. Let Z (ai) € W(F). Note that for all b € F™:

1<i<n
Se(@) Y @)= > " [ ey= > (I @) =%k (@)
1<i<n 1<ip<-<ig<n  1<j<k 1<i1<<ig<n 1<j<k 1<i<n
since bF is a square as k is even. The result follows directly from Lemma 2.13. O

7



3. HOwW TO COMPUTE THE QUADRATIC LINKING DEGREE

In this section, we give a method to compute the quadratic linking class and the quadratic
linking degree under reasonable assumptions on the link (which are verified in the examples of
Section 4). See Subsection 2.1 for notations and Subsection 2.2 for definitions.

3.1. Assumptions. Let .2 be an oriented link with two components such that for all i € {1,2},
the closure Z; C A‘}; of Z; is given by two equations

fi(xa Y, 2, t) = O?Qi(xv Y, 2, t) =0
with f; and g; irreducible. We also assume that the subscheme of X \ Z given by the equations
g1 = 0 and go = 0 is of codimension 2 in X \ Z and that for each generic point p of an irreducible
component of this subscheme, f; and fs are units in the residue field x(p).
Let i € {1,2}. Note that we can define an orientation of Nz, x from the (ordered) couple
(fiygi). Indeed, NZi/X is the dual of the conormal sheaf Cz,/x = JZi/fi, where .#7, is the
ideal sheaf of Z; in X, and we have the following short exact sequence:

00— Cy(gyat)izi —Czyx = (Cz; a1 )1z, — Cv(gy/as )iz, —=0

4
F

We define the orientation oy, 4,) as the isomorphism vz, — Oz, ® Oz, which sends i AT to
1® 1. By Lemma 2.12, there exists a; € F”* such that 0; = o(y, 4,) © (xa;) = 00 frg0)" Without

loss of generality (since we can replace f; with a; ! fi), we assume that o; = o(y, 4.)-

3.2. Notations. We denote by x°! : Z — {0,1} the characteristic function of the set of odd
numbers.

We denote € := —(—1) and for all n € Ny, n. := > {(—=1)*"1) and (—n). := en..

In order to make explicit computations, we introduce the following notations. Note that the
quadratic linking class and degree of .Z which are computed in Theorems 3.1 and 3.2 respectively
do not depend on the choices of uniformizing parameters made below (see Definitions 2.8 and
2.11).

We denote by I the set of generic points of irreducible components of the subscheme of X \ Z
given by the equations g; = 0 and g2 = 0.

For every p € I, we denote by 7, a uniformizing parameter of the discrete valuation ring
Ox\zp/(91), by up a unit in Ox\z,,/(g1) and by m;, € Z such that go = upmy € Ox\zp/(91)-

—(1
For every p € [ and q € {p}( )ﬂ Z, we denote by m, ; a uniformizing parameter of the discrete
valuation ring O@q, by up 4 a unit in O@q and by m,, € Z such that fifou, = up mpa? €

(’)@’q.

—
For every i € {1,2}, p€ I and ¢ € {p}( ' Z;, we denote by 7, 4 € v4 such that T, ;* @ T,* ®

N =Tpq® (fi* NGi*), by vp 4.0 the discrete valuation of Om 0 and by m, 40 a uniformizing

parameter for v, 0. Note that such a 7, 4 exists since 7, ;* @7, " Qg1 € Z[(Vp,q @4 (q)(V2;)14) \10}].

For every i € {1,2}, p € I and q € @(1) N Z;, we let (upg0,Mpg0) € 09{6 0 X
v \4q)s,

be the unique couple such that ¢f(u,,) = unq,mr;?é’;g’o and we denote by \,,0 € K}W(F)
such that 72 ® (Tpq0" @ 0} (Tpq)) = Apgon® @ (W AT*). Note that such a \, 0 exists since

Tpa0” ® ¢ (Tpq) € Z[(det(Nygy a2 )j0) \ {0}]-
3.3. Computing the quadratic linking class and degree.

Theorem 3.1. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the cycle

P dd —— —— ——%
Z Z (Up,g) 1 X (Mpmp,q) @ (Tpg" @ T ®G17)
pel qe@(l)mz



where (Tp.q)n X° (mpmy, ¢ )& (Tp g @7, @g1*) € KMW (k(q), vg®(vz))y), represents the quadratic
linking class of Z.
Proof. From Definition 2.4, the oriented fundamental class [0;] is the class in HO(Zi,KI\_Al\)V{l/Zi})
of n® (fi Agi*). Tt follows from Definition 2.6 and Theorem A.10 that the Seifert class S; of Z; is
the class in H' (X \ Z, KXW) of (f;)®gi* (over the generic point p; of the hypersurface of X\ Z of
equation g; = 0). In the expression above, (f;) € K(l)\/lw(m(pi)) and g;* € Z[det(N@/X\Z)\{O}];
with a slight abuse of notation, we denoted by f; the image in the fraction field of F[z,y, z,t]/(g:)
of fi € Flz,y, z,t]. We will make similar slight abuses of notation below.

By Corollary B.21, the intersection product of the Seifert class S of Z; with the Seifert class
Sy of Zy is the class in H*(X \ Z, K3™) of the cycle:

Y (my)e(frfaup) © (" @ G17)
pel
The quadratic linking class is the image of this intersection product by the boundary map
0: H*(X\ Z, KXW — HY(Z, K™ {vz}) thus the cycle
Yo (m)dir ((fufoup) ® (g @ 7" @ G17)
pel qe@(l)mz

represents the quadratic linking class (note that we used Proposition A.2 to extract (mp)e from
the morphism 855“1). By Theorem A.10 and Lemma A.9, the cycle

— d ——% ——% ——
Z Z (@pg) XM (mpmny.q) @ (Tpg" @ " @ G17)
pel qe@(l)ﬂZ
represents the quadratic linking class of .Z. U

Theorem 3.2. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the quadratic linking degree of £ is the following couple of elements of W(F'):

— . odd 77—\ 4 0dd
Z Z Ap,,0{Up,g,0) X°° (Mpmp,gMp.g.0), Z Z Ap,a.0{Up,q,0) X°° (MpMyp,gMp.g,0)
pel qeg(l)ﬁZ1 pel qE@(l)ﬂZQ
Proof. Recall from Definition 2.11 that the first step in computing the quadratic linking degree

from the quadratic linking class consists in applying 01 @ 02. It follows from Theorem 3.1 and
the assumption that for all i € {1,2}, 0; = o(y, 4,) (see Subsection 3.1) that the couple of cycles

Z Z (Upg)n XOdd(mpmp,q) @ Tp,gs Z Z (Up,g)n XOdd(mpmp,q) @ Tp,q
pel q€@<l>ﬂZ1 pel qem(l)mz2

where (tp.q)n XOdd(mpmp,q) @ Tpq € KMW(k(q), Vp,q), represents (01 @ 02)(Qlcg).
It follows that the couple of cycles

Z Z (01 (p,g))n XOdd(mpmnq) ® ¢1(Tp.q);

—(1
Pl ez,

Z Z (p3(Tpg))m XOdd(mpmp,q) ® ¢3(7p,q)

—(1
Pl ey Vnz,

where for all i € {1,2}, (@] (@g))n X (mp11p,4) @ 9 (1) € K%VV(H(%A(Q)),Vw;l(q))a rep-
resents (7 @ ¢5)(01 ® 02)(Qlcy). This is the second step in computing the quadratic linking

degree (see Definition 2.11).
9



Recall from Definition 2.11 and Definition B.17 that the third step in computing the quadratic
linking degree consists in applying the boundary map

9 CH (AR {0}, K5™) — €O ({0}, K5 {det (Vo) /a2 )})

to each element of the couple above, which gives:

SN A (et @) XM (mymy.g) © (o © 01 (Tha)),
pel (16@(1)0Z1

.q, — dd S
SN A e @)) ) XM (mpmyg) © (Trgo” © (7))
pel qe@(UﬂZQ

where 9 ({0F (Upg)) )0 XM (mpmpg) @ (Tpg0" @ ¢ (T,9)) € KXV (5(0), det(N{o}/Ai,))'
By Theorem A.10, for every i € {1,2} we have 9,720 ({9} (Upg))) = (Wpg0)m X° (M 4,0) thus
the third step gives:

TS dd — % *
Z Z (Up,g,0) n” X° (MpMip.gMip,q.0) @ (Tp,g.0" @ 1(Tpg))s
pel qE@(l)ﬂzl

— dd S— *
E E (Up,q,0) 772 X (Mpmyp,gMp.g.0) @ (Tpg0" @ ©5(Tpq))
pel (1)
q€{p} 'NZ2

From Definition B.17 and the notations in Subsection 3.2, using the canonical isomorphism
KMW(F) ~ W(F) (which sends n? to 1), the final step gives:

— dd — dd
Z Z Ap,,0{Up,g,0) X°° (Mpmp,gMp.g.0), Z Z Ap,0.0{Up,q,0) X°° (Mpmp,gMp.g,0)

I —(1 I —(1
Pl ey Vnz, Pl ey Nz,

O

4. EXAMPLES OF COMPUTATIONS OF THE QUADRATIC LINKING DEGREE

In this section, we compute the quadratic linking class and degree on examples. To do this
we use the method given in Section 3. See Subsection 2.1 for notations and Subsection 2.2 for
definitions.

Example 4.1. (Hopf) We define the Hopf link over the perfect field F as follows:

e 7 is the intersection of the closed subscheme of A} = Spec(F[z,y, z,t]) of ideal (z,y)
and of X = A%\ {0};

e 1 : A2\{0} — X is the morphism associated to the morphism of F-algebras F[z,vy, z,t] —
F[u,v] which maps z,y, z,t to 0,0, u, v respectively;

e 0 is the orientation class associated to the couple (z,y) (i.e. the class of the isomorphism
o1 :vz, = Oz ® Oz, which maps T8 A7* to 1 ® 1);

e 7 is the intersection of the closed subscheme of A% of ideal (z,t) and of X;

e o : AZ\{0} — X is the morphism associated to the morphism of F-algebras F[z,y, z,t] —
F[u,v] which maps z,y, z,t to u,v,0,0 respectively;

e 07 is the orientation class associated to the couple (z,t) (i.e. the class of the isomorphism
02 : vz, — Oz, @ Oz, which maps 2 AT to 1®1).

In Table 1 we give oriented fundamental cycles of Z; and Z,, Seifert divisors of Z; (with
orientation 01) and Z, (with orientation o) relative to the link, their intersection product and
its image by the boundary map 9 : H*(X\Z, K3'WV) — H'(Z, K}V {vz}), which is the quadratic

10



Oriented fund. cycles N (T ANY*) | neZAT)
Seifert divisors (x) @y* ] Yt
Apply intersection product (x2) @ (T ANT)

Quadratic linking class 2@ T AT AT) © (e G AZAL)
Apply 01 @ 02 (et ® ()n@7y*
Apply ¢7 © ¢3 —(u)n ®v* o (u)yn ®v*
Apply 0@ 0 —n? ® (@ ATY) - @ (T A7)
Quadratic linking degree -1 ® 1

TaBLE 1. The Hopf link

linking class. Then we give cycles which represent (01 @ 02)(Qlc ), (01 & ¢3)((01 ® 02)(Qlcy)),
(080)((pf D ws)((01002)(Qlcy))) and finally we give the quadratic linking degree. The points
over which the cycles live are the obvious ones (for instance (x) ® g* lives over the generic point
of the hypersurface of X \ Z of equation y = 0).

Note that the rank modulo 2 of each component of the quadratic linking degree of the Hopf
link is 1. Note that for every positive even integer k, the image by X of each component of the
quadratic linking degree of the Hopf link is 0. Note that if F' = R then the absolute value of
each component of the quadratic linking degree of the Hopf link is equal to 1.

Let us now present examples where the intersection of the underlying divisors is not irreducible
(and where the invariants of Corollaries 2.14 and 2.15 and of Theorem 2.17 have different values).

Examples 4.2. (Binary links) Let F' be a perfect field of characteristic different from 2 and
a € F*\ {—1}. We define the binary link B, over F' as follows:

e 7, is the intersection of the closed subscheme of A% of ideal (f; := t—((1+a)z—y)y, g1 ==
z—x(r —y)) and of X;

e 1 : AZ\{0} — X is the morphism associated to the morphism of F-algebras F[z,y, z,t] —
F[u,v] which maps x,y, z,t to u,v, ((1 + a)u — v)v, u(u — v) respectively;

e 07 is the orientation class associated to the couple (f1,91);

e 7, is the intersection of the closed subscheme of A} of ideal (f2 := t+((1+a)r—y)y, g2 :=
z+xz(r —y)) and of X;

e o : A2\{0} — X is the morphism associated to the morphism of F-algebras F[z,vy, z,t] —
Flu,v] which maps z,y, z,t to u,v, —((1 + a)u — v)v, —u(u — v) respectively;

e 07 is the orientation class associated to the couple (f2,g2).

In Table 2 we give oriented fundamental cycles of Z; and Z,, Seifert divisors of Z; (with
orientation o01) and Z, (with orientation o) relative to the link, their intersection product and
its image by the boundary map 9 : H*(X\ Z, K3'WV) — H'(Z, K} {vz}), which is the quadratic
linking class. Then we give cycles which represent (01 @ 02)(Qlc ), (¢ @ ¢3)((01 © 02)(Qlcy)),
(0@ 9)((¢F @ ¥3)((01 ® 02)(Qlcy))) and finally we give the quadratic linking degree. Unless
specified (between parentheses after a central dot), the points over which the cycles live are the
obvious ones (for instance (f1) ® g1* lives over the generic point of the hypersurface of X \ Z of
equation g; = 0).

To see how one gets from the fifth line in Table 2 to the sixth line in this Table, note that
—(fom @G (x—y) € H'(Z1, K§'™) is equal to —(2((1+a)x —y)y)n@2z(x —y) - (z—y) since
in Z1: t = (1+a)z—y)y and z = z(z—y). Further note that —(2((1+a)z —y)y)n®@2z(z — y) -
(z—y) = —((1+a)z—y)yr)n®@z =y - (r—y) and that —(((1+a)z —y)yz)n@zr —y - (r—y) =
—(az¥)n@z —y" - (x—y) = —(ax)n@r —y"-(z—y). Similarly, —(fo)n®ga*-(x) € H'(Z1, K3™)
is equal to —(y)n @ T* - (x).

Note that the rank modulo 2 of each component of the quadratic linking degree of the binary
link B, is 0 (hence the invariant presented in Corollary 2.14 distinguishes between the Hopf link
and the binary links). Note that the image by X5 of each component of the quadratic linking
degree of the binary link B, is (a) € W(F')/(1). For instance, if F' = Q, X5 distinguishes between
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Or. fund. cyc. n® (fi Agr) | n® (2 Ag*)

Seifert divisors (fi)y@gr* \ (fo) @ 2"

Apply (fif2) @ (2" Ng1™) - (2,2 — y)

inter. prod. _ +{N1f2) @ (@ Ag") - (z3)

Quad. link. —<f2>n®@*AJi’iAg1*) (z-v) <fﬁ77®(ﬁ*/\]21/\g§*) Az —y)
class —(fo)n® (@@2* N f1 ANgi*) - (z) H )@ (@i* A fa Ng2¥) - (x)

Apply —(f2n®g" - (z —y) o (fin@gr - (z —y)
01 @ 0 —(fo)n®@" - (x) +H{fun®@ag* - (z)
Apply —(auyn@u —v" - (u—v) ® {auyn @u—v" - (u—)
01 D o} —()n@u” - (u) +{vn@u” - (u)

Apply 96 9 (1 + (a)n* ® (@ A7) o —(1+{a))n* ® (@ A ")
Quad. k. deg. 1+ (a) ® —(1+ (a))

TABLE 2. The binary link B,

all the B, with p prime numbers since if p # ¢ are prime numbers then (p) € W(Q)/(1) +» 1 €
W(Z/pZ) C € W(Z/rZ) and (q) € W(Q)/(1) «» 1 € W(Z/qZ) C @ W(Z/rZ) (with the

r prime r prime

usual isomorphism W(Q)/(1) ~ @ W(Z/rZ)). Note that if F = R then the absolute value
r prime

of each component of the quadratic linking degree of the binary link B, is equal to 2 if a > 0,

to 0 if a < 0 (hence the invariant presented in Corollary 2.15 distinguishes between the Hopf

link and the binary links, as well as between the binary links with positive parameter and the

binary links with negative parameter).

The following family of examples is an analogue of the family of torus links 7'(2,2n) (with
n > 1 an integer) in knot theory. Note that 7'(2,2) is the Hopf link and that its analogue below
is slightly different from the Hopf link in the example above and has quadratic linking degree
(1,—1). Note that 7°(2,4) is the Solomon link.

Examples 4.3 (Torus links). Let n > 1. Let us define an analogue of the torus link 7'(2,2n).

Recall that (in knot theory) one of the components of 7'(2,2n) is the intersection of {(a,b) €
C?,b = a™} with S2, the 3-sphere of radius €, and that the other component of T/(2,2n) is the
intersection of {(a,b) € C?,b = —a"} with S? (for € > 0 small enough). By writing a = z + iy
and b = z + it (with z,y, z,t € R), the equation b = a™ becomes the system of equations

1252
_ n _\k,n—2k—1, 2k-+1
=2 <2k+1>( 1) Y
k=0
5]

_ n kn—2k 2k
z—kZ_O(%)(l) x Yy

and the equation b = —a’™ becomes the system of equations

1251

_ n k n—2k—1, 2k+1
=— -1
== <2k+1>( J'e Y

k=0

,i
(NIE]
[y




From now on, we denote
—1
%5~

n e
Et(l’,y> = Z <2k + 1) (_1>kxn o 1y2k+17f1 =t Zt(may)va =1+ Et(l"y)7
k=0

L]

n _
Ez($>y) = Z <2k> (_1)kxn Qky2k7.gl =z ZZ(xvy)agQ =z+ 22(5673/)
k=0

Consequently, we define our analogue over R of the torus link 7'(2,2n) as follows:

e Z; is the intersection of the closed subscheme of Aj of ideal (f1,g1) and of X

e 1 : A2\{0} — Z; is the morphism associated to the morphism of R-algebras R[z, y, 2, ] —
R[u, v] which maps z,y, z,t to u,v, X, (u,v), X¢(u, v) respectively;

e 07 is the orientation class associated to the couple (f1,g1) (i.e. the class of 01 : vz, —
Oz, ® Oy, which maps fi” Agr* to 1® 1);

e 7, is the intersection of the closed subscheme of A?R of ideal (f2,¢92) and of X

e o : A2\{0} — Z5 is the morphism associated to the morphism of R-algebras Rz, y, z,t] —
Rlu,v] which maps z,y, z,t to u,v, =%, (u,v), —3;(u, v) respectively;

e 03 is the orientation class associated to the couple (f2,g2) (i.e. the class of 03 : vz, —
Oz, ® Oz, which maps Fo AgaFto1® 1).

An oriented fundamental cycle of Z; (with orientation o1) is 7 ® (fi” Agr*) (over the generic
point of Z1) and a Seifert divisor of Z; (with orientation o1) is (f1) ® gi* (over the generic point
of the hypersurface of X \ Z of equation g; = 0).

An oriented fundamental cycle of Z, (with orientation os) is n ® (fa* Agz*) (over the generic
point of Z3) and a Seifert divisor of Z5 (with orientation o2) is (f2) ® g2* (over the generic point
of the hypersurface of X \ Z of equation g, = 0).

The intersection of the underlying divisors has n irreducible components, whose generic points
are denoted by P, ..., P,—1, where for all j € {0,...,n— 1}, the component of generic point P;
is given in X \ Z by the equations

I I ¥
z:O,x:tan<(n2‘7)7T>y

2n
Indeed, if we denote z + iy = pe'? with p € R* .0 € R then:
R((z+iy)") =0 < cos(nf) =0

27 +1
@HZM for some j € {0,...,2n — 1}
n
—1-2
& x = tan <(n2‘7)7r)yfor some j € {0,...,n— 1}
n
—-1-23
From now on, for every j € {0,...,n — 1}, we denote 6; := (nzj)w Thus, the
n
n—1
homogeneous polynomial ¥, (x, y) of degree n is equal to H (z—tan(f;)y). Note that the tan(6;),
i=0

with j € {0,...,n—1}, are distinct, since they are the roots of the polynomial (x4 )" 4 (x — )"
(which is coprime with its derivative).
It follows (see Section 3) that the intersection product of these Seifert divisors is equal to:

n—1

> (mj)elfifoug) @ (75" A7) - (Py)
§=0
where 7; (resp. ;) is a uniformizing parameter (resp. a unit) in Ox\zp,/(g91) and m; € Z

such that gy = Ujﬂ';nj. Note that one can choose m; = g2 (hence m; = 1 and u; = 1) since
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n—1

Ox\z.p,/(91) ~ Rlz,y,2,1/(z = [ [ (@ — tan(0:)1))) 2 o—tan(0,)y) = RIZ, ¥, ] (o—tan(,)y) and in

i=0
n—1
this ring go = 2 H (z — tan(6;)y), thus the intersection product of these Seifert divisors is equal
=0
to: '
n—1
D (fif2) © (@ A art) - (Py)
j=0

It follows (see Section 3) that its image by the boundary map, which is the quadratic linking
class, is the following:

n—1
Z (f2)n ® (g2 /\f1 AGT") - (z = tan(0;)y in Zy)

7=0
n—1
D (Ao @ AR AR - (z = tan(d;)y in Zo)
7=0
Its image by 01 @ 09 is:
n—1 n—1
—(fmem e (hinog”
§=0 j=0
Its image by ] @ ¢ is:
n—1 n—1
Z — (25 (u, v))n ® 2%, (u,v) @ Z(—2Zt(u, V)N ® —2%,(u,v)
j=0 j=0

Note that the first component of the couple above is equal to:

n-l E%lJ n—1
> =0 (2,;1 1)(—1)’“(tan(0j))”2’“1 [I (tan(6;) — tan(8;))v)n ® u — tan(0;)v"
j=0 k=0 i£7.7=0

Its image by the boundary map 0 is the following:

n—1 Lﬂilj n—1
> =2 (%1 1)(—1)’“(tan(tﬁ)j))"—%—l [I (tan(6)) — tan(8:))n?* ® (@ Au—tan(6;)v")
=0 k=0 i#§,i=0

n—1 n_1
Z <2k i 1)( 1)k(tan(9j))n72kil H (tan(6;) — tan(@i))>772 ® (u* AT*)
k=0

=0 i#j,i=0
1= n (2 + )m
Note that Z < )(—1)k(tan(0j))”2k1 = Q((tan(0;) +1)") = p; sin(ji) with
prt 2k+1
pj a positive real number, hence:
%2 ] n (1) if j is even
-1 kt 9. n—2k—1y _
<kzo (2k+1>( ) (ban(6;)) ) (=1) if jis odd
Note that for all [ € {0,. — 1}, =5 < 0; < § hence for all i < j, tan(f;) — tan(f;) < 0
and for all i > j, tan(§;) — tan(@i) > 0, hence:
n—1 PP
(1) if j is even
tan(f;) — tan(6;))) =
(T tonie) = tan6) { U e
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Therefore (¢} (01(01.#))) = nn* ® (@* A v*), hence the first component of the quadratic
linking degree is equal to n € W(R).

With similar computations to the ones above, we find that the second component of the
quadratic linking degree is equal to —n € W(R), hence the quadratic linking degree is equal to
(n,—n) e WR) @ W(R) ~Z @ Z.

Note that the rank modulo 2 of each component of the quadratic linking degree of the analogue
of T(2,2n) is 1 if n is odd, 0 if n is even. Note that the absolute value of each component of the
quadratic linking degree of the analogue of T'(2,2n) is equal to n (hence the invariant presented
in Corollary 2.15 distinguishes between all these links T'(2,2n), similarly to the absolute value
of the linking number which distinguishes between all the links T'(2,2n) in knot theory).

APPENDIX A. AN EXPLICIT DEFINITION OF THE RESIDUE MORPHISMS OF MILNOR-WITT
K-THEORY

In this appendix, we give an explicit definition (i.e. one which allows computations) of the
noncanonical residue morphism and prove that it is indeed the noncanonical residue morphism
(as defined by Morel in | | and recalled in Definition A.1). Note that explicit definitions
of the canonical residue morphism (see Definition A.6) and of the twisted canonical residue
morphism (see Definition A.7) follow directly. We use the case n < 0 in Theorem A.10 to
compute the quadratic linking class and degree in Sections 3 and 4; the case n > 1 is only
included for its possible usefulness in other computations.

See | , Section 3.1| for recollections about Milnor-Witt K-theory. Throughout this
Appendix, F' is a perfect field, v : F* — Z is a discrete valuation (of residue field x(v) and ring
O,) and 7 is a uniformizing parameter for v. For all u € O}, we denote by @ its class in k(v)
(which is in k(v)* since u € O}). We denote the usual generators of the Milnor-Witt K-theory
ring of F by [a] € KMW(F) (with a € F*) and n € KMWV(F) (see | , Definition 3.1]). We
denote (a) := 1+ nla] € KY™W(F), € :== —(—1) and for all n € Ng, n, := Y1 {(=1)""!) and
(—n)c := en.. We denote by x°% : Z — {0,1} the characteristic function of the set of odd
numbers.

We now recall Morel’s definition of the noncanonical residue morphism.

Definition A.1 (The noncanonical residue morphism). The residue morphism 07 : KMV (F) —
KMW (k(v)) is the only morphism of graded groups which commutes to product by 1 and satisfies,
for all n € No, uq,...,u, € O;:

O ([ryur, ... uy) = [a1, ..., 4y and 05 ([u1, ..., u,]) =0.

In | , Theorem 3.15], Morel proves that such a morphism exists and that it is unique.
Before we define the canonical residue morphism, we recall the following facts and definition:

Proposition A.2 (Proposition 3.17 in | -
Yu € Oy, Vo € KWW (F), 97 ((u)a) = (@)d] (o)
Corollary A.3. If 7' = u/'m with v’ € O then 0T = (u/)OT .

Definition A.4 (Twisted Milnor-Witt K-theory). Let m € Z and L be an F-vector space of di-
mension 1. The L-twisted m-th Milnor-Witt K-theory abelian group of F, denoted KMW(F, L),
is the tensor product of the Z[F*]-modules KMW(F) and Z[L \ {0}] (the scalar product of

KMW(F) being (X pers nfAf) =3 pepe np(f)a).

Remark A.5. Note that if we fix an isomorphism between L and F' then we get an isomorphism
of Z[F*]-modules between KMW(F, L) and KMW(F); nevertheless, KMV (F, L) is a useful con-
struction because there is no canonical isomorphism between L and F (hence no canonical iso-
morphism between KMW(F, L) and KMW(F), unless L = F) and the introduction of KMW (F, L)
is what allows us to have canonical residue morphisms.
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Definition A.6 (The canonical residue morphism). The canonical residue morphism 9, :
KMWV(F) = KMV (k(v), (my/m2)V) (where V denotes the dual) is given by 9, = 9F @ T (with
7 the class of 7 in m,/m? (which is nonzero since 7 is a uniformizing parameter for v) and 7*
its dual basis).

Note that 9, does not depend on the choice of 7, since if 7’ is another uniformizing parameter
for v then there exists v/ € O, such that 7/ = «m hence, by Corollary A.3 |, 97 @ 7 =
Whor @ =97 @un =97 @7 .

Definition A.7 (The twisted canonical residue morphism). Let L be a one-dimensional O,-
module. The twisted canonical residue morphism

O KXW(F L@ F) — KN (k(v), (mo/m3)Y @) (L @ #(v)))
is given by

8“(2 o QL) = Z O () ® (T* Q1)

Before we prove Theorem A.10, we recall the following facts.

Lemma A.8. For all m,n € Z, (mn)e = men,.
Lemma A.9. For all m € Z, nm. = nx°%(m).

Recall that by | , Lemma 3.6], for all n < 0, KMW(F) is generated by elements of the
form (7™u)n~" with m € Z and u € O}, hence, since 97 : KMW(F) — KMW(k(v)) is a group
morphism (see Definition A.1), we only need to give 9 ((x™u)n™").

Recall that by | , Lemma 3.6], for all n > 1, KMW(F) is generated by elements of
the form [7"™wuq,..., 7" u,] with mqy,...,m, € Z and uy,...,u, € O}, hence, since 0] :

KMW(F) — KMW(k(v)) is a group morphism (see Definition A.1), we only need to give
o ([t uy, ..., " uy]).

Theorem A.10. For alln <0, m € Z and u € O:
Oy ((a™uyn™") = (@yn~" x4 (m)

Foralln>1, my,...,m, € Z and uy,...,u, € O}
oy ([m™uy, ..., 7" uy)) =
n—1 .
—1)Xi= vl mi)e—1,..., =1, @, ..., un
SO (- [T mel T T
=0 Jc{1,...,n},|J|=l ke{l,..,n}\J n—1—1 terms
J={j1 <<}
n n
dd —_— T
+ZZ Z ( Z n’x° (HmﬁX H mk))[_l,---a_l7uj1>~'-7ujz]
p=1l=p JC{L,..,n},|J|=l IC{1,..l},|I|=p i€l ke{l,...n}\J n—1+p—I terms

J={j1<<4i}
Remark A.11. This last formula may seem daunting, but for n = 1 it is merely
05 ([7™u)) = me +1x°4 (m)[g]

(i.e. OF([m™u]) = (u)m,, similarly to the case n < 0 where 0T ((z™u)n~") = (Wyn~""lm,, see
Lemma A.9), for n = 2 it is merely

Oy ([ ur, w2 ug]) = (mama)e[=1] + (=ma)cfun] + (ma)c[uz]

+ nx° (myma) [~ 1,77] + nx°4 (myme)[—1, 1)
+ (nx°Y (ma) + nx°Y (mo)) [ur, T3]
2. odd

+17 X (mlmQ)[_lauilafLLiQ]

and so on.
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Proof. Let n <0, m € Z and u € O}.
Oy ({(m"™u)n™") = o7 (L +n[w"ul)n™")
= 05 (L +n([x"] + [u] +nl7"™, u]))n™™")

= O (1 +mme[n] + nlu] + 1 me[m, u])n™") by |  Lemma 3.14]
="y (1) + " me ([n])

+ 0 " ([u]) + 07" P meo] ([, u)) by Prop. A.2 and Def. A.1
_ 77_n+1m€ I 77—n-1-2m6 ] by Def. A.1
= (7" 4 2 [E]) 0% (m) by Lemma A.9

— <ﬂ>n7n+1xodd (m)

Let n > 1,my,...,my €Z, ui,...,uy € OF and N :={1,...,n}.

[ ) = T 4 ] + nlr™, i)
i=1
= [T(ma)elm] + [ua] + nlma)elm, wi)) by | , Lemma 3.14]
i=1
Hence [7"™ uy, ..., 7" uy,] = Z H (M )e X 625:1 ol [Ty, Ujys - - >ujz}
1=0 JC{1,....,n},|J|=l keN\J
J={j1<<g}
+ZZ Z ( Z anH(mji)E X H (mp)e)lm, .- mougy, - uy)]
p=1l=p JC{1,...;n},|J|=l IC{1,..,1},|[|=p i€l keN\J
J={j1<<4}
We obtained this last equality by developing the product and using | , Corollary 3.8]

(e-graded commutativity), as well as the fact that ne = 7.

The index p corresponds to the number of terms coming from an n(m;)¢[m, u;], the index [
corresponds to the number of terms coming from a [w;] or an n(m; )¢, u;], the set J = {j1,...,ji}
(with j1 < --- < ji) corresponds to the indices of the terms coming from a [u;] or an n(m; )|, u;]
and the set I corresponds to the indices of the j; such that u;, comes from an n(m;,)[r, u;,].

By | , Lemma 3.7| and Lemma A.8:

n
1 ..
[Ty, .. Uy, = Z Z ((—1)2zi=1 P i H my)elm, —1,..., =1 uj, ..., u5]+

1=0 Jc{1,....,n},|J|=l keN\J
J={j1<<gi}

ZZ Z ( Z np(Hmjix H mi)e)[m, —1,..., =1, uj, ..., uj]

p=1l=p JC{1,...,n},|J|=l IC{1,...,l},|I|=p iel keN\J
J={j1<<m}
By Lemma A.9 :
n l
n j— —l+i— 'i
[Ty, ., T Uy :Z Z ((—1) 2= iy H my)elm,—1,..., =1, uj, ..., u5]+
1=0 JC{1,...n},|J|=l keEN\J

J={j1<<gi}

ZZ Z ( Z anOdd(Hmjix H my))|[m, =1, ..., =1L uj,. .. u,]

p=1 1=p JC{L,..nh|J|=l IC{1,..i}|I|=p icl KEN\J
J={j1<<gi}
17



By Def. A.1 and Prop. A.2 , 9F ([7"™ uy, ..., 7" uy]) is equal to:

n—1
S (()Eerm i T e Tt

1=0 JC{1,...n},|J|=l kEN\J
J={j1<<agi}

ZZ Z ( Z anOdd(Hmjix H mg))[—1,..., =1, uj, ..., u]

p=1 l=p JC{1,..n},|J|=l IC{1,.,1},|I|=p iel kEN\J
J={j1<<gi}

Note that the term [ = n in the first double sum vanishes since 9] ([u1,...,us]) = 0 (by
Definition A.1). O

APPENDIX B. THE ROST-SCHMID COMPLEX AND ROST-SCHMID GROUPS

In this appendix, we recall notions about the Rost-Schmid complex and its cohomology groups
which are used in our paper. See | , Section 3.1] for recollections about Milnor-Witt K-
theory. Throughout this Appendix, F is a perfect field and X is a smooth F-scheme. We denote
the usual generators of the Milnor-Witt K-theory ring of F by [a] € KMW(F) (with a € F*)
and n € KMW(F) (see | , Definition 3.1]). We denote (a) := 1+ n[a] € KY™W(F).

B.1. Definitions and first properties. The Rost-Schmid complex was introduced by Morel
in | , Chapter 5|. Before we define it, recall Definition A.4 (twisted Milnor-Witt K-theory)
and the following definition.

Definition B.1 (Determinant of a locally free module). The determinant of a locally free Ox-
module V of constant finite rank r, denoted det(V), is its r-th exterior power A" (V).

Definition B.2 (Rost-Schmid complex). Let j € Z and £ be an invertible Ox-module. The
Rost-Schmid complex associated to X, j and L is :

C(X, KY"™{cy) = @ ci(x, K} {L})
1€Ng
with
C(X KLY = @B KV (5(2), ve On(a) L1a)
zeX (@
where L, = L, ®oy, () and v, = det(N,,x) with N/ x the normal sheaf of 2 in X i.e. the
dual of mx,x/mg(,m. We denote C(X, KEVIW) = C(X, KE-VIW{(’)X}).

Let us now introduce part of the differential of the complex in a special case.

Notation B.3. Let X be a smooth integral F-scheme of generic point z. Let y € X! and £
be an invertible Ox-module. We denote by

a; : K}svlw(’%(x)v Vg ®n(9c) E\x) — K}k\{vlv(ﬁ(y)v Vy ®n(y) ‘c\y)

the twisted canonical residue morphism associated to the discrete valuation of Ox , (see Defini-
tion A.7).

In | , pp. 121-122] (just before Definition 5.11), Morel defines morphisms
a;: : K}(\/IW(/{(I,)? Vg ®H,(:E) E\a:) - Ki\/ivlv(’%(y)a Vy ®n(y) E\y)
where X is a smooth F-scheme, z € X and y € m(l). See also Déglise’s notes | | and
Feld’s article | | (take M = KMW in Feld’s notations). In the case where X is integral of

generic point x, we get the morphism in Notation B.3.
18



Definition B.4 (Differential of the Rost-Schmid complex). Let X be a smooth F-scheme, j € Z
and £ be an invertible O x-module. The differential of the Rost-Schmid complex associated to
X, j and L is the morphism dx ;. : C*(X,K}WW{E}) — C*H(X,Ky[w{ﬁ}), denoted d for

short, given by d( Z ky) = Z Z 0y (kz)

reX ) zeX (@ 6{1‘}(1)

Note that the sum which appears in the above definition is well-defined (since, with the same

notations as above, for every k, the number of y € m(l) such that 0 (k;) # 0 is finite (see
Déglise’s notes | D).

By | , Theorem 5.31], the Rost-Schmid complex is a complex, i.e. for all i € Ny,
d* o d’ = 0, hence we can define the Rost-Schmid groups as follows.

Definition B.5 (Rost-Schmid groups). Let 4,57 € Z, £ be an invertible Ox-module. The
i-th Rost-Schmid group associated to X, j and £, denoted by H'(X, Ké\dw{ﬁ}), is the i-th
cohomology group of the Rost-Schmid complex C(X, Kyw{ﬁ}), ie.

HY(X, K" {L}) = ker(d")/ im(d" ")
where by convention d* = 0 if i < 0. We denote H*(X, KMW) HY(X, KMW{(’) 1.

Note that by definition, for all ¢ € Ny and j € Z, CZ(SpeC(F),K;wW) = K]MW(F) if i =0, to
0 otherwise, hence Hi(Spec(F),Kg/[W) = K]MW(F) if i = 0, to 0 otherwise.

Remark B.6. Note that by | ; Theorem 5.47] Rost-Schmid groups generalize Chow-Witt
groups C/*\I;TZ(X): if X is a smooth F-scheme and i € Ny then H*(X, KMWV) = Cr’\ﬁl(X).

Let us now state the property of homotopy invariance of Rost-Schmid groups.

Theorem B.7 (Theorem 5.38 in | ). Let ™ : Ak — X be the projection, i € Ny and j € Z.
The induced morphism 7 : H' (X, Kyw) — Hi(Ak,Kng) is an isomorphism.

Note that it follows from this theorem that for all n,i € Ny and j € Z, Hi(A%,K?/IW) is
canonically isomorphic to H"(Spec(F),K?/IW) hence to K]MW(F) if i =0, to 0 otherwise.

We now define boundary triples and boundary maps, which were introduced by Feld in | |
(following what Rost did in | .

Definition B.8 (Boundary triple). A boundary triple is a 5-tuple (Z, i, X, j,U), or abusively a
triple (Z, X,U), with i : Z — X a closed immersion and j : U — X an open immersion such
that the image of U by j is the complement in X of the image of Z by ¢, where Z, X,U are
smooth F-schemes of pure dimensions. We denote by dz and dx the dimensions of Z and X
respectively and by vz the determinant of the normal sheaf of Z in X.

Notation B.9. Let (Z,i, X, j, U) be a boundary triple. We have a canonical isomorphism
C'( ,KMWY ~ gotdz—dx (7, K*erz dX{I/Z}) @ C*(U, KMW). We denote the projections by
D CX, KN - cotzmdx (2, KO g Avz)) and 72 Co(X, KM — co(U,K)Y) and
the inclusions by i, : C*tdz—dx(Z, vagz dx1vz}) — C* (X, KMW) and j, : c*(U, KMVY) —
co (X, KM,
Remark B.10. Note that the morphisms i, and j* commute with the differentials of the Rost-
Schmid complexes and induce morphisms i, : H"(Z, KMWV{v;}) — H"dx—dz(X K %de dy)
(which is also induced by the push-forward of the closed immersion 4) and j* : H™(X, KMW) —
H™(U, KMW) (which is also induced by the pull-back of the open immersion j).

Definition B.11 (Boundary map). Let (Z,4, X, j,U) be a boundary triple. The boundary map
associated to this boundary triple is the morphism

9 :C* (U, KMW) — cotirdz=dx(z MW (us))
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induced by the differential d of the Rost-Schmid complex C(X, KMW) i.e.:
0=1i"odo j,

The following theorem is a special case of the more general exact triangle theorem in homo-
logical algebra (the boundary maps being the connecting morphisms).

Theorem B.12. Let (Z,i,X,5,U) be a boundary triple. The boundary map induces a morphism
0 : H”+dX—dZ(U,K%de_dZ) — H" N Z, KMW{uz)) and we have the following long exact
sequence, called the localization long exact sequence:

+dx—d MW 3
Hn X Z(X7 K'I’I’L—‘,—d)(—dz)

=

H™(Z, K" {vz})

J* Hnx—dz (7, gMW ) 0

2m4dx—dz Hn+1(Zv K%W{VZ}) R

B.2. The Rost-Schmid groups of punctured affine spaces. Let us now compute the Rost-
Schmid groups of A%\ {0} for n > 2. To do this, we use the following lemma (which is also used
in the main part of the paper).

Lemma B.13. Let L be an invertible Ox-module. For all i,j € Z, the morphism
Cl(X, K" {cwL}) — Cc(X,KMW)

Y he®la®l) = Y ke

zel zel
where I is a finite subset of X k, € Kjlvi\;v(m(a:),l/x) and Iy € Lz \ {0}, is a well-defined
tsomorphism which commutes with differentials.

Proof. Note that elements of C?(X, K?/[W{E ® L}) are of the form ) _;m, ® 1, with I a finite
subset of X, m, € K}E\Zv(f@(x)) and t; € Z[(v2®(L®L);)\{0}]. Let z € I. Since v,@(LRL)),
is a k(x)-vector space of dimension 1, there exist n, € Kjl\gv(n(x)) and s, € (1:®(L®L)|,) \{0}
such that m, ® t; = n,; ® s,. By definition of KJNDZN(H(I‘), vy ), there exist hy € K}f‘;v(n(m), Vyz)
and Iy, 1y € L, \ {0} such that n, ® s, = hy ® (I ® r5). Since Ly, is a k(x)-vector space
of dimension 1, there exists v, € k(x)* such that r, = v,l,. It follows that h, ® (I, ® ry) =
(v2)hy @ (I ® I,). Denoting ky := (vg)h,, we get that elements of C*(X, K?AW{E ® L}) are of
the form Z ke @ (I ®1,) with I a finite subset of X k, Kjl\f\iv(fi(x), vg) and I € L, \ {0}.
zel

This moiphism is well-defined since if }° . ; kx @ (I, ®1y) = > o kL @ (I, ®1},) with I, J finite
subsets of Xk, k. € KW (k(x),v,) and Iy, I, € L), \ {0}, then for all z € TUJ\ (INJ),
ky = kl, = 0, and for all x € TN J, ll, = ugl, for some u, € F* and k, @ (I, ® l,) =
(k! @ (I, @ ;) = k., @ (I, ® ;) hence k!, @ (I, ® ;) = ky @ (I ® I;) hence k!, = k,. The
preceding equality k, ® (I, ®I),) = ky ® (I ® l;) shows that the morphism

Cl(X,Kf'™) — (X, K)""{L£wL})
ke D ke ® (@)
xzel zel

is well-defined, which shows that the morphism in the statement is an isomorphism. The com-
mutation with differentials is straightforward. (]

Definition B.14. Let n > 2,j € Z be integers and o : det(Ngy/an) — Oqo ® Oygy be an
isomorphism. The isomorphism o gives rise to an isomorphism H°({0}, K?/[W{det(]\/{o} /AT, )b
— HO({O},K?[W{O{O} ® Oqp1}) hence to an isomorphism o : HO({O},Kyw{det(/\/‘{o}/&?)})
— HO({O},K?IW) = K]MW(F) by Lemma B.13. We call ¢ the isomorphism induced by o.
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Proposition B.15. Let n > 2,i > 0 and j € Z be integers. Denoting by ¢ : A%\ {0} — A%
the inclusion and by O the boundary map associated to the boundary triple ({0}, A%, A%\ {0}),
the morphisms ¥* : KJMW(F) o~ HO(A’},K?IW) — HO(A%\ {0},&?/[“7) and & : H" LA\
{O},K;VIW) — HO({O},K%VX{det(N{o}/Ag)}) ~ KJI\fV,Y(F) are isomorphisms and if i ¢ {0,n—1}

then H'(AT\ {0}, K}™) = 0.

Proof. The localization long exact sequence (see Theorem B.12) associated to the boundary triple
({0}, @, A%, 9, AL\ {0}) gives us the following exact sequences for all j € Z and i ¢ {0,n — 1}:

0 ——= HO(AG, K)™) —" HO(AR\ {0}, K}™) —0

0 — H"L(A%\ {0}, K3™) —2= HO({0}, K™ {det (Mo /ap)}) — 0

=j—-n

00— H'(AR\ {0}, K}'™) —0
O

Remark B.16. Note that the Rost-Schmid groups of A%\ {0} are already known (combine | )
Lemma 4.5] with | , Corollary 5.43], | , Example 1.5.1.19] and | , Theorem 5.46)),
but the explicit definition of isomorphisms we did above is important for the following definition
(which is used in the definition of the quadratic linking degree, see Definition 2.11).

Definition B.17 (The conventional isomorphism). The conventional isomophism
¢: HY AR\ {0}, Kg™) — W(F)
is the composite of the boundary map
0 H' (AR \ {0}, K3™) — HO({0}, KXY {det(Ngy /az)})
(which is an isomorphism by Proposition B.15), of the isomorphism
HO({O}HKlﬁlgv{det(/\/’{o}m%)}) — KXV (F)
induced by the isomorphism det(j\/'{o}/A%) — Ojoy ® Oyoy which sends u* A7* to 1 ® 1, where
A% = Spec(F[u,v]) (see Definition B.14) and of the canonical isomorphism
KMYV(F) — W(F)
(which sends 7% to 1).

B.3. The intersection product of oriented divisors. See Fasel’s chapter | |, paragraph

3.4, for the intersection product of oriented divisors in X, i.e. the intersection product - :
—1 ——1

HY (X, KW x FY(X, KMWY) = H2(X, KY™W), or, in other words, - : CH (X) x CH (X) —

2

CH (X) (take £ = Ox and a = 0 in Fasel’s notations). We use this intersection product

to define the quadratic linking class (hence also to define the quadratic linking degree, see
Definitions 2.8 and 2.11). We also need the following propositions:

Proposition B.18 (Paragraph 3.4 in | ). The intersection product makes the Chow- Witt
ring CA’I;T*(X) = @ CA'P/IZ(X) into a graded K}V (F)-algebra.

1€Np
Proposition B.19 (Paragraph 3.4 in | ). Let c1,co be oriented divisors in X, i.e. c1,ca €

HY(X, KMW). The intersection product of ¢; with ¢y, denoted by ¢y - ca, is (—1)-commutative:
cy-c1 = (—=1)(e1 - c2)

We use the following formula (or rather the formula in Corollary B.21), proved by Déglise in
[ |, to compute the intersection product (see Sections 3 and 4).
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Theorem B.20. Let X be a smooth F-scheme. Let D1, Do be smooth integral divisors in X such
that D1 N Dy is of codimension 2 in X. For all i € {1,2}, let g; be a local parameter for D;, i.e.
gi 15 a uniformizing parameter for Ox p,. The intersection product of 1 @ gi* € HY(X, Kllvlw)
(over the generic point of D) with 1 ® go* € H (X, K)™W) (over the generic point of D) is
the class in H?(X, KIQVIW) of the sum over the generic points x of the irreducible components of
D1 N Dy of (mg)e(ug) @ (T @G1*) (over the point x), where w5 is a uniformizing parameter for
Ox2/(91), ug is a unit in Ox 5/(g1) and my € Z such that go = u,m)** € Ox 5/ (91).

Corollary B.21. Let X be a smooth F-scheme. Let D1, Do be smooth integral divisors in X such
that D1 N Dy is of codimension 2 in X . For alli € {1,2}, let g; be a local parameter for D; and f;
be a unit in k(D;) = Ox p,/mx p, such that for all generic points x of irreducible components of
DiNDy, fi € k(z) = Ox /mx.q is a unit. The intersection product of (f1)®g1* € H (X, KIIVIW)
(over the generic point of Dy) with (f2) ® ga* € H' (X, K}™W) (over the generic point of Do) is
the class in H?(X, Kg/lw) of the sum over the generic points x of the irreducible components of
D10 Dy of (my)c(f1foug) @ (T2* @q1™) (over the point x), where m, is a uniformizing parameter
Jor Ox 2/(g1), ug is a unit in Ox 5/(g1) and my € Z such that go = u,m)™* € Ox /(1)

Proof. First note that, with the notations above, f; € r(z) is well-defined since if f; and f/
are two representatives in Ox p, of f; € w(D;) (hence differ by an element of mx p,) and
if fi, f/ € Ox, are sent by the canonical morphism ¢ : Ox, — Ox,p, to fi, f/ € Ox.p,
respectively, then f;, f/ € Ox, differ by an element of mx , (since ¢_1(mx,Di) Cmxg).

Note that for all i € {1,2}, (/i) ® g =1® Figi with fig; a local parameter for D; (figi €
mX7Di/m§(’Di is well-defined since f; € Ox p,/mx p, and g; € mx p, and (a representative of)
figi € mx p, is a generator of mx p, since (a representative of) f; is a unit in Ox p, and g; is a
generator of mx p,).

Therefore, by Theorem B.20, the intersection product of (fi) ® gr* with (f2) ® g2* is the
sum over the generic points x of the irreducible components of D1 N Dy of (my)(vy) @ (" ®
E*) (over the point z), where 7, is a uniformizing parameter for Ox ,/(f191), vy is a unit in
Ox «/(fig1) and m, € Z such that fogo = v, € Ox 2/ (f191).

Note that since fp is a unit in k(2), uz := fy ‘v, is a unit in &(z) and (mg)e(ve) @ (T ®
Fi91) = (ma) e foug) @ (To* @ fig1 ). Further note that since fi is a unit in x(z), the ideal (f1g1)
is equal to the ideal (91) in OX,z and (mz)e<f2ucc> ® (7773[:* ®f191*) = (mx)6<f1f2ux> ® (Fx* ®ﬁ*)
Finally note that, by definition of u,, g2 = u,m)"* € Ox »/(91)- O
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