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THE QUADRATIC LINKING DEGREE

CLÉMENTINE LEMARIÉ--RIEUSSET

Abstract. By using motivic homotopy theory, we introduce a counterpart in algebraic geom-
etry to oriented links and their linking numbers. After constructing the (ambient) quadratic
linking degree � our analogue of the linking number which takes values in the Witt group of
the ground �eld � and exploring some of its properties, we give a method to explicitly compute
it. We illustrate this method on a family of examples which are analogues of torus links, in
particular of the Hopf and Solomon links.
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1. Introduction

In 1999, Morel and Voevodsky founded motivic homotopy theory (see [MV99]) in order to
import topological methods into algebraic geometry (see also the second section of [AØ21] for a
brief overview). The goal of this paper is to explore the possibility of de�ning a counterpart to
knot theory in algebraic geometry by using motivic homotopy theory. Speci�cally, we develop
an algebro-geometric theory of linking in a setting inspired by classical linking in knot theory
and follow it through to explicit computations on families of algebraic varieties.

We begin by de�ning counterparts, over a perfect �eld F , to oriented links with two compo-
nents (i.e. couples of disjoint oriented knots). Speci�cally, we replace the circle S1 with A2

F \{0}
and the 3-sphere S3 with A4

F \ {0}. We then de�ne a counterpart to the linking number, which
in knot theory is an invariant of oriented links with two components which corresponds to the
number of times one of the oriented components turns around the other oriented component, and
a counterpart to the linking couple, which is a couple of integers whose absolute values coincide
with the absolute value of the linking number. We call these counterparts the ambient quadratic
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Rost-Schmid complex.
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linking degree and the quadratic linking degree (couple) respectively. To de�ne these, we use
Chow-Witt groups, and more generally Rost-Schmid groups, instead of the singular cohomology
groups used in classical knot theory. The Rost-Schmid groups are the cohomology groups of the
Rost-Schmid complex (see Appendix B) which is built from Milnor-Witt K-theory groups; this
is where motivic homotopy theory comes into play, as Milnor-Witt K-theory groups are in fact
groups of morphisms of motivic spheres in the stable motivic homotopy category (see [Mor12,
Corollary 1.25]).

In knot theory, the cohomological de�nitions of the linking number use the notion of Seifert
class of an oriented knot, which is the class (in cohomology) of Seifert surfaces of an oriented
knot (compact connected oriented surfaces whose oriented boundary is the oriented knot; see for
instance [Rol90, Chapter 5, Sections A and D]). The following theorem-de�nition establishes the
possibility of de�ning the quadratic linking class, the quadratic linking degree and the ambient
quadratic linking degree in a similar manner to the linking class, the linking couple and the
linking number respectively (see [Lem23, Chapter 1] for more details on these).

Theorem-De�nition 1.1 (Quadratic linking degrees). Let Z = Z1 t Z2 ⊂ A4
F \ {0}, with

Z1 ' A2
F \ {0} and Z2 ' A2

F \ {0}, be an oriented link with two components (see De�nition 2.2

for details). There exist two elements of the Chow-Witt group C̃H
1
((A4

F \ {0}) \ Z) � called

Seifert classes (see De�nition 2.6) � such that their intersection product in C̃H
2
((A4

F \{0})\Z)

and its image by the boundary map ∂ : C̃H
2
((A4

F \ {0}) \ Z) → H1(Z,KMW
0 {det(NZ/A4

F \{0}
)})

� called the quadratic linking class (see De�nition 2.8) � only depend on the oriented link Z.
Denoting by W(F ) the Witt group of F , we call the image of the quadratic linking class by the
isomorphism H1(Z,KMW

0 {det(NZ/A4
F \{0}

)})→W(F )⊕W(F ) the quadratic linking degree (see

De�nition 2.11) and the image of the pushforward (by the inclusion) of the part of the quadratic
linking class which is supported on Z1 by the isomorphism H3(A4

F \ {0},K
MW
1 ) → W(F ) the

ambient quadratic linking degree (see De�nition 2.13).

Let us illustrate this de�nition on the Hopf link Z = {x = y = 0} t {z = t = 0} ⊂
Spec(F [x, y, z, t])\{0} over a perfect �eld F (see Example 4.1). Its Seifert classes are the classes of

〈x〉⊗y∗ and 〈z〉⊗t∗ in C̃H
1
((A4

F \{0})\Z), their intersection product is the class of 〈xz〉⊗(t
∗∧y∗)

in C̃H
2
((A4

F \ {0}) \ Z) and the quadratic linking class is the class of −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗)⊕

〈x〉η ⊗ (y∗ ∧ z∗ ∧ t∗) in H1(Z,KMW
0 {det(NZ/A4

F \{0}
)}) ' H1(Z1,K

MW
0 {det(NZ1/A4

F \{0}
)}) ⊕

H1(Z2,K
MW
0 {det(NZ2/A4

F \{0}
)}), which gives (−1, 1) ∈ W(F ) ⊕ W(F ) as quadratic linking

degree and −1 ∈W(F ) as ambient quadratic linking degree.
In Section 2, we give the de�nitions of the quadratic linking class, the quadratic linking degree

and the ambient quadratic linking degree, then we determine how they depend on choices of
orientations and of parametrisations of A2

F \ {0} → A4
F \ {0} (see Lemma 2.16) and deduce

invariants of the (ambient) quadratic linking degree (see Corollaries 2.17 and 2.18 and Theorem
2.21). For instance, in the case F = R, the absolute values of the components of the quadratic
linking degree and of the ambient quadratic linking degree (which are in W(R) ' Z) are invariant
under changes of orientations and of parametrisations of A2

F \{0} → A4
F \{0}. This is similar to

the fact that the absolute value of the linking number does not depend on choices of orientations.
In the general case, the ranks modulo 2 of the components of the quadratic linking degree and of
the ambient quadratic linking degree are invariants, and more importantly we have the following
lemma-de�nition and theorem:

Lemma-De�nition 1.2. Let d =
∑n

i=1〈ai〉 ∈W(F ). There exists a unique sequence of abelian
groups Qd,k and of elements Σk(d) ∈ Qd,k, where k ranges over the nonnegative even integers,
such that Qd,0 = W(F ), Σ0(d) = 1 ∈ Qd,0 and:

• for each positive even integer k, Qd,k is the quotient group Qd,k−2/(Σk−2(d));
• for each positive even integer k, Σk(d) =

∑
1≤i1<···<ik≤n〈

∏
1≤j≤k aij 〉 ∈ Qd,k.
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Theorem 1.3. Let L be an oriented link with two components and k > 0 be even. We denote
the quadratic linking degree of L by QldL = (d1, d2) ∈W(F )⊕W(F ) and the ambient quadratic
linking degree by AQldL . Then Σk(d1), Σk(d2) and Σk(AQldL ) are invariant under changes of
orientation classes o1, o2 and under changes of parametrisations of ϕ1, ϕ2 : A2

F \{0} → A4
F \{0}.

Note that even though these invariants give the same value on d1, d2 and AQldL in all of the
examples in this paper, the author has found no reason for this to be true in general (over an
arbitrary perfect �eld). The author conjectures that this is true in the real case, as this is a
direct consequence of the conjecture that the real realization of the ambient quadratic linking
degree is the linking number and that the real realization of the quadratic linking degree is the
linking couple, at least up to a sign (this is a work in progress).

In Section 3 we give a method to explicitly compute the quadratic linking class (see Theorem
3.1), the quadratic linking degree (see Theorem 3.2) and the ambient quadratic linking degree
(see Theorem 3.3) when the link Z1 t Z2 ⊂ A4

F \ {0} is such that for each i ∈ {1, 2} the closure
Zi ⊂ A4

F of Zi is given by two irreducible equations {fi = 0, gi = 0} such that {g1 = 0, g2 = 0}
is of codimension 2 in (A4

F \ {0}) \ (Z1 t Z2) and for each generic point p of an irreducible
component of {g1 = 0, g2 = 0}, f1 and f2 are units in the residue �eld κ(p).

In Section 4 we compute the quadratic linking class, the quadratic linking degree and the
ambient quadratic linking degree (as well as their invariants) on several examples. The Examples
4.2 (which we call binary links) showcase the usefulness of the invariant Σ2 by showing that it
can distinguish between an in�nity of di�erent links. The Examples 4.3 are inspired by the torus
links T (2, 2n) of linking number n (the Hopf link if n = 1, the Solomon link if n = 2 and the
n-gonal link (two intertwined n-gons) if n ≥ 3).

In Appendix A we give an explicit de�nition (i.e. one which allows computations) of the
residue morphisms of Milnor-Witt K-theory (see Theorem A.10), which is used in Sections 3
and 4.

In Appendix B we recall some useful notions about the Rost-Schmid complex and its groups.

Acknowledgements. The author thanks Frédéric Déglise and Adrien Dubouloz for their
mentoring during her PhD, and more generally everyone (including the referees) who provided
feedback on this work. The author was partially supported by Project ISITE-BFC ANR-15-
IDEX-0008 �Motivic Invariants of Algebraic Varieties� and ANR Project PRC �HQDIAG� ANR-
21-CE40-0015 �Motivic Homotopy, Quadratic Invariants and Diagonal Classes�. The IMB re-
ceived support from the EIPHI Graduate School (contract ANR-17-EURE-0002). The author
was then supported by the Research Training Group 2553 �Symmetries and Classifying Spaces:
Analytic, Arithmetic and Derived�, funded by the German Research Foundation DFG.

2. The quadratic linking degree

In this section, we de�ne oriented links with two components, oriented fundamental classes
(and cycles), Seifert classes (and divisors) relative to the link, the quadratic linking class and the
(ambient) quadratic linking degree of the link. We then explicit how the quadratic linking class
and the (ambient) quadratic linking degree depend on choices of orientations and parametrisa-
tions of A2

F \ {0} → A4
F \ {0} and deduce a series of invariants of the quadratic linking degree.

2.1. Conventions and notations. Throughout this section, F is a perfect �eld, we put A2
F =

Spec(F [u, v]), A4
F = Spec(F [x, y, z, t]) and X := A4

F \ {0}.
For Z a smooth closed subscheme of a smooth scheme Y , we denote by NZ/Y the normal

sheaf of Z in Y , i.e. the dual of the OZ-module IZ/I
2
Z with IZ the ideal sheaf of Z in Y .

We denote the usual generators of the Milnor-WittK-theory ring of F by [a] ∈ KMW
1 (F ) (with

a ∈ F ∗) and η ∈ KMW
−1 (F ) (see [Mor12, De�nition 3.1]). We put 〈a〉 := 1 + η[a] ∈ KMW

0 (F ).
For Y a smooth �nite-type F -scheme, j ∈ Z and L an invertible OY -module, we denote the

Rost-Schmid complex by C(Y,KMW
j {L}) (see De�nition B.2) and the i-th Rost-Schmid group

of this complex by H i(Y,KMW
j {L}) (see De�nition B.5) or simply H i(Y,KMW

j ) if L = OY .
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We identify H1(A2
F \ {0},K

MW
0 ) with W(F ) via the (noncanonical) isomorphism ζ : H1(A2

F \
{0},KMW

0 )→W(F ) which factorizes as follows:

H1(A2
F \ {0},K

MW
0 )

∂ // H0({0},KMW
−2 {det(N{0}/A2

F
)}) // KMW

−2 (F )
η2 7→1 //W(F )

where ∂ is the boundary map (see De�nition B.12 and Theorem B.13) and the map in the
middle is induced by the isomorphism det(N{0}/A2

F
)→ O{0}⊗O{0} which sends u∗ ∧ v∗ to 1⊗ 1

(see De�nition B.18). We also identify H3(A4
F \ {0},K

MW
2 ) with W(F ) via the (noncanonical)

isomorphism ζ ′ : H3(A4
F \ {0},K

MW
2 )→W(F ) which is de�ned in a similar manner to ζ, with

x∗ ∧ y∗ ∧ z∗ ∧ t∗ ∈ det(N{0}/A4
F

) instead of u∗ ∧ v∗ ∈ det(N{0}/A2
F

) (see De�nition B.19).

2.2. De�nitions of the quadratic linking class and degree. In this subsection, we give a
series of de�nitions which conclude with the de�nitions of the quadratic linking class and the
(ambient) quadratic linking degree of an oriented link with two components.

In order to de�ne oriented links with two components, we need the following de�nition (which
was given by Morel in [Mor12]).

De�nition 2.1 (Orientation of a locally free module). An orientation of a locally free module
V of constant �nite rank r over an F -scheme Y is an isomorphism o : det(V) = Λr(V)→ L⊗L
where L is an invertible OY -module.

Two orientations o : det(V)→ L⊗ L, o′ : det(V)→ L′ ⊗ L′ are said to be equivalent if there
exists an isomorphism ψ : L → L′ such that (ψ⊗ψ)◦o = o′. The equivalence class of o, denoted
o, is called the orientation class of o.

De�nition 2.2 (Oriented link with two components). An oriented link L with two components
is the following data:

• a couple of closed immersions ϕi : A2
F \ {0} → X with disjoint images Zi;

• for i ∈ {1, 2}, an orientation class oi of the normal sheaf NZi/X , represented by an
isomorphism oi : νZi := det(NZi/X)→ Li ⊗ Li.

We denote Z := Z1 t Z2, νZ := det(NZ/X).

Remark 2.3. The canonical morphisms ψi : Zi → Z induce an isomorphism

ψ∗1 ⊕ ψ∗2 : H i(Z,KMW
j {νZ})→ H i(Z1,K

MW
j {νZ1})⊕H i(Z2,K

MW
j {νZ2})

which allows us to identify H i(Z,KMW
j {νZ}) with H i(Z1,K

MW
j {νZ1})⊕H i(Z2,K

MW
j {νZ2}).

De�nition 2.4 (Oriented fundamental class and cycles). Let L be an oriented link with two
components and i ∈ {1, 2}. The oriented fundamental class of the i-th component of L , denoted
by [oi], is the unique element of H0(Zi,K

MW
−1 {νZi}) which is sent to η ∈ H0(Zi,K

MW
−1 ) by the

isomorphism H0(Zi,K
MW
−1 {νZi})→ H0(Zi,K

MW
−1 ) induced by oi (see Lemma B.14).

Furthermore, an oriented fundamental cycle of the i-th component of L is a representative
in C0(Zi,KMW

−1 {νZi}) of the oriented fundamental class [oi].

Remark 2.5. Note that if oi and o
′
i represent the same orientation class then the isomorphism

H0(Zi,K
MW
−1 {νZi})→ H0(Zi,K

MW
−1 ) induced by o′i is the same as the one induced by oi, hence

the oriented fundamental class [oi] only depends on the orientation class oi.

Recall that the boundary map ∂ : H1(X \ Z,KMW
1 )→ H0(Z,KMW

−1 {νZ}) is an isomorphism

(see De�nition B.12 and Theorem B.13 and note that the groupsH1(X,KMW
1 ) andH2(X,KMW

1 )
vanish (by Proposition B.16)).

De�nition 2.6 (Seifert class and Seifert divisors). Let L be an oriented link with two com-
ponents. The couple of Seifert classes of L is the couple (So1 ,So2), or (S1,S2) for short, of
elements of H1(X \ Z,KMW

1 ) such that ∂(S1) = ([o1], 0) and ∂(S2) = (0, [o2]).
For i ∈ {1, 2}, we call Si the Seifert class of Zi relative to the link L . Furthermore, a Seifert

divisor of Zi relative to the link L is a representative in C1(X \ Z,KMW
1 ) of Si.
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Remark 2.7. For i ∈ {1, 2}, the Seifert class of Zi relative to L depends on Z and not only on
Zi (and its orientation class oi). We could de�ne a weaker notion of Seifert class of Zi, which
would only depend on Zi (and oi), but it is important for what follows to have this stronger
notion of Seifert class.

See De�nition B.20 for the intersection product, which is used in the following de�nition.

De�nition 2.8 (Quadratic linking class). Let L be an oriented link with two components.
The quadratic linking class of L , denoted by QlcL , is the image of the intersection product
of the Seifert class S1 with the Seifert class S2 by the boundary map ∂ : H2(X \ Z,KMW

2 ) →
H1(Z,KMW

0 {νZ}). We denote QlcL = (σ1,L , σ2,L ) ∈ H1(Z1,K
MW
0 {νZ1})⊕H1(Z2,K

MW
0 {νZ2})

(see Remark 2.3).

Remark 2.9. Note that the quadratic linking class QlcL contains as much information as the
intersection product S1 · S2 since the boundary map ∂ : H2(X \ Z,KMW

2 )→ H1(Z,KMW
0 {νZ})

is injective (see the localization long exact sequence (in Theorem B.13) and note that the group
H2(X,KMW

2 ) vanishes (by Proposition B.16)). Also note that QlcL ∈ ker(i∗) since the image
of ∂ is the kernel of i∗ : H1(Z,KMW

0 {νZ})→ H3(X,KMW
2 ), where i∗ is the pushforward of the

closed immersion i : Z → X (see the localization long exact sequence (in Theorem B.13)).

Notation 2.10. For i ∈ {1, 2}, we denote by õi the isomorphism H1(Zi,K
MW
0 {νZi}) →

H1(Zi,K
MW
0 ) induced by oi (see Lemma B.14) and by ϕ∗i the isomorphism H1(Zi,K

MW
0 ) →

H1(A2
F \ {0},K

MW
0 ) induced by ϕi.

Recall that we �xed an isomorphism ζ : H1(A2
F \ {0},K

MW
0 )→W(F ) (see Subsection 2.1).

De�nition 2.11 (Quadratic linking degree). Let L be an oriented link with two components.
The quadratic linking degree of L , denoted by QldL , is the image of the quadratic linking class
of L by the isomorphism (ζ ⊕ ζ) ◦ (ϕ∗1 ⊕ ϕ∗2) ◦ (õ1 ⊕ õ2) : H1(Z,KMW

0 {νZ})→W(F )⊕W(F ).

Notation 2.12. We denote by (i1)∗ the inclusion of the subcomplex C•−2(Z1,K
MW
0 {νZ1}) in

C•(X,KMW
2 ) (and the induced morphism in cohomology; see Remark B.11) and by (i2)∗ the

inclusion of the subcomplex C•−2(Z2,K
MW
0 {νZ2}) in C•(X,KMW

2 ) (and the induced morphism
in cohomology; see Remark B.11).

Recall that we �xed an isomorphism ζ ′ : H3(A4
F \ {0},K

MW
2 )→W(F ) (see Subsection 2.1).

De�nition 2.13 (Ambient quadratic linking degree). Let L be an oriented link with two
components. The ambient quadratic linking degree of L , denoted by AQldL , is the element
ζ ′((i1)∗(σ1,L )) of W(F ) (see De�nition 2.8 and Notation 2.12).

Remark 2.14. Since QlcL ∈ ker(i∗) (see Remark 2.9) and i∗ = (i1)∗ ⊕ (i2)∗ (as Z = Z1 t Z2),
we have (i2)∗(σ2,L ) = −(i1)∗(σ1,L ) hence ζ ′((i2)∗(σ2,L )) = −ζ ′((i1)∗(σ1,L )) = −AQldL .

2.3. Invariants of the quadratic linking degree. By construction, the quadratic linking
degree depends on choices of orientations and of parametrisations of A2

F \ {0} → X and the
ambient quadratic linking degree depends on choices of orientations. In this subsection we
determine how these depend on such choices and construct invariants from them.

Throughout this subsection, L is an oriented link with two components and we denote
QldL = (d1, d2) ∈W(F )⊕W(F ).

We start by recalling how orientation classes can change.

Lemma 2.15. Let i ∈ {1, 2} and o′i : νZi → L′i ⊗ L′i be an orientation of the normal sheaf of
Zi in X. There exists a ∈ F ∗ such that the orientation class of o′i is the orientation class of
oi ◦ (×a).

Proof. Recall that every invertible OA2
F
-module is isomorphic to OA2

F
(since A2

F is factorial)

and that every invertible OA2
F \{0}

-module is the restriction of an invertible OA2
F
-module hence

every invertible OA2
F \{0}

-module is isomorphic to OA2
F \{0}

. Since Zi ' A2
F \ {0}, there exist
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isomorphisms ψ : Li → OZi and ψ′ : L′i → OZi . From De�nition 2.1, (ψ ⊗ ψ) ◦ oi = oi and

(ψ′ ⊗ ψ′) ◦ o′i = o′i. Denoting by m : OZi ⊗ OZi → OZi the multiplication, the morphism
m◦ ((ψ′⊗ψ′)◦o′i)◦ ((ψ⊗ψ)◦oi)−1 ◦m−1 is an automorphism of OZi hence is the multiplication
by an element of Γ(Zi,O∗Zi), i.e. by an element of F ∗. The result follows directly. �

Recall that automorphisms of A2
F \{0} are restrictions of automorphisms of A2

F which preserve
the origin (see [GW10, Theorem 6.45 (Hartogs' theorem)]), hence they induce changes of coor-
dinates of A2

F = Spec(F [u, v]). We denote by Jψ the Jacobian determinant of an automorphism
ψ of A2

F \ {0}; note that Jψ is in F ∗ since (F [u, v])∗ = F ∗.

Lemma 2.16. Let a = (a1, a2) be a couple of elements of F ∗ and ψ = (ψ1, ψ2) be a couple of
automorphisms of A2

F \ {0}.
(1) Let La be the link obtained from L by changing the orientation class o1 into o1 ◦ (×a1)

and the orientation class o2 into o2 ◦ (×a2). Then QlcLa
= 〈a1a2〉QlcL , QldLa

=
(〈a2〉d1, 〈a1〉d2) and AQldLa

= 〈a1a2〉AQldL .

(2) Let Lψ be the link obtained from L by changing ϕ1 : A2
F \ {0} → X into ϕ1 ◦ ψ1 and

ϕ2 : A2
F \ {0} → X into ϕ2 ◦ ψ2. Then QlcLψ

= QlcL , QldLψ
= (〈Jψ1〉d1, 〈Jψ2〉d2) and

AQldLψ
= AQldL .

(3) Let L ′ be the link obtained from L by changing the order of the components. Then
QlcL ′ = −QlcL , QldL ′ = (−d2,−d1) and AQldL ′ = AQldL .

Proof. (1) Note that for all i ∈ {1, 2}, [oi ◦ (×ai)] = 〈a−1i 〉[oi] = 〈ai〉[oi] hence, by Proposition
A.2 and Proposition B.21:

So1◦(×a1) = 〈a1〉So1 and So2◦(×a2) = 〈a2〉So2
So1◦(×a1) · So2◦(×a2) = 〈a1a2〉So1 · So2

∂(So1◦(×a1) · So2◦(×a2)) = 〈a1a2〉∂(So1 · So2)

QlcLa
= 〈a1a2〉QlcL

Note that ˜o1 ◦ (×a1)(〈a1a2〉σ1,L ) = 〈a1〉õ1(〈a1a2〉σ1,L ) = 〈a21a2〉õ1(σ1,L ) = 〈a2〉õ1(σ1,L ) and

similarly ˜o2 ◦ (×a2)(〈a1a2〉σ2,L ) = 〈a1〉õ2(σ2,L ). It follows that QldLa
= (〈a2〉d1, 〈a1〉d2).

The equality AQldLa
= 〈a1a2〉AQldL follows from the equality QlcLa

= 〈a1a2〉QlcL . In-
deed, AQldLa

is by de�nition equal to ζ ′((i1)∗(σ1,La)), hence is equal to ζ ′((i1)∗(〈a1a2〉σ1,L )).
The result follows from the fact that (i1)∗ (which is the inclusion of a subcomplex; see Notation
2.12) and ζ ′ commute with product by 〈a1a2〉 (see Proposition A.2 and De�nition B.19).

(2) From the de�nitions, QlcLψ
= QlcL and (õ1 ⊕ õ2)(QlcLψ

) = (õ1 ⊕ õ2)(QlcL ). Let

i ∈ {1, 2}. We denote by ψ∗i : H1(A2
F \ {0},K

MW
0 ) → H1(A2

F \ {0},K
MW
0 ) the isomorphism

induced by ψi. Note that (ϕi ◦ψi)∗(õi(σi,L )) = ψ∗i (ϕ
∗
i (õi(σi,L ))) and that the following diagram

is commutative:

H1(A2
F \ {0},K

MW
0 )

∂ //

ψ∗i
��

H0({0},KMW
−2 {det(N{0}/A2

F
)})

ψ∗i
��

H1(A2
F \ {0},K

MW
0 )

∂
// H0({0},KMW

−2 {det(N{0}/A2
F

)})

Hence ∂((ϕi ◦ ψi)∗(õi(σi,L ))) = ψ∗i (∂(ϕ∗i (õi(σi,L )))).

Finally note that for all α ∈ KMW
−2 (F ), ψ∗i (α⊗ (u∗ ∧ v∗)) = 〈Jψi〉α⊗ (u∗ ∧ v∗). It follows from

De�nition B.18 that QldLψ
= (〈Jψ1〉d1, 〈Jψ2〉d2). As for AQldLψ

, it is clearly equal to AQldL

since ϕ1 and ϕ2 are not used in its de�nition (nor in the de�nition of the quadratic linking class).
(3) By Proposition B.22, S2 · S1 = 〈−1〉(S1 · S2) hence by Proposition A.2, ∂(S2 · S1) =

〈−1〉∂(S1 · S2), thus QlcL ′ = 〈−1〉QlcL = −QlcL (since QlcL ∈ H1(Z,KMW
0 {νZ}) and for

every �eld k and α ∈ KMW
−1 (k), 〈−1〉α = −α). It follows that QldL ′ = (−d2,−d1) and that

AQldL ′ = AQldL (as ζ ′((i2)∗(σ2,L )) = −ζ ′((i1)∗(σ1,L )) by Remark 2.14). �
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We have proved in particular that the ambient quadratic linking degree and each component
of the quadratic linking degree are each only multiplied by an 〈a〉 ∈W(F ) with a ∈ F ∗ when the
orientation classes or the parametrisations are changed, so that we get the following invariants.

Corollary 2.17. The rank modulo 2 of d1, the rank modulo 2 of d2 and the rank modulo
2 of AQldL are invariant under changes of orientation classes o1, o2 and under changes of
parametrisations of ϕ1, ϕ2 : A2

F \ {0} → X.

Proof. For all a ∈ F ∗, the rank modulo 2 of an element of the Witt ring W(F ) is invariant under
the multiplication by 〈a〉. The result follows directly from Lemma 2.16. �

Recall that W(R) ' Z (via the signature).

Corollary 2.18. If F = R then the absolute value of d1, the absolute value of d2 and the absolute
value of AQldL are invariant under changes of orientation classes o1, o2 and under changes of
parametrisations of ϕ1, ϕ2 : A2

R \ {0} → X.

Proof. For all a ∈ R∗, 〈a〉 = 〈1〉 = 1 ∈ W(R) or 〈a〉 = 〈−1〉 = −1 ∈ W(R) since every real
number is a square or the opposite of a square. The result follows directly from Lemma 2.16. �

In the family of examples 4.3, we provide for each positive integer n an example of an oriented
link over R whose ambient quadratic linking degree has absolute value n (and the same is true
of each component of the quadratic linking degree); for examples of oriented links over R whose
(ambient) quadratic linking degree is 0, see Examples 4.2 (with a < 0 in these examples).

The following Lemma-De�nition is an inductive de�nition. For each d ∈W(F ), with k ranging
over the nonnegative even integers, we de�ne an abelian group Qd,k and an element Σk(d) ∈ Qd,k.
In Theorem 2.21 we will see that Σk(d1), Σk(d2) and Σk(AQldL ) are invariants for even k > 0
(this is also true for k = 0 but uninteresting, as Σ0 is a constant map on W(F ) which we only
de�ned for convenience); the assumption that k is even is important for Theorem 2.21.

Lemma-De�nition 2.19. Let d ∈ W(F ). There exists a unique sequence of abelian groups
Qd,k and of elements Σk(d) ∈ Qd,k, where k ranges over the nonnegative even integers, such
that:

• Qd,0 = W(F ) and Σ0(d) = 1 ∈ Qd,0;
• for each positive even integer k, Qd,k is the quotient group Qd,k−2/(Σk−2(d));
• for each positive even integer k, as soon as n ∈ N0 and a1, . . . , an ∈ F ∗ verify that

n∑
i=1

〈ai〉 = d ∈W(F ), we have Σk(d) =
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 ∈ Qd,k.

Remark 2.20. The uniqueness in the previous statement is clear, whereas the existence requires
work (which is done below) since in W(F ) the equality

∑n
i=1〈ai〉 =

∑m
j=1〈bj〉 does not imply that

the ai are equal to the bj . Moreover, this equality does not imply that
∑

1≤i1<···<ik≤n〈
∏

1≤j≤k aij 〉
is equal to

∑
1≤p1<···<pk≤m〈

∏
1≤q≤k bpq〉 in W(F ), which is why we need the abelian groups Qd,k.

Proof. Recall the following presentation of the abelian group W(F ): its generators are the 〈a〉
for a ∈ F ∗ and its relations are the following:

(1) 〈ab2〉 = 〈a〉 for all a, b ∈ F ∗;
(2) 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈(a+ b)ab〉 for all a, b ∈ F ∗ such that a+ b 6= 0;
(3) 〈1〉+ 〈−1〉 = 0.

We denote by G the free abelian group of generators the 〈a〉 for a ∈ F ∗, by G1 the quotient of
G by the �rst relation above and by G2 the quotient of G1 by the second relation above, so that
W(F ) is the quotient of G2 by the third relation above.

Let k be a nonnegative even integer such that for all nonnegative even integers l < k, Qd,l
is an abelian group and Σl(d) ∈ Qd,l which verify the conditions of the statement. Note that
the quotient of the abelian group Qd,k−2 by its subgroup (Σk−2(d)) is well-de�ned, so we can
�x Qd,k = Qd,k−2/(Σk−2(d)). To show that Σk(d) is well-de�ned (by the formula given in the
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statement), we proceed in four steps, in which we consider a representative of d in G, in G1,
in G2 and in W(F ) (i.e. d itself) respectively. Let n ∈ N0 and a1, . . . , an ∈ F ∗ be such that∑n

i=1〈ai〉 is a representative of d in G.

First step: By de�nition of G,
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 is well-de�ned in G hence in Qd,k

(since Qd,k is obtained from G by quotienting several times).

Second step: For all b ∈ F ∗,
∑

2≤i2<···<ik≤n
〈a1b2

∏
2≤j≤k

aij 〉 +
∑

2≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 =∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 in G1 hence in Qd,k (since Qd,k is obtained from G1 by quotienting

several times) and similarly for other indices. Thus
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 ∈ Qd,k only depends

on the class of
n∑
i=1

〈ai〉 in G1.

Third step: If a1 + a2 6= 0 then in G2:∑
3≤i3<···<ik≤n

〈(a1 + a2)
2a1a2

∏
3≤j≤k

aij 〉+
∑

3≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉

+
∑

3≤i2<···<ik≤n
〈(a1 + a2)

∏
2≤j≤k

aij 〉+
∑

3≤i2<···<ik≤n
〈(a1 + a2)a1a2

∏
2≤j≤k

aij 〉

=
∑

3≤i3<···<ik≤n
〈a1a2

∏
3≤j≤k

aij 〉+
∑

3≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉

+ (〈a1 + a2〉+ 〈(a1 + a2)a1a2〉)
∑

3≤i2<···<ik≤n
〈
∏

2≤j≤k
aij 〉

=
∑

3≤i3<···<ik≤n
〈a1a2

∏
3≤j≤k

aij 〉+
∑

3≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉

+ (〈a1〉+ 〈a2〉)
∑

3≤i2<···<ik≤n
〈
∏

2≤j≤k
aij 〉

=
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉

and similarly for other indices. This is true in Qd,k since Qd,k is obtained from G2 by quotienting

several times. Thus
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 ∈ Qd,k only depends on the class of

n∑
i=1

〈ai〉 in G2.

Fourth step: With the convention that
∑

1≤i3<···<i2≤n
〈
∏

3≤j≤2
aij 〉 = 1, note that

∑
1≤i1<···<ik≤n

〈
∏

1≤j≤k
aij 〉+ (〈1〉+ 〈−1〉)

∑
1≤i2<···<ik≤n

〈
∏

2≤j≤k
aij 〉+ 〈−1〉

∑
1≤i3<···<ik≤n

〈
∏

3≤j≤k
aij 〉

is equal to
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 −

∑
1≤i3<···<ik≤n

〈
∏

3≤j≤k
aij 〉 in W(F ) hence in Qd,k (since Qd,k is

obtained from W(F ) by quotienting several times). Since
∑

1≤i3<···<ik≤n
〈
∏

3≤j≤k
aij 〉 = Σk−2(d) = 0

in Qd,k (by de�nition of Qd,k),
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 ∈ Qd,k only depends on the class of

n∑
i=1

〈ai〉

in W(F ), i.e. on d. Thus we can �x Σk(d) =
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 ∈ Qd,k. �
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It follows from Lemma-De�nition 2.19 that we have for each positive even integer k a map
Σk : W(F )→

⋃
d∈W(F )Qd,k which veri�es that for all d ∈W(F ), Σk(d) ∈ Qd,k. How interesting

the map Σ2 : W(F ) → W(F )/(1) is depends on the ground �eld F . For instance, if F = R
then the map Σ2 : W(R) ' Z →W(R)/(1) = 0 is uninteresting since it is constant (but in the
real case, Corollary 2.18 already provides the best possible invariant) whereas if F = Q then
the map Σ2 : W(Q) ' W(R) ⊕

⊕
p∈P W(Z/pZ) → W(Q)/(1) '

⊕
p∈P W(Z/pZ) (with P the

set of prime numbers) is very interesting (see the discussion at the end of Examples 4.2). This
provides new invariants of the (ambient) quadratic linking degree: given two oriented links L1

and L2, one �rst compares Σ2(AQldL1
) ∈ W(F )/(1) with Σ2(AQldL2

) ∈ W(F )/(1); if this
was not enough to distinguish L1 from L2, i.e. if Σ := Σ2(AQldL1

) = Σ2(AQldL2
), then one

compares Σ4(AQldL1
) ∈ (W(F )/(1))/(Σ) with Σ4(AQldL2

) ∈ (W(F )/(1))/(Σ), and so on.

Theorem 2.21. Let L be an oriented link with two components and k be a positive even integer.
We denote the quadratic linking degree of L by QldL = (d1, d2) ∈W(F )⊕W(F ). Then Σk(d1),
Σk(d2) and Σk(AQldL ) are invariant under changes of orientation classes o1, o2 and under
changes of parametrisations of ϕ1, ϕ2 : A2

F \ {0} → X.

Proof. Let
n∑
i=1

〈ai〉 ∈W(F ). Note that for all b ∈ F ∗:

Σk(〈b〉
n∑
i=1

〈ai〉) =
∑

1≤i1<···<ik≤n
〈bk

∏
1≤j≤k

aij 〉 =
∑

1≤i1<···<ik≤n
〈
∏

1≤j≤k
aij 〉 = Σk(

n∑
i=1

〈ai〉)

since bk is a square as k is even. The result follows directly from Lemma 2.16. �

3. How to compute the quadratic linking degree

In this section, we give a method to compute the quadratic linking class, the quadratic linking
degree and the ambient quadratic linking degree under reasonable assumptions on the link (which
are veri�ed in the examples of Section 4). See Subsection 2.1 for notations and Subsection 2.2
for de�nitions.

3.1. Assumptions. Let L be an oriented link with two components such that for all i ∈ {1, 2},
the closure Zi ⊂ A4

F of Zi is given by two equations

fi(x, y, z, t) = 0, gi(x, y, z, t) = 0

with fi and gi irreducible. We also assume that the subscheme of X \Z given by the equations
g1 = 0 and g2 = 0 is of codimension 2 in X \Z and that for each generic point p of an irreducible
component of this subscheme, f1 and f2 are units in the residue �eld κ(p).

Let i ∈ {1, 2}. Note that we can de�ne an orientation of NZi/X from the (ordered) couple

(fi, gi). Indeed, NZi/X is the dual of the conormal sheaf CZi/X = IZi/I
2
Zi
, where IZi is the

ideal sheaf of Zi in X, and we have the following short exact sequence (see [Ful98, B.7.4]):

0 // (CV (gi)/A4
F

)|Zi
// CZi/X = (CZi/A4

F
)|Zi

// (CV (fi)/A4
F

)|Zi
// 0

We de�ne the orientation o(fi,gi) as the isomorphism νZi → OZi⊗OZi which sends fi
∗∧gi∗ to

1⊗ 1. By Lemma 2.15, there exists ai ∈ F ∗ such that oi = o(fi,gi) ◦ (×ai) = o(a−1
i fi,gi)

. Without

loss of generality (since we can replace fi with a
−1
i fi), we assume that oi = o(fi,gi).

3.2. Notations. We denote by χodd : Z → {0, 1} the characteristic function of the set of odd
numbers.

We denote ε := −〈−1〉 and for all n ∈ N0, nε :=
∑n

i=1〈(−1)i−1〉 and (−n)ε := ε nε.
In order to make explicit computations, we introduce the following notations. Note that the

quadratic linking class, the quadratic linking degree and the ambient quadratic linking degree of
L which are computed in Theorems 3.1, 3.2 and 3.3 respectively do not depend on the choices
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of uniformizing parameters πp, πp,q, πp,q,0, π
′
p,q,0 made below, since these are not used in their

De�nitions (recall De�nitions 2.8, 2.11 and 2.13).
We denote by I the set of generic points of irreducible components of the subscheme of X \Z

given by the equations g1 = 0 and g2 = 0.
For every p ∈ I, we denote by πp a uniformizing parameter of the discrete valuation ring

OX\Z,p/(g1), by up a unit in OX\Z,p/(g1) and by mp ∈ Z such that g2 = upπ
mp
p ∈ OX\Z,p/(g1).

For every p ∈ I and q ∈ {p}(1)∩Z, we denote by πp,q a uniformizing parameter of the discrete
valuation ring O{p},q, by up,q a unit in O{p},q and by mp,q ∈ Z such that f1f2up = up,qπ

mp,q
p,q ∈

O{p},q.

For every i ∈ {1, 2}, p ∈ I and q ∈ {p}(1) ∩Zi, we denote by τp,q ∈ νq such that πp,q
∗ ⊗ πp∗ ⊗

g1
∗ = τp,q⊗ (fi

∗ ∧ gi∗), by vp,q,0 the discrete valuation of O
{ϕ−1
i (q)},0

and by πp,q,0 a uniformizing

parameter for vp,q,0. Note that such a τp,q exists since πp,q
∗⊗πp∗⊗g1∗ ∈ Z[(νp,q⊗κ(q)(νZi)|q)\{0}].

For every i ∈ {1, 2}, p ∈ I and q ∈ {p}(1) ∩ Zi, we let (up,q,0,mp,q,0) ∈ O∗{ϕ−1
i (q)},0

× Z

be the unique couple such that ϕ∗i (up,q) = up,q,0π
mp,q,0
p,q,0 and we denote by λp,q,0 ∈ KMW

0 (F )

such that η2 ⊗ (πp,q,0
∗ ⊗ ϕ∗i (τp,q)) = λp,q,0 η

2 ⊗ (u∗ ∧ v∗). Note that such a λp,q,0 exists since
πp,q,0

∗ ⊗ ϕ∗i (τp,q) ∈ Z[(det(N{0}/A2
F

)|0) \ {0}].

For every p ∈ I and q ∈ {p}(1) ∩ Z1, we denote by v′p,q,0 the discrete valuation of O{q},0
and by π′p,q,0 a uniformizing parameter for v′p,q,0; we let (u′p,q,0,m

′
p,q,0) ∈ O∗{q},0 × Z be the

unique couple such that up,q = u′p,q,0(π
′
p,q,0)

m′p,q,0 and we denote by λ′p,q,0 ∈ KMW
0 (F ) such that

η2 ⊗ (π′p,q,0
∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗) = λ′p,q,0 η

2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗). Note that such a λ′p,q,0 exists

since π′p,q,0
∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗ ∈ Z[(det(N{0}/A4

F
)|0) \ {0}].

3.3. Computing the quadratic linking class and degree.

Theorem 3.1. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the cycle ∑

p∈I

∑
q∈{p}(1)∩Z

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

where 〈up,q〉η χodd(mpmp,q)⊗(πp,q
∗⊗πp∗⊗g1∗) ∈ KMW

−1 (κ(q), νq⊗(νZ)|q), represents the quadratic
linking class of L .

Proof. From De�nition 2.4, the oriented fundamental class [oi] is the class in H
0(Zi,K

MW
−1 {νZi})

of η⊗(fi
∗∧gi∗). It follows from De�nition 2.6 and Theorem A.10 that the Seifert class Si of Zi is

the class in H1(X\Z,KMW
1 ) of 〈fi〉⊗gi∗ (over the generic point pi of the hypersurface of X\Z of

equation gi = 0). In the expression above, 〈fi〉 ∈ KMW
0 (κ(pi)) and gi

∗ ∈ Z[det(N{pi}/X\Z)\{0}];
with a slight abuse of notation, we denoted by fi the image in the fraction �eld of F [x, y, z, t]/(gi)
of fi ∈ F [x, y, z, t]. We will make similar slight abuses of notation below.

By Corollary B.24, the intersection product of the Seifert class S1 of Z1 with the Seifert class
S2 of Z2 is the class in H2(X \ Z,KMW

2 ) of the cycle:∑
p∈I

(mp)ε〈f1f2up〉 ⊗ (πp
∗ ⊗ g1∗)

The quadratic linking class is the image of this intersection product by the boundary map
∂ : H2(X \ Z,KMW

2 )→ H1(Z,KMW
0 {νZ}) thus the cycle∑

p∈I

∑
q∈{p}(1)∩Z

(mp)ε∂
πp,q
vq (〈f1f2up〉)⊗ (πp,q

∗ ⊗ πp∗ ⊗ g1∗)
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represents the quadratic linking class (note that we used Proposition A.2 to extract (mp)ε from
the morphism ∂

πp,q
vq ). By Theorem A.10 and Lemma A.9, the cycle∑

p∈I

∑
q∈{p}(1)∩Z

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

represents the quadratic linking class of L . �

Theorem 3.2. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the quadratic linking degree of L is the following couple of elements of W(F ):∑
p∈I

∑
q∈{p}(1)∩Z1

λp,q,0〈up,q,0〉χodd(mpmp,qmp,q,0),
∑
p∈I

∑
q∈{p}(1)∩Z2

λp,q,0〈up,q,0〉χodd(mpmp,qmp,q,0)


Proof. Recall from De�nition 2.11 that the �rst step in computing the quadratic linking degree
from the quadratic linking class consists in applying õ1 ⊕ õ2. It follows from Theorem 3.1 and
the assumption that for all i ∈ {1, 2}, oi = o(fi,gi) (see Subsection 3.1) that the couple of cycles∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q〉η χodd(mpmp,q)⊗ τp,q,
∑
p∈I

∑
q∈{p}(1)∩Z2

〈up,q〉η χodd(mpmp,q)⊗ τp,q


where 〈up,q〉η χodd(mpmp,q)⊗ τp,q ∈ KMW

−1 (κ(q), νp,q), represents (õ1 ⊕ õ2)(QlcL ).
It follows that the couple of cycles∑

p∈I

∑
q∈{p}(1)∩Z1

〈ϕ∗1(up,q)〉η χodd(mpmp,q)⊗ ϕ∗1(τp,q),

∑
p∈I

∑
q∈{p}(1)∩Z2

〈ϕ∗2(up,q)〉η χodd(mpmp,q)⊗ ϕ∗2(τp,q)


where for all i ∈ {1, 2}, 〈ϕ∗i (up,q)〉η χodd(mpmp,q) ⊗ ϕ∗i (τp,q) ∈ KMW

−1 (κ(ϕ−1i (q)), νϕ−1
i (q)), rep-

resents (ϕ∗1 ⊕ ϕ∗2)(õ1 ⊕ õ2)(QlcL ). This is the second step in computing the quadratic linking
degree (see De�nition 2.11).

Recall from De�nition 2.11 and De�nition B.18 that the third step in computing the quadratic
linking degree consists in applying the boundary map

∂ : C1(A2
F \ {0},KMW

0 )→ C0({0},KMW
−2 {det(N{0}/A2

F
)})

to each element of the couple above, which gives:∑
p∈I

∑
q∈{p}(1)∩Z1

∂
πp,q,0
vp,q,0 (〈ϕ∗1(up,q)〉)η χodd(mpmp,q)⊗ (πp,q,0

∗ ⊗ ϕ∗1(τp,q)),

∑
p∈I

∑
q∈{p}(1)∩Z2

∂
πp,q,0
vp,q,0 (〈ϕ∗2(up,q)〉)η χodd(mpmp,q)⊗ (πp,q,0

∗ ⊗ ϕ∗2(τp,q))


where ∂

πp,q,0
vp,q,0 (〈ϕ∗i (up,q)〉)η χodd(mpmp,q)⊗ (πp,q,0

∗ ⊗ ϕ∗i (τp,q)) ∈ KMW
−2 (κ(0),det(N{0}/A2

F
)).
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By Theorem A.10, for every i ∈ {1, 2} we have ∂πp,q,0vp,q,0 (〈ϕ∗i (up,q)〉) = 〈up,q,0〉η χodd(mp,q,0) thus
the third step gives:∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q,0〉 η2 χodd(mpmp,qmp,q,0)⊗ (πp,q,0
∗ ⊗ ϕ∗1(τp,q)),

∑
p∈I

∑
q∈{p}(1)∩Z2

〈up,q,0〉 η2 χodd(mpmp,qmp,q,0)⊗ (πp,q,0
∗ ⊗ ϕ∗2(τp,q))


From De�nition B.18 and the notations in Subsection 3.2, using the canonical isomorphism

KMW
−2 (F ) 'W(F ) (which sends η2 to 1), the �nal step gives:∑
p∈I

∑
q∈{p}(1)∩Z1

λp,q,0〈up,q,0〉χodd(mpmp,qmp,q,0),
∑
p∈I

∑
q∈{p}(1)∩Z2

λp,q,0〈up,q,0〉χodd(mpmp,qmp,q,0)


�

Theorem 3.3. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the ambient quadratic linking degree of L is the following element of W(F ):∑

p∈I

∑
q∈{p}(1)∩Z1

λ′p,q,0〈u′p,q,0〉χ
odd(mpmp,qm

′
p,q,0)

Proof. By De�nition 2.13, the ambient quadratic linking degree of L is equal to ζ ′((i1)∗(σ1,L )).

Note that by Theorem 3.1, σ1,L ∈ H1(Z1,K
MW
0 {νZ1}) is represented by the cycle∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

so that (i1)∗(σ1,L ) ∈ H3(X,KMW
2 ) is represented by the cycle∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

since (i1)∗ is induced by the inclusion of the subcomplex C•−2(Z1,K
MW
0 {νZ1}) in C•(X,KMW

2 )
(see Notation 2.12). We then apply (see De�nition B.19) the boundary map ∂ : C3(A4

F \
{0},KMW

2 )→ C0({0},KMW
−2 {det(N{0}/A4

F
)}), which gives:∑

p∈I

∑
q∈{p}(1)∩Z1

∂
π′p,q,0
v′p,q,0

(〈up,q〉)η χodd(mpmp,q)⊗ (π′p,q,0
∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗)

where ∂
π′p,q,0
v′p,q,0

(〈up,q〉)η χodd(mpmp,q)⊗ (π′p,q,0
∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗) ∈ KMW

−2 (κ(0),det(N{0}/A4
F

)).

By Theorem A.10, we have ∂
π′p,q,0
v′p,q,0

(〈up,q〉) = 〈u′p,q,0〉η χodd(m′p,q,0) thus ∂((i1)∗(σ1,L )) is rep-

resented by the cycle:∑
p∈I

∑
q∈{p}(1)∩Z1

〈u′p,q,0〉η
2 χodd(mpmp,qm

′
p,q,0)⊗ (π′p,q,0

∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗)

From De�nition B.19 and the notations in Subsection 3.2, using the canonical isomorphism
KMW
−2 (F ) 'W(F ) (which sends η2 to 1), the ambient quadratic linking degree of L is equal to:∑

p∈I

∑
q∈{p}(1)∩Z1

λ′p,q,0〈u′p,q,0〉χ
odd(mpmp,qm

′
p,q,0)

�
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Oriented fundamental cycles η ⊗ (x∗ ∧ y∗) | η ⊗ (z∗ ∧ t∗)
Seifert divisors 〈x〉 ⊗ y∗ | 〈z〉 ⊗ t∗

Apply intersection product 〈xz〉 ⊗ (t
∗ ∧ y∗)

Quadratic linking class −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗) ⊕ 〈x〉η ⊗ (y∗ ∧ z∗ ∧ t∗)

Apply õ1 ⊕ õ2 −〈z〉η ⊗ t∗ ⊕ 〈x〉η ⊗ y∗
Apply ϕ∗1 ⊕ ϕ∗2 −〈u〉η ⊗ v∗ ⊕ 〈u〉η ⊗ v∗
Apply ∂ ⊕ ∂ −η2 ⊗ (u∗ ∧ v∗) ⊕ η2 ⊗ (u∗ ∧ v∗)
Quadratic linking degree −1 ⊕ 1

Quadratic linking class −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗) ⊕ 〈x〉η ⊗ (y∗ ∧ z∗ ∧ t∗)

Apply (i1)∗ to the part supp. on Z1 −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗)

Apply ∂ −η2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)
Ambient quadratic linking degree −1

Table 1. The Hopf link

4. Examples of computations of the quadratic linking degree

In this section, we compute the quadratic linking class, the quadratic linking degree and the
ambient quadratic linking degree (as well as their invariants) on examples. To do this we use
the method given in Section 3. See Section 2 for de�nitions and notations.

Example 4.1. (Hopf) We de�ne the Hopf link over a perfect �eld F as follows:

• Z1 is the intersection of the closed subscheme of A4
F = Spec(F [x, y, z, t]) of ideal (x, y)

and of X := A4
F \ {0};

• ϕ1 : A2
F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t]→

F [u, v] which maps x, y, z, t to 0, 0, u, v respectively;
• o1 is the orientation class associated to the couple (x, y) (i.e. the class of the isomorphism
o1 : νZ1 → OZ1 ⊗OZ1 which maps x∗ ∧ y∗ to 1⊗ 1);
• Z2 is the intersection of the closed subscheme of A4

F of ideal (z, t) and of X;
• ϕ2 : A2

F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t]→
F [u, v] which maps x, y, z, t to u, v, 0, 0 respectively;
• o2 is the orientation class associated to the couple (z, t) (i.e. the class of the isomorphism
o2 : νZ2 → OZ2 ⊗OZ2 which maps z∗ ∧ t∗ to 1⊗ 1).

In Table 1 we give oriented fundamental cycles of Z1 and Z2, Seifert divisors of Z1 (with
orientation o1) and Z2 (with orientation o2) relative to the link, their intersection product and
its image by the boundary map ∂ : H2(X\Z,KMW

2 )→ H1(Z,KMW
0 {νZ}), which is the quadratic

linking class (or rather we give a cycle which represents the quadratic linking class). Then we
give cycles which represent (õ1⊕ õ2)(QlcL ), (ϕ∗1⊕ϕ∗2)((õ1⊕ õ2)(QlcL )), (∂⊕∂)((ϕ∗1⊕ϕ∗2)((õ1⊕
õ2)(QlcL ))) respectively and we give the quadratic linking degree (in W(F )⊕W(F )). Finally,
we give again the quadratic linking class, then a cycle which represents (i1)∗(σ1,L ), then a cycle
which represents ∂((i1)∗(σ1,L )) and then the ambient quadratic linking degree (in W(F )). The
points on which the cycles are supported are the obvious ones (for instance 〈x〉⊗y∗ is supported
on the generic point of the hypersurface of X \ Z of equation y = 0).

Recall Theorems 3.1, 3.2 and 3.3 (and their proofs) and note that the intersection of the
hypersurfaces of X \ Z of equations y = 0 and t = 0 is irreducible to get the results in Table 1.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the Hopf link is equal to 1. Note that for every positive
even integer k, the image by Σk of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the Hopf link is equal to 0. Note that if F = R then the
absolute value of each component of the quadratic linking degree and of the ambient quadratic
linking degree of the Hopf link is equal to 1.

Let us now present examples where the intersection of the underlying divisors is not irreducible
(and where the invariants of Corollaries 2.17 and 2.18 and of Theorem 2.21 have di�erent values).
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Examples 4.2. (Binary links) Let F be a perfect �eld of characteristic di�erent from 2 and
a ∈ F ∗. We de�ne the binary link Ba over F as follows:

• Z1 is the intersection of the closed subscheme of A4
F of ideal (f1 := t−((1+a)x−y)y, g1 :=

z − x(x− y)) and of X := A4
F \ {0};

• ϕ1 : A2
F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t]→

F [u, v] which maps x, y, z, t to u, v, u(u− v), ((1 + a)u− v)v respectively;
• o1 is the orientation class associated to the couple (f1, g1);
• Z2 is the intersection of the closed subscheme of A4

F of ideal (f2 := t+((1+a)x−y)y, g2 :=
z + x(x− y)) and of X;
• ϕ2 : A2

F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t]→
F [u, v] which maps x, y, z, t to u, v,−u(u− v),−((1 + a)u− v)v respectively;
• o2 is the orientation class associated to the couple (f2, g2).

In Table 2 we give oriented fundamental cycles of Z1 and Z2, Seifert divisors of Z1 (with
orientation o1) and Z2 (with orientation o2) relative to the link, their intersection product and
its image by the boundary map ∂ : H2(X\Z,KMW

2 )→ H1(Z,KMW
0 {νZ}), which is the quadratic

linking class. Then we give cycles which represent (õ1⊕ õ2)(QlcL ), (ϕ∗1⊕ϕ∗2)((õ1⊕ õ2)(QlcL )),
(∂⊕∂)((ϕ∗1⊕ϕ∗2)((õ1⊕õ2)(QlcL ))) respectively and we give the quadratic linking degree. Finally,
we give again the quadratic linking class, then a cycle which represents (i1)∗(σ1,L ), then a cycle
which represents ∂((i1)∗(σ1,L )) and then the ambient quadratic linking degree. Unless speci�ed
(between parentheses after a central dot), the points on which the cycles are supported are the
obvious ones (for instance 〈f1〉 ⊗ g1∗ is supported on the generic point of the hypersurface of
X \ Z of equation g1 = 0).

To see how one gets from the �fth line in Table 2 to the sixth line in this Table, note that

−〈f2〉η⊗g2∗ · (x−y) ∈ H1(Z1,K
MW
0 ) is equal to −〈2((1+a)x−y)y〉η⊗2x(x− y)

∗ · (x−y) since

in Z1: t = ((1+a)x−y)y and z = x(x−y). Further note that −〈2((1+a)x−y)y〉η⊗2x(x− y)
∗ ·

(x−y) = −〈((1+a)x−y)yx〉η⊗x− y∗ ·(x−y) and that −〈((1+a)x−y)yx〉η⊗x− y∗ ·(x−y) =
−〈ax3〉η⊗x− y∗ ·(x−y) = −〈ax〉η⊗x− y∗ ·(x−y). Similarly, −〈f2〉η⊗g2∗ ·(x) ∈ H1(Z1,K

MW
0 )

is equal to −〈y〉η⊗x∗ · (x). A similar reasoning gets one from the tenth line to the eleventh line.
Note that the rank modulo 2 of each component of the quadratic linking degree and of the

ambient quadratic linking degree of the binary link Ba is 0 (hence the invariant presented in
Corollary 2.17 distinguishes between the Hopf link and the binary links). Note that the image
by Σ2 of each component of the quadratic linking degree and of the ambient quadratic linking
degree of the binary link Ba is 〈a〉 ∈ W(F )/(1). For instance, if F = Q, Σ2 distinguishes
between all the Bp with p prime numbers since if p 6= q are prime numbers then 〈p〉 ∈W(Q)/(1)
corresponds to 1 ∈ W(Z/pZ) ⊂

⊕
r prime W(Z/rZ) and 〈q〉 ∈ W(Q)/(1) corresponds to 1 ∈

W(Z/qZ) ⊂
⊕

r prime W(Z/rZ) (via the isomorphism W(Q)/(1) '
⊕

r prime W(Z/rZ) induced

by the isomorphism W(Q) 'W(R) ⊕
⊕

r prime W(Z/rZ) which maps 〈p1 . . . pn〉 ∈W(Q) (with

p1, . . . , pn distinct primes) to 〈p1 . . . pn〉 ⊕
⊕n

i=1〈
∏
j 6=i pj〉 ∈ W(R) ⊕

⊕n
i=1 W(Z/piZ)). Note

that if F = R then the absolute value of each component of the quadratic linking degree and of
the ambient quadratic linking degree of the binary link Ba is equal to 2 if a > 0, to 0 if a < 0
(hence the invariant presented in Corollary 2.18 distinguishes between the Hopf link and the
binary links, as well as between the binary links with positive parameter and the binary links
with negative parameter).

The following family of examples is an analogue of the family of torus links T (2, 2n) (with
n ≥ 1 an integer) in knot theory. Note that T (2, 2) is the Hopf link and that its analogue below
is slightly di�erent from the Hopf link in the example above and has quadratic linking degree
(1,−1) and ambient quadratic linking degree −1. Note that T (2, 4) is the Solomon link.

Examples 4.3 (Torus links). Let n ≥ 1. Let us de�ne an analogue of the torus link T (2, 2n).
Recall that (in knot theory) one of the components of T (2, 2n) is the intersection of {(a, b) ∈

C2, b = an} with S3ε, the 3-sphere of radius ε, and that the other component of T (2, 2n) is the
intersection of {(a, b) ∈ C2, b = −an} with S3ε (for ε > 0 small enough). By writing a = x + iy
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Or. fund. cyc. η ⊗ (f1
∗ ∧ g1∗) | η ⊗ (f2

∗ ∧ g2∗)
Seifert divisors 〈f1〉 ⊗ g1∗ | 〈f2〉 ⊗ g2∗
Apply

inter. prod.

〈f1f2〉 ⊗ (g2
∗ ∧ g1∗) · (z, x− y)

+〈f1f2〉 ⊗ (g2
∗ ∧ g1∗) · (z, x)

Quad. link.

class

−〈f2〉η ⊗ (g2
∗ ∧ f1

∗ ∧ g1∗) · (x− y) ⊕ 〈f1〉η ⊗ (g1
∗ ∧ f2

∗ ∧ g2∗) · (x− y)

−〈f2〉η ⊗ (g2
∗ ∧ f1

∗ ∧ g1∗) · (x) +〈f1〉η ⊗ (g1
∗ ∧ f2

∗ ∧ g2∗) · (x)
Apply

õ1 ⊕ õ2
−〈f2〉η ⊗ g2∗ · (x− y) ⊕ 〈f1〉η ⊗ g1∗ · (x− y)
−〈f2〉η ⊗ g2∗ · (x) +〈f1〉η ⊗ g1∗ · (x)

Apply

ϕ∗1 ⊕ ϕ∗2
−〈au〉η ⊗ u− v∗ · (u− v) ⊕ 〈au〉η ⊗ u− v∗ · (u− v)
−〈v〉η ⊗ u∗ · (u) +〈v〉η ⊗ u∗ · (u)

Apply ∂ ⊕ ∂ (1 + 〈a〉)η2 ⊗ (u∗ ∧ v∗) ⊕ −(1 + 〈a〉)η2 ⊗ (u∗ ∧ v∗)
Quad. lk. deg. 1 + 〈a〉 ⊕ −(1 + 〈a〉)
Quad. link.

class

−〈f2〉η ⊗ (g2
∗ ∧ f1

∗ ∧ g1∗) · (x− y) ⊕ 〈f1〉η ⊗ (g1
∗ ∧ f2

∗ ∧ g2∗) · (x− y)

−〈f2〉η ⊗ (g2
∗ ∧ f1

∗ ∧ g1∗) · (x) +〈f1〉η ⊗ (g1
∗ ∧ f2

∗ ∧ g2∗) · (x)

Apply (i1)∗
−〈f2〉η ⊗ (g2

∗ ∧ f1
∗ ∧ g1∗) · (x− y)

−〈f2〉η ⊗ (g2
∗ ∧ f1

∗ ∧ g1∗) · (x)

Apply ∂
−〈a〉η2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)
− η2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)

Ambient quad. lk. deg. −(1 + 〈a〉)
Table 2. The binary link Ba

and b = z + it (with x, y, z, t ∈ R), the equation b = an becomes the system of equations
t =

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1

z =

bn
2
c∑

k=0

(
n

2k

)
(−1)kxn−2ky2k

and the equation b = −an becomes the system of equations
t = −

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1

z = −
bn
2
c∑

k=0

(
n

2k

)
(−1)kxn−2ky2k

From now on, we denote

Σt(x, y) :=

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1, f1 := t− Σt(x, y), f2 := t+ Σt(x, y),

Σz(x, y) :=

bn
2
c∑

k=0

(
n

2k

)
(−1)kxn−2ky2k, g1 := z − Σz(x, y), g2 := z + Σz(x, y)

Consequently, we de�ne our analogue over R of the torus link T (2, 2n) as follows:

• Z1 is the intersection of the closed subscheme of A4
R of ideal (f1, g1) and of X := A4

F \{0};
• ϕ1 : A2

R\{0} → Z1 is the morphism associated to the morphism of R-algebras R[x, y, z, t]→
R[u, v] which maps x, y, z, t to u, v,Σz(u, v),Σt(u, v) respectively;
• o1 is the orientation class associated to the couple (f1, g1);
• Z2 is the intersection of the closed subscheme of A4

R of ideal (f2, g2) and of X;
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• ϕ2 : A2
R\{0} → Z2 is the morphism associated to the morphism of R-algebras R[x, y, z, t]→

R[u, v] which maps x, y, z, t to u, v,−Σz(u, v),−Σt(u, v) respectively;
• o2 is the orientation class associated to the couple (f2, g2).

An oriented fundamental cycle of Z1 (with orientation o1) is η⊗ (f1
∗ ∧ g1∗) (over the generic

point of Z1) and a Seifert divisor of Z1 (with orientation o1) is 〈f1〉⊗ g1∗ (over the generic point
of the hypersurface of X \ Z of equation g1 = 0).

An oriented fundamental cycle of Z2 (with orientation o2) is η⊗ (f2
∗ ∧ g2∗) (over the generic

point of Z2) and a Seifert divisor of Z2 (with orientation o2) is 〈f2〉⊗ g2∗ (over the generic point
of the hypersurface of X \ Z of equation g2 = 0).

The intersection of the underlying divisors has n irreducible components, whose generic points
are denoted by P0, . . . , Pn−1, where for all j ∈ {0, . . . , n− 1}, the component of generic point Pj
is given in X \ Z by the equations

z = 0, x = tan

(
(n− 1− 2j)π

2n

)
y

Indeed, if we denote x+ iy = ρeiθ with ρ ∈ R∗+, θ ∈ R then:

<((x+ iy)n) = 0⇔ cos(nθ) = 0

⇔ θ =
(2j + 1)π

2n
for some j ∈ {0, . . . , 2n− 1}

⇔ x = tan

(
(n− 1− 2j)π

2n

)
y for some j ∈ {0, . . . , n− 1}

From now on, for every j ∈ {0, . . . , n − 1}, we denote θj :=
(n− 1− 2j)π

2n
. Thus, the

homogeneous polynomial Σz(x, y) of degree n is equal to
n−1∏
j=0

(x−tan(θj)y). Note that the tan(θj),

with j ∈ {0, . . . , n−1}, are distinct, since they are the roots of the polynomial (x+ i)n+(x− i)n
(which is coprime with its derivative).

It follows (see Section 3) that the intersection product of these Seifert divisors is equal to:

n−1∑
j=0

(mj)ε〈f1f2uj〉 ⊗ (πj
∗ ∧ g1∗) · (Pj)

where πj (resp. uj) is a uniformizing parameter (resp. a unit) in OX\Z,Pj/(g1) and mj ∈ Z
such that g2 = ujπ

mj
j . Note that one can choose πj = g2 (hence mj = 1 and uj = 1) since

OX\Z,Pj/(g1) ' (R[x, y, z, t]/(z −
n−1∏
i=0

(x − tan(θi)y)))(z,x−tan(θj)y) ' R[x, y, t](x−tan(θj)y) and in

this ring g2 = 2

n−1∏
i=0

(x− tan(θi)y), thus the intersection product of these Seifert divisors is equal

to:
n−1∑
j=0

〈f1f2〉 ⊗ (g2
∗ ∧ g1∗) · (Pj)

It follows (see Section 3) that its image by the boundary map, which is the quadratic linking
class, is the following:

n−1∑
j=0

−〈f2〉η ⊗ (g2
∗ ∧ f1

∗ ∧ g1∗) · (x = tan(θj)y in Z1)

+

n−1∑
j=0

〈f1〉η ⊗ (g1
∗ ∧ f2

∗ ∧ g2∗) · (x = tan(θj)y in Z2)
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Its image by õ1 ⊕ õ2 is:

n−1∑
j=0

−〈f2〉η ⊗ g2∗ ⊕
n−1∑
j=0

〈f1〉η ⊗ g1∗

Its image by ϕ∗1 ⊕ ϕ∗2 is:

n−1∑
j=0

−〈2Σt(u, v)〉η ⊗ 2Σz(u, v)
∗ ⊕

n−1∑
j=0

〈−2Σt(u, v)〉η ⊗−2Σz(u, v)
∗

Note that the �rst component of the couple above is equal to:

n−1∑
j=0

〈−
bn−1

2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))v〉η ⊗ u− tan(θj)v
∗

Its image by the boundary map ∂ is the following:

n−1∑
j=0

〈−
bn−1

2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))〉η2 ⊗ (v∗ ∧ u− tan(θj)v
∗
)

=
n−1∑
j=0

〈
bn−1

2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))〉η2 ⊗ (u∗ ∧ v∗)

Note that

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1 = =((tan(θj) + i)n) = ρj sin(
(2j + 1)π

2
) with

ρj a positive real number, hence:

〈
bn−1

2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1〉 =

{
〈1〉 if j is even

〈−1〉 if j is odd

Note that for all l ∈ {0, . . . , n − 1}, −π
2 < θl <

π
2 hence for all i < j, tan(θj) − tan(θi) < 0

and for all i > j, tan(θj)− tan(θi) > 0, hence:

〈
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))〉 =

{
〈1〉 if j is even

〈−1〉 if j is odd

Therefore ∂(ϕ∗1(õ1(σ1,L ))) = n η2 ⊗ (u∗ ∧ v∗), hence the �rst component of the quadratic
linking degree is equal to n ∈W(R).

With similar computations to the ones above, we �nd that the second component of the
quadratic linking degree is equal to −n ∈W(R), hence the quadratic linking degree is equal to
(n,−n) ∈W(R)⊕W(R) ' Z⊕Z and we �nd that the ambient quadratic linking degree is equal
to −n ∈W(R) ' Z.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the analogue of T (2, 2n) is 1 if n is odd, 0 if n is even. Note
that the absolute value of each component of the quadratic linking degree and of the ambient
quadratic linking degree of the analogue of T (2, 2n) is equal to n, hence the invariant presented
in Corollary 2.18 distinguishes between all these links T (2, 2n), similarly to the absolute value
of the linking number which distinguishes between all the links T (2, 2n) in knot theory (recall
that the linking number of T (2, 2n) is equal to n in classical knot theory).
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Appendix A. An explicit definition of the residue morphisms of Milnor-Witt

K-theory

In this appendix, we give an explicit de�nition (i.e. one which allows computations) of the
noncanonical residue morphism and prove that it is indeed the noncanonical residue morphism
(as de�ned by Morel in [Mor12] and recalled in De�nition A.1). Note that explicit de�nitions
of the canonical residue morphism (see De�nition A.6) and of the twisted canonical residue
morphism (see De�nition A.7) follow directly. We use the case n ≤ 0 in Theorem A.10 to
compute the quadratic linking class and degree in Sections 3 and 4; the case n ≥ 1 is included
for its usefulness in other computations.

See [Mor12, Section 3.1] for recollections about Milnor-Witt K-theory. Throughout this
Appendix, F is a perfect �eld, v : F ∗ → Z is a discrete valuation (of residue �eld κ(v) and ring
Ov) and π is a uniformizing parameter for v. For all u ∈ O∗v , we denote by u its class in κ(v)
(which is in κ(v)∗ since u ∈ O∗v). We denote the usual generators of the Milnor-Witt K-theory
ring of F by [a] ∈ KMW

1 (F ) (with a ∈ F ∗) and η ∈ KMW
−1 (F ) (see [Mor12, De�nition 3.1]). We

denote 〈a〉 := 1 + η[a] ∈ KMW
0 (F ), ε := −〈−1〉 and for all n ∈ N0, nε :=

∑n
i=1〈(−1)i−1〉 and

(−n)ε := ε nε. We denote by χodd : Z → {0, 1} the characteristic function of the set of odd
numbers.

We now recall Morel's de�nition of the noncanonical residue morphism.

De�nition A.1 (The noncanonical residue morphism). The residue morphism ∂πv : KMW
∗ (F )→

KMW
∗−1 (κ(v)) is the only morphism of graded groups which commutes to product by η and satis�es,

for all n ∈ N0, u1, . . . , un ∈ O∗v :
∂πv ([π, u1, . . . , un]) = [u1, . . . , un] and ∂πv ([u1, . . . , un]) = 0.

(For n = 0, this means ∂πv ([π]) = 1 and ∂πv (1) = 0.)

In [Mor12, Theorem 3.15], Morel proves that such a morphism exists and that it is unique.
Before we de�ne the canonical residue morphism, we recall the following facts and de�nition:

Proposition A.2 (Proposition 3.17 in [Mor12]).

∀u ∈ O∗v ,∀α ∈ KMW
∗ (F ), ∂πv (〈u〉α) = 〈u〉∂πv (α)

Corollary A.3. If π′ = u′π with u′ ∈ O∗v then ∂πv = 〈u′〉∂π′v .

De�nition A.4 (Twisted Milnor-Witt K-theory). Let m ∈ Z and L be an F -vector space of di-
mension 1. The L-twisted m-th Milnor-Witt K-theory abelian group of F , denoted KMW

m (F,L),
is the tensor product of the Z[F ∗]-modules KMW

m (F ) and Z[L \ {0}] (the scalar product of
KMW
m (F ) being (

∑
f∈F ∗ nfλf ) · α =

∑
f∈F ∗ nf 〈f〉α).

Remark A.5. Note that if we �x an isomorphism between L and F then we get an isomorphism
of Z[F ∗]-modules between KMW

m (F,L) and KMW
m (F ); nevertheless, KMW

m (F,L) is a useful con-
struction because there is no canonical isomorphism between L and F (hence no canonical iso-
morphism betweenKMW

m (F,L) andKMW
m (F ), unless L = F ) and the introduction ofKMW

m (F,L)
is what allows us to have canonical residue morphisms.

De�nition A.6 (The canonical residue morphism). The canonical residue morphism ∂v :
KMW
∗ (F )→ KMW

∗−1 (κ(v), (mv/m
2
v)
∨) (where ∨ denotes the dual) is given by ∂v = ∂πv ⊗ π∗ (with

π the class of π in mv/m
2
v (which is nonzero since π is a uniformizing parameter for v) and π∗

its dual basis).

Note that ∂v does not depend on the choice of π, since if π′ is another uniformizing parameter
for v then there exists u′ ∈ Ov such that π′ = u′π hence, by Corollary A.3 , ∂πv ⊗ π∗ =

〈u′〉∂π′v ⊗ π∗ = ∂π
′

v ⊗ u′π
∗

= ∂π
′

v ⊗ π′
∗
.

De�nition A.7 (The twisted canonical residue morphism). Let L be a rank one Ov-module.
The twisted canonical residue morphism ∂v,L : KMW

∗ (F,L⊗Ov F )→ KMW
∗−1 (κ(v), (mv/m

2
v)
∨⊗κ(v)
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(L⊗Ov κ(v))) is the morphism of graded groups which satis�es for all α ∈ KMW
∗ (F ) and l ∈ L:

∂v,L(α⊗ (l ⊗ 1)) = ∂πv (α)⊗ (π∗ ⊗ (l ⊗ 1))

Before we prove Theorem A.10, we recall the following facts.

Lemma A.8. For all m,n ∈ Z, (mn)ε = mεnε.

Lemma A.9. For all m ∈ Z, ηmε = ηχodd(m).

Recall that by [Mor12, Lemma 3.6], for all n ≤ 0, KMW
n (F ) is generated by elements of the

form 〈πmu〉η−n with m ∈ Z and u ∈ O∗v , hence, since ∂πv : KMW
n (F ) → KMW

n−1 (κ(v)) is a group
morphism (see De�nition A.1), we only need to give ∂πv (〈πmu〉η−n).

Recall that by [Mor12, Lemma 3.6], for all n ≥ 1, KMW
n (F ) is generated by elements of

the form [πm1u1, . . . , π
mnun] with m1, . . . ,mn ∈ Z and u1, . . . , un ∈ O∗v , hence, since ∂πv :

KMW
n (F ) → KMW

n−1 (κ(v)) is a group morphism (see De�nition A.1), we only need to give
∂πv ([πm1u1, . . . , π

mnun]).

Theorem A.10. For all n ≤ 0, m ∈ Z and u ∈ O∗v:
∂πv (〈πmu〉η−n) = 〈u〉η−n+1χodd(m)

For all n ≥ 1, m1, . . . ,mn ∈ Z and u1, . . . , un ∈ O∗v:
∂πv ([πm1u1, . . . , π

mnun]) =

n−1∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈{1,...,n}\J

mk)ε[−1, . . . ,−1︸ ︷︷ ︸
n−1−l terms

, uj1 , . . . , ujl ]

+
n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l},|I|=p

ηpχodd(
∏
i∈I

mji ×
∏

k∈{1,...,n}\J

mk))[ −1, . . . ,−1︸ ︷︷ ︸
n−1+p−l terms

, uj1 , . . . , ujl ]

Remark A.11. This last formula may seem daunting, but for n = 1 it is merely

∂πv ([πmu]) = mε + ηχodd(m)[u]

(i.e. ∂πv ([πmu]) = 〈u〉mε, similarly to the case n ≤ 0 where ∂πv (〈πmu〉η−n) = 〈u〉η−n+1mε, see
Lemma A.9), for n = 2 it is merely

∂πv ([πm1u1, π
m2u2]) = (m1m2)ε[−1] + (−m2)ε[u1] + (m1)ε[u2]

+ ηχodd(m1m2)[−1, u1] + ηχodd(m1)[−1, u2]

+ (ηχodd(m1) + ηχodd(m2))[u1, u2]

+ η2χodd(m1m2)[−1, u1, u2]

and so on.

Proof. Let n ≤ 0, m ∈ Z and u ∈ O∗v .
∂πv (〈πmu〉η−n) = ∂πv ((1 + η[πmu])η−n)

= ∂πv ((1 + η([πm] + [u] + η[πm, u]))η−n)

= ∂πv ((1 + ηmε[π] + η[u] + η2mε[π, u])η−n) by [Mor12, Lemma 3.14]

= η−n∂πv (1) + η−n+1mε∂
π
v ([π])

+ η−n+1∂πv ([u]) + η−n+2mε∂
π
v ([π, u]) by Prop. A.2 and Def. A.1

= η−n+1mε + η−n+2mε[u] by Def. A.1

= (η−n+1 + η−n+2[u])χodd(m) by Lemma A.9

= 〈u〉η−n+1χodd(m)
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Let n ≥ 1,m1, . . . ,mn ∈ Z, u1, . . . , un ∈ O∗v and N := {1, . . . , n}.

[πm1u1, . . . , π
mnun] =

n∏
i=1

([πmi ] + [ui] + η[πmi , ui])

=

n∏
i=1

((mi)ε[π] + [ui] + η(mi)ε[π, ui]) by [Mor12, Lemma 3.14]

Hence [πm1u1, . . . , π
mnun] =

n∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

∏
k∈N\J

(mk)ε × ε
∑l
i=1 n−l+i−ji [π, . . . , π, uj1 , . . . , ujl ]

+
n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l},|I|=p

ηp ×
∏
i∈I

(mji)ε ×
∏

k∈N\J

(mk)ε)[π, . . . , π, uj1 , . . . , ujl ]

We obtained this last equality by developing the product and using [Mor12, Corollary 3.8]
(ε-graded commutativity), as well as the fact that ηε = η.

The index p corresponds to the number of terms coming from an η(mi)ε[π, ui], the index l
corresponds to the number of terms coming from a [ui] or an η(mi)ε[π, ui], the set J = {j1, . . . , jl}
(with j1 < · · · < jl) corresponds to the indices of the terms coming from a [ui] or an η(mi)ε[π, ui]
and the set I corresponds to the indices of the ji such that uji comes from an η(mji)ε[π, uji ].

By [Mor12, Lemma 3.7] and Lemma A.8:

[πm1u1, . . . , π
mnun] =

n∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈N\J

mk)ε[π,−1, . . . ,−1, uj1 , . . . , ujl ]+

n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l},|I|=p

ηp(
∏
i∈I

mji ×
∏

k∈N\J

mk)ε)[π,−1, . . . ,−1, uj1 , . . . , ujl ]

By Lemma A.9 :

[πm1u1, . . . , π
mnun] =

n∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈N\J

mk)ε[π,−1, . . . ,−1, uj1 , . . . , ujl ]+

n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l},|I|=p

ηpχodd(
∏
i∈I

mji ×
∏

k∈N\J

mk))[π,−1, . . . ,−1, uj1 , . . . , ujl ]

By De�nition A.1 and Proposition A.2 , ∂πv ([πm1u1, . . . , π
mnun]) is equal to:

n−1∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈N\J

mk)ε[−1, . . . ,−1, uj1 , . . . , ujl ]+

n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l},|I|=p

ηpχodd(
∏
i∈I

mji ×
∏

k∈N\J

mk))[−1, . . . ,−1, uj1 , . . . , ujl ]

Note that the term l = n in the �rst double sum vanishes since ∂πv ([u1, . . . , un]) = 0 (by
De�nition A.1). �
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Appendix B. The Rost-Schmid complex and Rost-Schmid groups

In this appendix, we recall notions about the Rost-Schmid complex and its cohomology groups
which are used in our paper. See [Mor12, Section 3.1] for recollections about Milnor-Witt K-
theory. Throughout this appendix, F is a perfect �eld and X is a smooth �nite-type F -scheme.
We denote the usual generators of the Milnor-Witt K-theory ring of F by [a] ∈ KMW

1 (F ) (with
a ∈ F ∗) and η ∈ KMW

−1 (F ) (see [Mor12, De�nition 3.1]). We denote 〈a〉 := 1 + η[a] ∈ KMW
0 (F ).

B.1. De�nitions and �rst properties. We are about to give the de�nition of the Rost-Schmid
complex that Morel gave in [Mor12, Chapter 5]. Note that an earlier (equivalent) de�nition of
the Rost-Schmid complex was given in [BM00]. (The equivalence of these de�nitions follows
from [Mor03, Theorem 6.4.5].) Before we de�ne it, recall De�nition A.4 (twisted Milnor-Witt
K-theory) and the following de�nition.

De�nition B.1 (Determinant of a locally free module). The determinant of a locally free OX -
module V of constant �nite rank r, denoted det(V), is its r-th exterior power Λr(V).

De�nition B.2 (Rost-Schmid complex). Let j ∈ Z and L be an invertible OX -module. The
Rost-Schmid complex associated to X, j and L is :

C(X,KMW
j {L}) =

⊕
i∈N0

Ci(X,KMW
j {L})

with

Ci(X,KMW
j {L}) =

⊕
x∈X(i)

KMW
j−i (κ(x), νx ⊗κ(x) L|x)

where X(i) is the set of points of codimension i in X, L|x = Lx ⊗OX,x κ(x) and νx = det(Nx/X)

with Nx/X the normal sheaf of x in X, i.e. the dual of mX,x/m
2
X,x. We denote C(X,KMW

j ) :=

C(X,KMW
j {OX}).

Recall De�nition A.7 and the following notation (taken from [Mor12, pp. 121-122]).

Notation B.3. Let x ∈ X be such that {x} is smooth, y ∈ {x}(1) and L be an invertible
OX -module. We denote by

∂xy : KMW
∗ (κ(x), νx ⊗κ(x) L|x)→ KMW

∗−1 (κ(y), νy ⊗κ(y) L|y)

the twisted canonical residue morphism associated to the discrete valuation of O{x},y.

If {x} is not smooth, the morphism ∂xy : KMW
∗ (κ(x), νx⊗κ(x) L|x)→ KMW

∗−1 (κ(y), νy ⊗κ(y) L|y)
is the sum over the points z above y in the normalisation of {x} of the composition of the
adequate twisted canonical residue morphism and of the transfer morphism associated to y and
z (see [Fas20, Subsection 2.1] or Feld's article [Fel20] (take M = KMW in Feld's notations) or
Déglise's notes [Dég23]).

De�nition B.4 (Di�erential of the Rost-Schmid complex). Let j ∈ Z and L be an invertible
OX -module. The di�erential of the Rost-Schmid complex associated to X, j and L is the
morphism dX,j,L : C∗(X,KMW

j {L})→ C∗+1(X,KMW
j {L}), denoted d for short, given by:

di(
∑

x∈X(i)

kx) =
∑

x∈X(i)

∑
y∈{x}(1)

∂xy (kx)

Note that the sum which appears in the above de�nition is well-de�ned since, with the same

notations as above, for every kx the number of y ∈ {x}(1) such that ∂xy (kx) 6= 0 is �nite (see
[Fel20, Sections 4 and 7] (especially axiom FD) or Déglise's notes [Dég23]).

By [Mor12, Theorem 5.31], the Rost-Schmid complex is a complex, i.e. for all i ∈ N0,
di+1 ◦ di = 0, hence we can de�ne the Rost-Schmid groups as follows.
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De�nition B.5 (Rost-Schmid groups). Let i, j ∈ Z, L be an invertible OX -module. The
i-th Rost-Schmid group associated to X, j and L, denoted by H i(X,KMW

j {L}), is the i-th

cohomology group of the Rost-Schmid complex C(X,KMW
j {L}), i.e.:

H i(X,KMW
j {L}) = ker(di)/ im(di−1)

where by convention di = 0 if i < 0. We denote H i(X,KMW
j ) := H i(X,KMW

j {OX}).

Note that by de�nition, for all i ∈ N0 and j ∈ Z, Ci(Spec(F ),KMW
j ) = KMW

j (F ) if i = 0, to

0 otherwise, hence H i(Spec(F ),KMW
j ) = KMW

j (F ) if i = 0, to 0 otherwise.

Remark B.6. Note that by [Mor12, Theorem 5.47] Rost-Schmid groups generalize Chow-Witt

groups C̃H
i
(X): if X is a smooth F -scheme and i ∈ N0 then H i(X,KMW

i ) = C̃H
i
(X).

Let us now state the property of homotopy invariance of Rost-Schmid groups.

Theorem B.7 (Theorem 5.38 in [Mor12]). Let π : A1
X → X be the projection, i ∈ N0 and j ∈ Z.

The induced morphism π∗ : H i(X,KMW
j )→ H i(A1

X ,K
MW
j ) is an isomorphism.

Note that it follows from this theorem that for all n, i ∈ N0 and j ∈ Z, H i(AnF ,K
MW
j ) is

canonically isomorphic to H i(Spec(F ),KMW
j ) hence to KMW

j (F ) if i = 0, to 0 otherwise.

We now de�ne boundary triples and boundary maps, which were introduced by Feld in [Fel20]
(following what Rost did in [Ros96]).

De�nition B.8 (Boundary triple). A boundary triple is a 5-tuple (Z, i,X, j, U), or abusively a
triple (Z,X,U), with i : Z → X a closed immersion and j : U → X an open immersion such
that the image of U by j is the complement in X of the image of Z by i, where Z,X,U are
smooth F -schemes of pure dimensions. We denote by dZ and dX the dimensions of Z and X
respectively and by νZ the determinant of the normal sheaf of Z in X.

Remark B.9. Let (Z, i,X, j, U) be a boundary triple. Note that, similarly to [Ros96, (3.10)], for
each integerm, the complex C•+dZ−dX (Z,KMW

m+dZ−dX{νZ}) is a subcomplex of C•(X,KMW
m ) with

quotient complex C•(U,KMW
m ), and that we have for each integer n a canonical isomorphism

Cn(X,KMW
m ) ' Cn+dZ−dX (Z,KMW

m+dZ−dX{νZ})⊕ C
n(U,KMW

m )

Notation B.10. We denote the projections by i∗ : C•(X,KMW
∗ )→ C•+dZ−dX (Z,KMW

∗+dZ−dX{νZ})
and j∗ : C•(X,KMW

∗ )→ C•(U,KMW
∗ ) and the inclusions by i∗ : C•+dZ−dX (Z,KMW

∗+dZ−dX{νZ})→
C•(X,KMW

∗ ) and j∗ : C•(U,KMW
∗ )→ C•(X,KMW

∗ ) (see Remark B.9).

Remark B.11. Note that since i∗ (resp. j
∗) is the inclusion of a subcomplex (resp. the projection

to a quotient complex), it commutes with the di�erentials of the complexes, hence induces a
morphism i∗ : Hn(Z,KMW

m {νZ}) → Hn+dX−dZ (X,KMW
m+dX−dZ ) (resp. j∗ : Hn(X,KMW

m ) →
Hn(U,KMW

m )). Also note that this morphism i∗ coincides with the pushforward along the
closed immersion i : Z → X (see [Fas20, Subsection 2.3]) and that this morphism j∗ coincides
with the pullback along the open immersion j : U → X (see [Fas20, Subsection 2.4]).

De�nition B.12 (Boundary map). Let (Z, i,X, j, U) be a boundary triple. The boundary map
associated to this boundary triple is the morphism

∂ : C•(U,KMW
∗ )→ C•+1+dZ−dX (Z,KMW

∗+dZ−dX{νZ})

induced by the di�erential d of the Rost-Schmid complex C(X,KMW
∗ ), i.e.:

∂ = i∗ ◦ d ◦ j∗

The following theorem is a special case of the more general exact triangle theorem in homo-
logical algebra (the boundary maps being the connecting morphisms).
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Theorem B.13. Let (Z, i,X, j, U) be a boundary triple. The boundary map induces a morphism
∂ : Hn+dX−dZ (U,KMW

m+dX−dZ ) → Hn+1(Z,KMW
m {νZ}) and we have the following long exact

sequence, called the localization long exact sequence:

. . . // Hn(Z,KMW
m {νZ})

i∗ // Hn+dX−dZ (X,KMW
m+dX−dZ )

j∗ //

j∗ // Hn+dX−dZ (U,KMW
m+dX−dZ )

∂ // Hn+1(Z,KMW
m {νZ}) // . . .

B.2. The Rost-Schmid groups of punctured a�ne spaces. Let us now compute the Rost-
Schmid groups of AnF \{0} for n ≥ 2. To do this, we use the following lemma (which is also used
in the main part of the paper).

Lemma B.14. Let L be an invertible OX-module. For all i, j ∈ Z, the morphismC
i(X,KMW

j {L ⊗ L}) → Ci(X,KMW
j )∑

x∈I
kx ⊗ (lx ⊗ lx) 7→

∑
x∈I

kx

where I is a �nite subset of X(i), kx ∈ KMW
j−i (κ(x), νx) and lx ∈ L|x \ {0}, is a well-de�ned

isomorphism which commutes with di�erentials.

Proof. Note that elements of Ci(X,KMW
j {L⊗L}) are of the form

∑
x∈I mx ⊗ tx with I a �nite

subset ofX(i),mx ∈ KMW
j−i (κ(x)) and tx ∈ Z[(νx⊗(L⊗L)|x)\{0}]. Let x ∈ I. Since νx⊗(L⊗L)|x

is a κ(x)-vector space of dimension 1, there exist nx ∈ KMW
j−i (κ(x)) and sx ∈ (νx⊗(L⊗L)|x)\{0}

such that mx ⊗ tx = nx ⊗ sx. By de�nition of KMW
j−i (κ(x), νx), there exist hx ∈ KMW

j−i (κ(x), νx)

and lx, rx ∈ L|x \ {0} such that nx ⊗ sx = hx ⊗ (lx ⊗ rx). Since L|x is a κ(x)-vector space
of dimension 1, there exists vx ∈ κ(x)∗ such that rx = vxlx. It follows that hx ⊗ (lx ⊗ rx) =
〈vx〉hx ⊗ (lx ⊗ lx). Denoting kx := 〈vx〉hx, we get that elements of Ci(X,KMW

j {L ⊗ L}) are of

the form
∑
x∈I

kx⊗ (lx⊗ lx) with I a �nite subset of X(i), kx ∈ KMW
j−i (κ(x), νx) and lx ∈ L|x \ {0}.

This morphism is well-de�ned since if
∑

x∈I kx⊗(lx⊗ lx) =
∑

x∈J k
′
x⊗(l′x⊗ l′x) with I, J �nite

subsets of X(i), kx, k
′
x ∈ KMW

j−i (κ(x), νx) and lx, l
′
x ∈ L|x \ {0}, then for all x ∈ I ∪ J \ (I ∩ J),

kx = k′x = 0, and for all x ∈ I ∩ J , l′x = uxlx for some ux ∈ F ∗ and k′x ⊗ (l′x ⊗ l′x) =
〈u2x〉k′x ⊗ (lx ⊗ lx) = k′x ⊗ (lx ⊗ lx) hence k′x ⊗ (lx ⊗ lx) = kx ⊗ (lx ⊗ lx) hence k′x = kx. The
preceding equality kx ⊗ (l′x ⊗ l′x) = kx ⊗ (lx ⊗ lx) shows that the morphismC

i(X,KMW
j ) → Ci(X,KMW

j {L ⊗ L})∑
x∈I

kx 7→
∑
x∈I

kx ⊗ (lx ⊗ lx)

is well-de�ned, which shows that the morphism in the statement is an isomorphism. The com-
mutation with di�erentials is straightforward. �

De�nition B.15. Let n ≥ 2, j ∈ Z be integers and o : det(N{0}/AnF ) → O{0} ⊗ O{0} be an

isomorphism. The isomorphism o gives rise to an isomorphism H0({0},KMW
j {det(N{0}/AnF )})

→ H0({0},KMW
j {O{0} ⊗ O{0}}) hence to an isomorphism õ : H0({0},KMW

j {det(N{0}/AnF )})
→ H0({0},KMW

j ) = KMW
j (F ) by Lemma B.14. We call õ the isomorphism induced by o.

Proposition B.16. Let n ≥ 2, i ≥ 0 and j ∈ Z be integers. Denoting by ψ : AnF \ {0} → AnF
the inclusion and by ∂ the boundary map associated to the boundary triple ({0},AnF ,AnF \ {0}),
the morphisms ψ∗ : KMW

j (F ) ' H0(AnF ,K
MW
j ) → H0(AnF \ {0},K

MW
j ) and ∂ : Hn−1(AnF \

{0},KMW
j )→ H0({0},KMW

j−n{det(N{0}/AnF )}) ' KMW
j−n (F ) are isomorphisms and if i /∈ {0, n−1}

then H i(AnF \ {0},K
MW
j ) = 0.
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Proof. The localization long exact sequence (see Theorem B.13) associated to the boundary triple
({0}, ϕ,AnF , ψ,AnF \ {0}) gives us the following exact sequences for all j ∈ Z and i /∈ {0, n− 1}:

0 // H0(AnF ,K
MW
j )

ψ∗ // H0(AnF \ {0},K
MW
j ) // 0

0 // Hn−1(AnF \ {0},K
MW
j )

∂ // H0({0},KMW
j−n{det(N{0}/AnF )}) // 0

0 // H i(AnF \ {0},K
MW
j ) // 0

�

Remark B.17. Note that the Rost-Schmid groups of AnF \{0} are already known (combine [AF14,
Lemma 4.5] with [Mor12, Corollary 5.43], [Fel21, Example 1.5.1.19] and [Mor12, Theorem 5.46]),
but the explicit de�nition of isomorphisms we did above is important for the two following de�-
nitions, the �rst of which is used in the de�nition of the quadratic linking degree (see De�nition
2.11) and the second of which is used in the de�nition of the ambient quadratic linking degree
(see De�nition 2.13).

De�nition B.18 (The conventional isomorphism for A2
F \ {0}). The conventional isomorphism

ζ : H1(A2
F \ {0},KMW

0 )→W(F )

is the composite of the boundary map

∂ : H1(A2
F \ {0},KMW

0 )→ H0({0},KMW
−2 {det(N{0}/A2

F
)})

(which is an isomorphism by Proposition B.16), of the isomorphism

H0({0},KMW
−2 {det(N{0}/A2

F
)})→ KMW

−2 (F )

induced by the isomorphism det(N{0}/A2
F

) → O{0} ⊗ O{0} which sends u∗ ∧ v∗ to 1 ⊗ 1, where

A2
F = Spec(F [u, v]) (see De�nition B.15) and of the canonical isomorphism (which sends η2 to 1)

KMW
−2 (F )→W(F )

De�nition B.19 (The conventional isomorphism for A4
F \ {0}). The conventional isomorphism

ζ ′ : H3(A4
F \ {0},KMW

2 )→W(F )

is the composite of the boundary map

∂ : H3(A4
F \ {0},KMW

2 )→ H0({0},KMW
−2 {det(N{0}/A4

F
)})

(which is an isomorphism by Proposition B.16), of the isomorphism

H0({0},KMW
−2 {det(N{0}/A4

F
)})→ KMW

−2 (F )

induced by the isomorphism det(N{0}/A4
F

)→ O{0}⊗O{0} which sends x∗ ∧ y∗ ∧ z∗ ∧ t∗ to 1⊗ 1,

where A4
F = Spec(F [x, y, z, t]) (see De�nition B.15) and of the canonical isomorphism (which

sends η2 to 1)

KMW
−2 (F )→W(F )

B.3. The intersection product of oriented divisors. The intersection product is de�ned
from the exterior product (see [Fas20, Subsection 3.1]), which is also known as the cross product
(see [Fel20, Section 11]) and the pullback along the diagonal (see [Fas20, Subsection 3.3]), which
is also known as the Gysin morphism induced by the diagonal (see [Fel20, Section 10]).

De�nition B.20 (The intersection product). Let ∆ : X → X × X be the diagonal. The

intersection product · : H i(X,KMW
j )×H i′(X,KMW

j′ )→ H i+i′(X,KMW
j+j′) is the composite of the

exterior product µ : H i(X,KMW
j ) × H i′(X,KMW

j′ ) → H i+i′(X × X,KMW
j+j′) with the pullback

(a.k.a. Gysin morphism) ∆∗ : H i+i′(X ×X,KMW
j+j′)→ H i+i′(X,KMW

j+j′).

The proposition below states that the intersection product is a product.
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Proposition B.21 (Subsection 3.4 in [Fas20] or Theorem 11.6 in [Fel20]). The intersection

product makes
⊕
i∈N0

C̃H
i
(X) into a graded KMW

0 (F )-algebra, which is called the Chow-Witt ring.

In this paper, we are interested in the intersection product of oriented divisors and often use
the following proposition.

Proposition B.22 (Subsection 3.4 in [Fas20]). Let c1, c2 be oriented divisors in X, i.e. c1, c2 ∈
H1(X,KMW

1 ). The intersection product of c1 with c2, denoted by c1 · c2, is 〈−1〉-commutative:

c2 · c1 = 〈−1〉(c1 · c2)

The following formula (or rather the formula in Corollary B.24) is used to compute the
intersection product in Sections 3 and 4. This theorem, which has been proved by Déglise, will
be made available in the second part of his notes [Dég23]; we give a proof sketch below.

Theorem B.23. Let X be a smooth F -scheme. Let D1, D2 be smooth integral divisors in X such
that D1 ∩D2 is of codimension 2 in X. For all i ∈ {1, 2}, let gi be a local parameter for Di, i.e.
gi is a uniformizing parameter for OX,Di . The intersection product of 1 ⊗ g1∗ ∈ H1(X,KMW

1 )

(over the generic point of D1) with 1 ⊗ g2∗ ∈ H1(X,KMW
1 ) (over the generic point of D2) is

the class in H2(X,KMW
2 ) of the sum over the generic points x of the irreducible components of

D1 ∩D2 of (mx)ε〈ux〉⊗ (πx
∗⊗ g1∗) (over the point x), where πx is a uniformizing parameter for

OX,x/(g1), ux is a unit in OX,x/(g1) and mx ∈ Z such that g2 = uxπ
mx
x ∈ OX,x/(g1).

The ideas of the proof are the following:

• Reduce the problem to the case where D1 = div(g1).
• Denoting by i1 : D1 → X the inclusion and by Θ1 : H0(D1,K

MW
0 )→ H0(D1,K

MW
0 {νD1})

(where νD1 is the determinant of the normal sheaf of D1 in X) the isomorphism which
sends 1 to 1⊗ g1∗, check that 1⊗ g1∗ ∈ H1(X,KMW

1 ) is equal to (i1)∗(Θ1(1)).
• Use the projection formula (Theorem 3.19 in [Fas20]) to show that:

(i1)∗(Θ1(1)) · (1⊗ g2∗) = (i1)∗(Θ1(1) · (i1)∗(1⊗ g2∗))
• Use Proposition 3.2.15 in [DFJ22], which states that if i is the closed immersion of a
principal divisor D = div(π) and j is the complementary open immersion to i, then i! =
∂◦γ[π]◦j!, to show that (i1)

∗ = ∂1◦γ[g1]◦(j1)∗, with j1 the complementary open immersion
to i1, ∂1 the boundary map associated to the boundary triple (D1, i1, X, j1, X \D1) and
γ[g1] the multiplication by [g1].
• Deduce from the previous steps that:

(1⊗ g1∗) · (1⊗ g2∗) = (i1)∗(Θ1(1) · (∂1 ◦ γ[g1] ◦ (j1)
∗)(1⊗ g2∗))

and conclude.

Corollary B.24. Let X be a smooth F -scheme. Let D1, D2 be smooth integral divisors in X such
that D1∩D2 is of codimension 2 in X. For all i ∈ {1, 2}, let gi be a local parameter for Di and fi
be a unit in κ(Di) = OX,Di/mX,Di such that for all generic points x of irreducible components of

D1∩D2, fi ∈ κ(x) = OX,x/mX,x is a unit. The intersection product of 〈f1〉⊗g1∗ ∈ H1(X,KMW
1 )

(over the generic point of D1) with 〈f2〉 ⊗ g2∗ ∈ H1(X,KMW
1 ) (over the generic point of D2) is

the class in H2(X,KMW
2 ) of the sum over the generic points x of the irreducible components of

D1∩D2 of (mx)ε〈f1f2ux〉⊗ (πx
∗⊗g1∗) (over the point x), where πx is a uniformizing parameter

for OX,x/(g1), ux is a unit in OX,x/(g1) and mx ∈ Z such that g2 = uxπ
mx
x ∈ OX,x/(g1).

Proof. First note that, with the notations above, fi ∈ κ(x) is well-de�ned since if fi and f ′i
are two representatives in OX,Di of fi ∈ κ(Di) (hence di�er by an element of mX,Di) and
if fi, f

′
i ∈ OX,x are sent by the canonical morphism ψ : OX,x → OX,Di to fi, f

′
i ∈ OX,Di

respectively, then fi, f
′
i ∈ OX,x di�er by an element of mX,x (since ψ−1(mX,Di) ⊂ mX,x).

Note that for all i ∈ {1, 2}, 〈fi〉 ⊗ gi∗ = 1 ⊗ figi
∗
with figi a local parameter for Di (figi ∈

mX,Di/m
2
X,Di

is well-de�ned since fi ∈ OX,Di/mX,Di and gi ∈ mX,Di and (a representative of)
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figi ∈ mX,Di is a generator of mX,Di since (a representative of) fi is a unit in OX,Di and gi is a
generator of mX,Di).

Therefore, by Theorem B.23, the intersection product of 〈f1〉 ⊗ g1
∗ with 〈f2〉 ⊗ g2

∗ is the
sum over the generic points x of the irreducible components of D1 ∩D2 of (mx)ε〈vx〉 ⊗ (πx

∗ ⊗
f1g1

∗
) (over the point x), where πx is a uniformizing parameter for OX,x/(f1g1), vx is a unit in

OX,x/(f1g1) and mx ∈ Z such that f2g2 = vxπ
mx
x ∈ OX,x/(f1g1).

Note that since f2 is a unit in κ(x), ux := f−12 vx is a unit in κ(x) and (mx)ε〈vx〉 ⊗ (πx
∗ ⊗

f1g1
∗
) = (mx)ε〈f2ux〉⊗(πx

∗⊗f1g1
∗
). Further note that since f1 is a unit in κ(x), the ideal (f1g1)

is equal to the ideal (g1) in OX,x and (mx)ε〈f2ux〉⊗ (πx
∗⊗f1g1

∗
) = (mx)ε〈f1f2ux〉⊗ (πx

∗⊗g1∗).
Finally note that, by de�nition of ux, g2 = uxπ

mx
x ∈ OX,x/(g1). �
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