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Introduction

In 1999, Morel and Voevodsky founded motivic homotopy theory (see [START_REF] Morel | A1-homotopy theory of schemes[END_REF]) in order to import topological methods into algebraic geometry (see also the second section of [START_REF] Asok | A1-homotopy theory and contractible varieties: a survey[END_REF] for a brief overview). The goal of this paper is to explore the possibility of dening a counterpart to knot theory in algebraic geometry by using motivic homotopy theory. Specically, we develop an algebro-geometric theory of linking in a setting inspired by classical linking in knot theory and follow it through to explicit computations on families of algebraic varieties.

We begin by dening counterparts, over a perfect eld F , to oriented links with two components (i.e. couples of disjoint oriented knots). Specically, we replace the circle S 1 with A 2 F \ {0} and the 3-sphere S 3 with A 4 F \ {0}. We then dene a counterpart to the linking number, which in knot theory is an invariant of oriented links with two components which corresponds to the number of times one of the oriented components turns around the other oriented component, and a counterpart to the linking couple, which is a couple of integers whose absolute values coincide with the absolute value of the linking number. We call these counterparts the ambient quadratic Theorem 1.3. Let L be an oriented link with two components and k > 0 be even. We denote the quadratic linking degree of L by Qld L = (d 1 , d 2 ) ∈ W(F )⊕W(F ) and the ambient quadratic linking degree by AQld L . Then Σ k (d 1 ), Σ k (d 2 ) and Σ k (AQld L ) are invariant under changes of orientation classes o 1 , o 2 and under changes of parametrisations of ϕ 1 , ϕ 2 : A 2 F \ {0} → A 4 F \ {0}.

Note that even though these invariants give the same value on d 1 , d 2 and AQld L in all of the examples in this paper, the author has found no reason for this to be true in general (over an arbitrary perfect eld). The author conjectures that this is true in the real case, as this is a direct consequence of the conjecture that the real realization of the ambient quadratic linking degree is the linking number and that the real realization of the quadratic linking degree is the linking couple, at least up to a sign (this is a work in progress).

In Section 3 we give a method to explicitly compute the quadratic linking class (see Theorem 3.1), the quadratic linking degree (see Theorem 3.2) and the ambient quadratic linking degree (see Theorem 3.3) when the link Z 1 Z 2 ⊂ A 4 F \ {0} is such that for each i ∈ {1, 2} the closure

Z i ⊂ A 4
F of Z i is given by two irreducible equations {f i = 0, g i = 0} such that {g 1 = 0, g 2 = 0} is of codimension 2 in (A 4 F \ {0}) \ (Z 1 Z 2 ) and for each generic point p of an irreducible component of {g 1 = 0, g 2 = 0}, f 1 and f 2 are units in the residue eld κ(p).

In Section 4 we compute the quadratic linking class, the quadratic linking degree and the ambient quadratic linking degree (as well as their invariants) on several examples. The Examples 4.2 (which we call binary links) showcase the usefulness of the invariant Σ 2 by showing that it can distinguish between an innity of dierent links. The Examples 4.3 are inspired by the torus links T (2, 2n) of linking number n (the Hopf link if n = 1, the Solomon link if n = 2 and the n-gonal link (two intertwined n-gons) if n ≥ 3).

In Appendix A we give an explicit denition (i.e. one which allows computations) of the residue morphisms of Milnor-Witt K-theory (see Theorem A.10), which is used in Sections 3 and 4.

In Appendix B we recall some useful notions about the Rost-Schmid complex and its groups. 

The quadratic linking degree

In this section, we dene oriented links with two components, oriented fundamental classes (and cycles), Seifert classes (and divisors) relative to the link, the quadratic linking class and the (ambient) quadratic linking degree of the link. We then explicit how the quadratic linking class and the (ambient) quadratic linking degree depend on choices of orientations and parametrisations of A 2 F \ {0} → A 4 F \ {0} and deduce a series of invariants of the quadratic linking degree.

2.1. Conventions and notations. Throughout this section, F is a perfect eld, we put A 2 F = Spec(F [u, v]), A 4 F = Spec(F [x, y, z, t]) and X := A 4 F \ {0}. For Z a smooth closed subscheme of a smooth scheme Y , we denote by N Z/Y the normal sheaf of Z in Y , i.e. the dual of the O Z -module I Z /I 2 Z with I Z the ideal sheaf of Z in Y . We denote the usual generators of the Milnor-Witt K-theory 

ring of F by [a] ∈ K MW 1 (F ) (with a ∈ F * ) and η ∈ K MW -1 (F ) (see [Mor12, Denition 3.1]). We put a := 1 + η[a] ∈ K MW 0 (F ).
) if L = O Y . We identify H 1 (A 2 F \ {0}, K MW 0 ) with W(F ) via the (noncanonical) isomorphism ζ : H 1 (A 2 F \ {0}, K MW 0 ) → W(F ) which factorizes as follows: H 1 (A 2 F \ {0}, K MW 0 ) ∂ / / H 0 ({0}, K MW -2 {det(N {0}/A 2 F )}) / / K MW -2 (F ) η 2 →1 / / W(F )
where ∂ is the boundary map (see Denition B.12 and Theorem B.13) and the map in the middle is induced by the isomorphism det(

N {0}/A 2 F ) → O {0} ⊗ O {0} which sends u * ∧ v * to 1 ⊗ 1 (see Denition B.18). We also identify H 3 (A 4 F \ {0}, K MW 2 ) with W(F ) via the (noncanonical) isomorphism ζ : H 3 (A 4 F \ {0}, K MW 2 ) → W(F ) which is dened in a similar manner to ζ, with x * ∧ y * ∧ z * ∧ t * ∈ det(N {0}/A 4 F ) instead of u * ∧ v * ∈ det(N {0}/A 2 F ) (see Denition B.19).
2.2. Denitions of the quadratic linking class and degree. In this subsection, we give a series of denitions which conclude with the denitions of the quadratic linking class and the (ambient) quadratic linking degree of an oriented link with two components.

In order to dene oriented links with two components, we need the following denition (which was given by Morel in [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]).

Denition 2.1 (Orientation of a locally free module). An orientation of a locally free module

V of constant nite rank r over an F -scheme Y is an isomorphism o : det(V) = Λ r (V) → L ⊗ L where L is an invertible O Y -module. Two orientations o : det(V) → L ⊗ L, o : det(V) → L ⊗ L are said to be equivalent if there exists an isomorphism ψ : L → L such that (ψ ⊗ ψ) • o = o . The equivalence class of o, denoted o, is called the orientation class of o.
Denition 2.2 (Oriented link with two components). An oriented link L with two components is the following data:

• a couple of closed immersions ϕ i : A 2 F \ {0} → X with disjoint images Z i ; • for i ∈ {1, 2}, an orientation class o i of the normal sheaf N Z i /X , represented by an isomorphism o i : ν Z i := det(N Z i /X ) → L i ⊗ L i . We denote Z := Z 1 Z 2 , ν Z := det(N Z/X ).
Remark 2.3. The canonical morphisms ψ i :

Z i → Z induce an isomorphism ψ * 1 ⊕ ψ * 2 : H i (Z, K MW j {ν Z }) → H i (Z 1 , K MW j {ν Z 1 }) ⊕ H i (Z 2 , K MW j {ν Z 2 }) which allows us to identify H i (Z, K MW j {ν Z }) with H i (Z 1 , K MW j {ν Z 1 }) ⊕ H i (Z 2 , K MW j {ν Z 2 }).
Denition 2.4 (Oriented fundamental class and cycles). Let L be an oriented link with two components and i ∈ {1, 2}. The oriented fundamental class of the i-

th component of L , denoted by [o i ], is the unique element of H 0 (Z i , K MW -1 {ν Z i }) which is sent to η ∈ H 0 (Z i , K MW -1 ) by the isomorphism H 0 (Z i , K MW -1 {ν Z i }) → H 0 (Z i , K MW -1 ) induced by o i (see Lemma B.14).
Furthermore, an oriented fundamental cycle of the i-

th component of L is a representative in C 0 (Z i , K MW -1 {ν Z i }) of the oriented fundamental class [o i ].
Remark 2.5. Note that if o i and o i represent the same orientation class then the isomorphism 

H 0 (Z i , K MW -1 {ν Z i }) → H 0 (Z i , K MW -1 )
∂ : H 1 (X \ Z, K MW 1 ) → H 0 (Z, K MW -1 {ν Z })
(S o 1 , S o 2 ), or (S 1 , S 2 ) for short, of elements of H 1 (X \ Z, K MW 1 ) such that ∂(S 1 ) = ([o 1 ], 0) and ∂(S 2 ) = (0, [o 2 ]). For i ∈ {1, 2}, we call S i the Seifert class of Z i relative to the link L . Furthermore, a Seifert divisor of Z i relative to the link L is a representative in C 1 (X \ Z, K MW 1 ) of S i .
Remark 2.7. For i ∈ {1, 2}, the Seifert class of Z i relative to L depends on Z and not only on Z i (and its orientation class o i ). We could dene a weaker notion of Seifert class of Z i , which would only depend on Z i (and o i ), but it is important for what follows to have this stronger notion of Seifert class. See Denition B.20 for the intersection product, which is used in the following denition. Denition 2.8 (Quadratic linking class). Let L be an oriented link with two components.

The quadratic linking class of L , denoted by Qlc L , is the image of the intersection product of the Seifert class S 1 with the Seifert class S 2 by the boundary map ∂ :

H 2 (X \ Z, K MW 2 ) → H 1 (Z, K MW 0 {ν Z }). We denote Qlc L = (σ 1,L , σ 2,L ) ∈ H 1 (Z 1 , K MW 0 {ν Z 1 })⊕H 1 (Z 2 , K MW 0 {ν Z 2 }) (see Remark 2.3).
Remark 2.9. Note that the quadratic linking class Qlc L contains as much information as the intersection product S 1 • S 2 since the boundary map ∂ :

H 2 (X \ Z, K MW 2 ) → H 1 (Z, K MW 0 {ν Z })
is injective (see the localization long exact sequence (in Theorem B.13) and note that the group

H 2 (X, K MW 2 ) vanishes (by Proposition B.16)). Also note that Qlc L ∈ ker(i * ) since the image of ∂ is the kernel of i * : H 1 (Z, K MW 0 {ν Z }) → H 3 (X, K MW 2 )
, where i * is the pushforward of the closed immersion i : Z → X (see the localization long exact sequence (in Theorem B.13)).

Notation 2.10. For i ∈ {1, 2}, we denote by

o i the isomorphism H 1 (Z i , K MW 0 {ν Z i }) → H 1 (Z i , K MW 0 ) induced by o i (see Lemma B.14) and by ϕ * i the isomorphism H 1 (Z i , K MW 0 ) → H 1 (A 2 F \ {0}, K MW 0 ) induced by ϕ i .
Recall that we xed an isomorphism ζ :

H 1 (A 2 F \ {0}, K MW 0 ) → W(F ) (see Subsection 2.1).
Denition 2.11 (Quadratic linking degree). Let L be an oriented link with two components.

The quadratic linking degree of L , denoted by Qld L , is the image of the quadratic linking class of L by the isomorphism

(ζ ⊕ ζ) • (ϕ * 1 ⊕ ϕ * 2 ) • ( o 1 ⊕ o 2 ) : H 1 (Z, K MW 0 {ν Z }) → W(F ) ⊕ W(F ).
Notation 2.12. We denote by (i 1 ) * the inclusion of the subcomplex C 

•-2 (Z 1 , K MW 0 {ν Z 1 }) in C • (X, K MW 2 ) (
= (i 1 ) * ⊕ (i 2 ) * (as Z = Z 1 Z 2 ), we have (i 2 ) * (σ 2,L ) = -(i 1 ) * (σ 1,L ) hence ζ ((i 2 ) * (σ 2,L )) = -ζ ((i 1 ) * (σ 1,L )) = -AQld L .
2.3. Invariants of the quadratic linking degree. By construction, the quadratic linking degree depends on choices of orientations and of parametrisations of A 2 F \ {0} → X and the ambient quadratic linking degree depends on choices of orientations. In this subsection we determine how these depend on such choices and construct invariants from them.

Throughout this subsection, L is an oriented link with two components and we denote

Qld L = (d 1 , d 2 ) ∈ W(F ) ⊕ W(F ).
We start by recalling how orientation classes can change.

Lemma 2.15. Let i ∈ {1, 2} and o i : ν Z i → L i ⊗ L i be an orientation of the normal sheaf of Z i in X. There exists a ∈ F * such that the orientation class of o i is the orientation class of 

o i • (×a).

Proof. Recall that every invertible O

A 2 F -module is isomorphic to O A 2 F (since A 2 F is factorial) and that every invertible O A 2 F \{0} -module is the restriction of an invertible O A 2 F -module hence every invertible O A 2 F \{0} -module is isomorphic to O A 2 F \{0} . Since Z i A 2 F \ {0}, there exist isomorphisms ψ : L i → O Z i and ψ : L i → O Z i . From Denition 2.1, (ψ ⊗ ψ) • o i = o i and (ψ ⊗ ψ ) • o i = o i . Denoting by m : O Z i ⊗ O Z i → O Z i the multiplication, the morphism m • ((ψ ⊗ ψ ) • o i ) • ((ψ ⊗ ψ) • o i ) -1 • m -1 is an automorphism of O Z i hence
dinates of A 2 F = Spec(F [u, v]
). We denote by J ψ the Jacobian determinant of an automorphism

ψ of A 2 F \ {0}; note that J ψ is in F * since (F [u, v]) * = F * .
Lemma 2.16. Let a = (a 1 , a 2 ) be a couple of elements of F * and ψ = (ψ 1 , ψ 2 ) be a couple of automorphisms of A 2 F \ {0}.

(1) Let L a be the link obtained from L by changing the orientation class

o 1 into o 1 • (×a 1 )
and the orientation class

o 2 into o 2 • (×a 2 ). Then Qlc La = a 1 a 2 Qlc L , Qld La = ( a 2 d 1 , a 1 d 2 ) and AQld La = a 1 a 2 AQld L . (2) Let L ψ be the link obtained from L by changing ϕ 1 : A 2 F \ {0} → X into ϕ 1 • ψ 1 and ϕ 2 : A 2 F \ {0} → X into ϕ 2 • ψ 2 . Then Qlc L ψ = Qlc L , Qld L ψ = ( J ψ 1 d 1 , J ψ 2 d 2 ) and AQld L ψ = AQld L .
(3) Let L be the link obtained from L by changing the order of the components. Then 

Qlc L = -Qlc L , Qld L = (-d 2 , -d 1 ) and AQld L = AQld L . Proof. (1) Note that for all i ∈ {1, 2}, [o i • (×a i )] = a -1 i [o i ] = a i [o i ] hence,
S o 1 •(×a 1 ) = a 1 S o 1 and S o 2 •(×a 2 ) = a 2 S o 2 S o 1 •(×a 1 ) • S o 2 •(×a 2 ) = a 1 a 2 S o 1 • S o 2 ∂(S o 1 •(×a 1 ) • S o 2 •(×a 2 ) ) = a 1 a 2 ∂(S o 1 • S o 2 ) Qlc La = a 1 a 2 Qlc L Note that o 1 • (×a 1 )( a 1 a 2 σ 1,L ) = a 1 o 1 ( a 1 a 2 σ 1,L ) = a 2 1 a 2 o 1 (σ 1,L ) = a 2 o 1 (σ 1,L ) and similarly o 2 • (×a 2 )( a 1 a 2 σ 2,L ) = a 1 o 2 (σ 2,L ). It follows that Qld La = ( a 2 d 1 , a 1 d 2 ).
The equality AQld La = a 1 a 2 AQld L follows from the equality Qlc La = a 1 a 2 Qlc L . Indeed, AQld La is by denition equal to ζ ((i 1 ) * (σ 1,La )), hence is equal to ζ ((i 1 ) * ( a 1 a 2 σ 1,L )). The result follows from the fact that (i 1 ) * (which is the inclusion of a subcomplex; see Notation 2.12) and ζ commute with product by a 1 a 2 (see Proposition A.2 and Denition B.19).

(2) From the denitions,

Qlc L ψ = Qlc L and ( o 1 ⊕ o 2 )(Qlc L ψ ) = ( o 1 ⊕ o 2 )(Qlc L ). Let i ∈ {1, 2}. We denote by ψ * i : H 1 (A 2 F \ {0}, K MW 0 ) → H 1 (A 2 F \ {0}, K MW 0 ) the isomorphism induced by ψ i . Note that (ϕ i • ψ i ) * ( o i (σ i,L )) = ψ * i (ϕ * i ( o i (σ i,L ))
) and that the following diagram is commutative:

H 1 (A 2 F \ {0}, K MW 0 ) ∂ / / ψ * i H 0 ({0}, K MW -2 {det(N {0}/A 2 F )}) ψ * i H 1 (A 2 F \ {0}, K MW 0 ) ∂ / / H 0 ({0}, K MW -2 {det(N {0}/A 2 F )}) Hence ∂((ϕ i • ψ i ) * ( o i (σ i,L ))) = ψ * i (∂(ϕ * i ( o i (σ i,L )))). Finally note that for all α ∈ K MW -2 (F ), ψ * i (α ⊗ (u * ∧ v * )) = J ψ i α ⊗ (u * ∧ v * ). It follows from Denition B.18 that Qld L ψ = ( J ψ 1 d 1 , J ψ 2 d 2 ).
As for AQld L ψ , it is clearly equal to AQld L since ϕ 1 and ϕ 2 are not used in its denition (nor in the denition of the quadratic linking class).

(

) By Proposition B.22, S 2 • S 1 = -1 (S 1 • S 2 ) hence by Proposition A.2, ∂(S 2 • S 1 ) = -1 ∂(S 1 • S 2 ), thus Qlc L = -1 Qlc L = -Qlc L (since Qlc L ∈ H 1 (Z, K MW 0 {ν Z }) and for every eld k and α ∈ K MW -1 (k), -1 α = -α). It follows that Qld L = (-d 2 , -d 1 ) and that AQld L = AQld L (as ζ ((i 2 ) * (σ 2,L )) = -ζ ((i 1 ) * (σ 1,L )) by Remark 2.14). 3 
We have proved in particular that the ambient quadratic linking degree and each component of the quadratic linking degree are each only multiplied by an a ∈ W(F ) with a ∈ F * when the orientation classes or the parametrisations are changed, so that we get the following invariants.

Corollary 2.17. The rank modulo 2 of d 1 , the rank modulo 2 of d 2 and the rank modulo 2 of AQld L are invariant under changes of orientation classes o 1 , o 2 and under changes of parametrisations of ϕ 1 , ϕ 2 : A 2

F \ {0} → X.
Proof. For all a ∈ F * , the rank modulo 2 of an element of the Witt ring W(F ) is invariant under the multiplication by a . The result follows directly from Lemma 2.16.

Recall that W(R) Z (via the signature).

Corollary 2.18. If F = R then the absolute value of d 1 , the absolute value of d 2 and the absolute value of AQld L are invariant under changes of orientation classes o 1 , o 2 and under changes of

parametrisations of ϕ 1 , ϕ 2 : A 2 R \ {0} → X. Proof. For all a ∈ R * , a = 1 = 1 ∈ W(R) or a = -1 = -1 ∈ W(R) since every real
number is a square or the opposite of a square. The result follows directly from Lemma 2.16.

In the family of examples 4.3, we provide for each positive integer n an example of an oriented link over R whose ambient quadratic linking degree has absolute value n (and the same is true of each component of the quadratic linking degree); for examples of oriented links over R whose (ambient) quadratic linking degree is 0, see Examples 4.2 (with a < 0 in these examples).

The following Lemma-Denition is an inductive denition. For each d ∈ W(F ), with k ranging over the nonnegative even integers, we dene an abelian group Q d,k and an element Σ k (d) ∈ Q d,k . In Theorem 2.21 we will see that Σ k (d 1 ), Σ k (d 2 ) and Σ k (AQld L ) are invariants for even k > 0 (this is also true for k = 0 but uninteresting, as Σ 0 is a constant map on W(F ) which we only dened for convenience); the assumption that k is even is important for Theorem 2.21.

Lemma-Denition 2.19. Let d ∈ W(F ).

There exists a unique sequence of abelian groups

Q d,k and of elements Σ k (d) ∈ Q d,k
, where k ranges over the nonnegative even integers, such that:

• Q d,0 = W(F ) and Σ 0 (d) = 1 ∈ Q d,0 ; • for each positive even integer k, Q d,k is the quotient group Q d,k-2 /(Σ k-2 (d));
• for each positive even integer k, as soon as n ∈ N 0 and a 1 , . . . , a n ∈ F * verify that

n i=1 a i = d ∈ W(F ), we have Σ k (d) = 1≤i 1 <•••<i k ≤n 1≤j≤k a i j ∈ Q d,k
. Remark 2.20. The uniqueness in the previous statement is clear, whereas the existence requires work (which is done below) since in W(F ) the equality n i=1 a i = m j=1 b j does not imply that the a i are equal to the b j . Moreover, this equality does not imply that 1≤i

1 <•••<i k ≤n 1≤j≤k a i j is equal to 1≤p 1 <•••<p k ≤m 1≤q≤k b pq in W(F ), which is why we need the abelian groups Q d,k .
Proof. Recall the following presentation of the abelian group W(F ): its generators are the a for a ∈ F * and its relations are the following:

(1) ab 2 = a for all a, b ∈ F * ;

(2) a + b = a + b + (a + b)ab for all a, b ∈ F * such that a + b = 0;

(3) 1 + -1 = 0. We denote by G the free abelian group of generators the a for a ∈ F * , by G 1 the quotient of G by the rst relation above and by G 2 the quotient of G 1 by the second relation above, so that W(F ) is the quotient of G 2 by the third relation above.

Let k be a nonnegative even integer such that for all nonnegative even integers l < k, Q d,l is an abelian group and Σ l (d) ∈ Q d,l which verify the conditions of the statement. Note that the quotient of the abelian group Q d,k-2 by its subgroup

(Σ k-2 (d)) is well-dened, so we can x Q d,k = Q d,k-2 /(Σ k-2 (d)).
To show that Σ k (d) is well-dened (by the formula given in the statement), we proceed in four steps, in which we consider a representative of d in G, in G 1 , in G 2 and in W(F ) (i.e. d itself ) respectively. Let n ∈ N 0 and a 1 , . . . , a n ∈ F * be such that n i=1 a i is a representative of d in G.

First step: By denition of G,

1≤i 1 <•••<i k ≤n 1≤j≤k a i j is well-dened in G hence in Q d,k (since Q d,k is obtained from G by quotienting several times). Second step: For all b ∈ F * , 2≤i 2 <•••<i k ≤n a 1 b 2 2≤j≤k a i j + 2≤i 1 <•••<i k ≤n 1≤j≤k a i j = 1≤i 1 <•••<i k ≤n 1≤j≤k a i j in G 1 hence in Q d,k (since Q d,k is obtained from G 1 by quotienting
several times) and similarly for other indices. Thus

1≤i 1 <•••<i k ≤n 1≤j≤k a i j ∈ Q d,k only depends on the class of n i=1 a i in G 1 . Third step: If a 1 + a 2 = 0 then in G 2 : 3≤i 3 <•••<i k ≤n (a 1 + a 2 ) 2 a 1 a 2 3≤j≤k a i j + 3≤i 1 <•••<i k ≤n 1≤j≤k a i j + 3≤i 2 <•••<i k ≤n (a 1 + a 2 ) 2≤j≤k a i j + 3≤i 2 <•••<i k ≤n (a 1 + a 2 )a 1 a 2 2≤j≤k a i j = 3≤i 3 <•••<i k ≤n a 1 a 2 3≤j≤k a i j + 3≤i 1 <•••<i k ≤n 1≤j≤k a i j + ( a 1 + a 2 + (a 1 + a 2 )a 1 a 2 ) 3≤i 2 <•••<i k ≤n 2≤j≤k a i j = 3≤i 3 <•••<i k ≤n a 1 a 2 3≤j≤k a i j + 3≤i 1 <•••<i k ≤n 1≤j≤k a i j + ( a 1 + a 2 ) 3≤i 2 <•••<i k ≤n 2≤j≤k a i j = 1≤i 1 <•••<i k ≤n 1≤j≤k a i j
and similarly for other indices. This is true in

Q d,k since Q d,k is obtained from G 2 by quotienting several times. Thus 1≤i 1 <•••<i k ≤n 1≤j≤k a i j ∈ Q d,k only depends on the class of n i=1 a i in G 2 .
Fourth step: With the convention that

1≤i 3 <•••<i 2 ≤n 3≤j≤2 a i j = 1, note that 1≤i 1 <•••<i k ≤n 1≤j≤k a i j + ( 1 + -1 ) 1≤i 2 <•••<i k ≤n 2≤j≤k a i j + -1 1≤i 3 <•••<i k ≤n 3≤j≤k a i j is equal to 1≤i 1 <•••<i k ≤n 1≤j≤k a i j - 1≤i 3 <•••<i k ≤n 3≤j≤k a i j in W(F ) hence in Q d,k (since Q d,k is obtained from W(F ) by quotienting several times). Since 1≤i 3 <•••<i k ≤n 3≤j≤k a i j = Σ k-2 (d) = 0 in Q d,k (by denition of Q d,k ), 1≤i 1 <•••<i k ≤n 1≤j≤k a i j ∈ Q d,k only depends on the class of n i=1 a i in W(F ), i.e. on d. Thus we can x Σ k (d) = 1≤i 1 <•••<i k ≤n 1≤j≤k a i j ∈ Q d,k .
It follows from Lemma-Denition 2.19 that we have for each positive even integer k a map 1) is depends on the ground eld F . For instance, if F = R then the map Σ 2 : W(R) Z → W(R)/(1) = 0 is uninteresting since it is constant (but in the real case, Corollary 2.18 already provides the best possible invariant) whereas if 

Σ k : W(F ) → d∈W(F ) Q d,k which veries that for all d ∈ W(F ), Σ k (d) ∈ Q d,k . How interesting the map Σ 2 : W(F ) → W(F )/(
F = Q then the map Σ 2 : W(Q) W(R) ⊕ p∈P W(Z/pZ) → W(Q)/(
(AQld L 1 ) ∈ W(F )/(1) with Σ 2 (AQld L 2 ) ∈ W(F )/(1); if this was not enough to distinguish L 1 from L 2 , i.e. if Σ := Σ 2 (AQld L 1 ) = Σ 2 (AQld L 2 ), then one compares Σ 4 (AQld L 1 ) ∈ (W(F )/(1))/(Σ) with Σ 4 (AQld L 2 ) ∈ (W(F )/(1))/(Σ)
, and so on.

Theorem 2.21. Let L be an oriented link with two components and k be a positive even integer. We denote the quadratic linking degree of L by

Qld L = (d 1 , d 2 ) ∈ W(F ) ⊕ W(F ). Then Σ k (d 1 ), Σ k (d 2 ) and Σ k (AQld L ) are invariant under changes of orientation classes o 1 , o 2 and under changes of parametrisations of ϕ 1 , ϕ 2 : A 2 F \ {0} → X. Proof. Let n i=1 a i ∈ W(F ). Note that for all b ∈ F * : Σ k ( b n i=1 a i ) = 1≤i 1 <•••<i k ≤n b k 1≤j≤k a i j = 1≤i 1 <•••<i k ≤n 1≤j≤k a i j = Σ k ( n i=1 a i )
since b k is a square as k is even. The result follows directly from Lemma 2.16.

How to compute the quadratic linking degree

In this section, we give a method to compute the quadratic linking class, the quadratic linking degree and the ambient quadratic linking degree under reasonable assumptions on the link (which are veried in the examples of Section 4). See Subsection 2.1 for notations and Subsection 2.2 for denitions.

3.1. Assumptions. Let L be an oriented link with two components such that for all i ∈ {1, 2}, the closure Z i ⊂ A 4 F of Z i is given by two equations f i (x, y, z, t) = 0, g i (x, y, z, t) = 0 with f i and g i irreducible. We also assume that the subscheme of X \ Z given by the equations g 1 = 0 and g 2 = 0 is of codimension 2 in X \ Z and that for each generic point p of an irreducible component of this subscheme, f 1 and f 2 are units in the residue eld κ(p).

Let i ∈ {1, 2}. Note that we can dene an orientation of N Z i /X from the (ordered) couple

(f i , g i ). Indeed, N Z i /X is the dual of the conormal sheaf C Z i /X = I Z i /I 2 Z i
, where I Z i is the ideal sheaf of Z i in X, and we have the following short exact sequence (see [START_REF] Fulton | Intersection theory[END_REF]B.7.4]):

0 / / (C V (g i )/A 4 F ) |Z i / / C Z i /X = (C Z i /A 4 F ) |Z i / / (C V (f i )/A 4 F ) |Z i / / 0 We dene the orientation o (f i ,g i ) as the isomorphism ν Z i → O Z i ⊗ O Z i which sends f i * ∧ g i * to 1 ⊗ 1. By Lemma 2.15, there exists a i ∈ F * such that o i = o (f i ,g i ) • (×a i ) = o (a -1 i f i ,g i ) .
Without loss of generality (since we can replace f i with a -1 i f i ), we assume that o i = o (f i ,g i ) .

3.2. Notations. We denote by χ odd : Z → {0, 1} the characteristic function of the set of odd numbers.

We denote := --1 and for all n ∈ N 0 , n := n i=1 (-1) i-1 and (-n) := n .

In order to make explicit computations, we introduce the following notations. Note that the quadratic linking class, the quadratic linking degree and the ambient quadratic linking degree of L which are computed in Theorems 3.1, 3.2 and 3.3 respectively do not depend on the choices of uniformizing parameters π p , π p,q , π p,q,0 , π p,q,0 made below, since these are not used in their Denitions (recall Denitions 2.8, 2.11 and 2.13).

We denote by I the set of generic points of irreducible components of the subscheme of X \ Z given by the equations g 1 = 0 and g 2 = 0.

For every p ∈ I, we denote by π p a uniformizing parameter of the discrete valuation ring O X\Z,p /(g 1 ), by u p a unit in O X\Z,p /(g 1 ) and by m p ∈ Z such that g 2 = u p π mp p ∈ O X\Z,p /(g 1 ).

For every p ∈ I and q ∈ {p} (1) ∩ Z, we denote by π p,q a uniformizing parameter of the discrete valuation ring O {p},q , by u p,q a unit in O {p},q and by m p,q ∈ Z such that f 1 f 2 u p = u p,q π mp,q p,q ∈ O {p},q .

For every i ∈ {1, 2}, p ∈ I and q ∈ {p} (1) ∩ Z i , we denote by τ p,q ∈ ν q such that π p,q

* ⊗ π p * ⊗ g 1 * = τ p,q ⊗ (f i * ∧ g i * ), by v p,q,0 the discrete valuation of O {ϕ -1 i (q)},0
and by π p,q,0 a uniformizing parameter for v p,q,0 . Note that such a τ p,q exists since π p,q

* ⊗π p * ⊗g 1 * ∈ Z[(ν p,q ⊗ κ(q) (ν Z i ) |q )\{0}].
For every i ∈ {1, 2}, p ∈ I and q ∈ {p} (1) ∩ Z i , we let (u p,q,0 , m p,q,0 ) ∈ O * {ϕ -1 i (q)},0

× Z be the unique couple such that ϕ * i (u p,q ) = u p,q,0 π m p,q,0 p,q,0 and we denote by λ p,q,0 ∈ K MW 0 (F )

such that η 2 ⊗ (π p,q,0 * ⊗ ϕ * i (τ p,q )) = λ p,q,0 η 2 ⊗ (u * ∧ v * ).
Note that such a λ p,q,0 exists since π p,q,0

* ⊗ ϕ * i (τ p,q ) ∈ Z[(det(N {0}/A 2 F ) |0 ) \ {0}].
For every p ∈ I and q ∈ {p} (1) ∩ Z 1 , we denote by v p,q,0 the discrete valuation of O {q},0 and by π p,q,0 a uniformizing parameter for v p,q,0 ; we let (u p,q,0 , m p,q,0 ) ∈ O * {q},0

× Z be the unique couple such that u p,q = u p,q,0 (π p,q,0 ) m p,q,0 and we denote by λ p,q,0 ∈ K MW 0 (1) ∩Z u p,q η χ odd (m p m p,q ) ⊗ (π p,q * ⊗ π p * ⊗ g 1 * )

(F ) such that η 2 ⊗ (π p,q,0 F ) |0 ) \ {0}].
where u p,q η χ odd (m p m p,q )⊗(π p,q * ⊗π p * ⊗g 1 * ) ∈ K MW -1 (κ(q), ν q ⊗(ν Z ) |q ), represents the quadratic linking class of L . Proof. From Denition 2.4, the oriented fundamental class 

[o i ] is the class in H 0 (Z i , K MW -1 {ν Z i }) of η ⊗(f i * ∧g i * ).
S i of Z i is the class in H 1 (X \Z, K MW 1
) of f i ⊗g i * (over the generic point p i of the hypersurface of X \Z of equation g i = 0). In the expression above,

f i ∈ K MW 0 (κ(p i )) and g i * ∈ Z[det(N {p i }/X\Z ) \ {0}];
with a slight abuse of notation, we denoted by f i the image in the fraction eld of F [x, y, z, t]/(g i ) of f i ∈ F [x, y, z, t]. We will make similar slight abuses of notation below. By Corollary B.24, the intersection product of the Seifert class S 1 of Z 1 with the Seifert class

S 2 of Z 2 is the class in H 2 (X \ Z, K MW 2 ) of the cycle: p∈I (m p ) f 1 f 2 u p ⊗ (π p * ⊗ g 1 * )
The quadratic linking class is the image of this intersection product by the boundary map

∂ : H 2 (X \ Z, K MW 2 ) → H 1 (Z, K MW 0 {ν Z }) thus the cycle p∈I q∈{p} (1) ∩Z (m p ) ∂ πp,q vq ( f 1 f 2 u p ) ⊗ (π p,q * ⊗ π p * ⊗ g 1 * )
represents the quadratic linking class (note that we used Proposition A.2 to extract (m p ) from the morphism ∂ πp,q vq ). By Theorem A.10 and Lemma A.9, the cycle p∈I q∈{p}

(1) ∩Z u p,q η χ odd (m p m p,q ) ⊗ (π p,q * ⊗ π p * ⊗ g 1 * )

represents the quadratic linking class of L .

Theorem 3.2. Under the assumptions of Subsection 3.1 and with the notations in Subsection 3.2, the quadratic linking degree of L is the following couple of elements of W(F ):

   p∈I q∈{p}

(1) ∩Z 1 λ p,q,0 u p,q,0 χ odd (m p m p,q m p,q,0 ), p∈I q∈{p}

(1) ∩Z 2 λ p,q,0 u p,q,0 χ odd (m p m p,q m p,q,0 )   

Proof. Recall from Denition 2.11 that the rst step in computing the quadratic linking degree from the quadratic linking class consists in applying o 1 ⊕ o 2 . It follows from Theorem 3.1 and the assumption that for all i ∈ {1, 2},

o i = o (f i ,g i ) (see Subsection 3.1) that the couple of cycles    p∈I q∈{p} (1) ∩Z 1 u p,q η χ odd (m p m p,q ) ⊗ τ p,q , p∈I q∈{p} (1) ∩Z 2 u p,q η χ odd (m p m p,q ) ⊗ τ p,q   
where u p,q η χ odd (m p m p,q ) ⊗ τ p,q ∈ K MW -1 (κ(q), ν p,q ), represents ( o 1 ⊕ o 2 )(Qlc L ).

It follows that the couple of cycles

   p∈I q∈{p} (1) ∩Z 1 ϕ * 1 (u p,q ) η χ odd (m p m p,q ) ⊗ ϕ * 1 (τ p,q ), p∈I q∈{p} (1) ∩Z 2 ϕ * 2 (u p,q ) η χ odd (m p m p,q ) ⊗ ϕ * 2 (τ p,q )   
where for all i ∈ {1, 2},

ϕ * i (u p,q ) η χ odd (m p m p,q ) ⊗ ϕ * i (τ p,q ) ∈ K MW -1 (κ(ϕ -1 i (q)), ν ϕ -1 i (q) ), rep- resents (ϕ * 1 ⊕ ϕ * 2 )( o 1 ⊕ o 2 )(Qlc L )
. This is the second step in computing the quadratic linking degree (see Denition 2.11).

Recall from Denition 2.11 and Denition B.18 that the third step in computing the quadratic linking degree consists in applying the boundary map

∂ : C 1 (A 2 F \ {0}, K MW 0 ) → C 0 ({0}, K MW -2 {det(N {0}/A 2 F )})
to each element of the couple above, which gives:

   p∈I q∈{p} (1) ∩Z 1 ∂ π p,q,0 v p,q,0 ( ϕ * 1 (u p,q ) )η χ odd (m p m p,q ) ⊗ (π p,q,0 * ⊗ ϕ * 1 (τ p,q )), p∈I q∈{p} (1) ∩Z 2 ∂ π p,q,0 v p,q,0 ( ϕ * 2 (u p,q ) )η χ odd (m p m p,q ) ⊗ (π p,q,0 * ⊗ ϕ * 2 (τ p,q ))   
where ∂ π p,q,0 v p,q,0 ( ϕ * i (u p,q ) )η χ odd (m p m p,q ) ⊗ (π p,q,0

* ⊗ ϕ * i (τ p,q )) ∈ K MW -2 (κ(0), det(N {0}/A 2 F ))
.

By Theorem A.10, for every i ∈ {1, 2} we have ∂ π p,q,0 v p,q,0 ( ϕ * i (u p,q ) ) = u p,q,0 η χ odd (m p,q,0 ) thus the third step gives:

   p∈I q∈{p}

(1) ∩Z 1 u p,q,0 η 2 χ odd (m p m p,q m p,q,0 ) ⊗ (π p,q,0 * ⊗ ϕ * 1 (τ p,q )), p∈I q∈{p}

(1) ∩Z 2 u p,q,0 η 2 χ odd (m p m p,q m p,q,0 ) ⊗ (π p,q,0 * ⊗ ϕ * 2 (τ p,q ))

  

From Denition B.18 and the notations in Subsection 3.2, using the canonical isomorphism K MW -2 (F ) W(F ) (which sends η 2 to 1), the nal step gives:    p∈I q∈{p}

(1) ∩Z 1 λ p,q,0 u p,q,0 χ odd (m p m p,q m p,q,0 ), p∈I q∈{p}

(1) ∩Z 2 λ p,q,0 u p,q,0 χ odd (m p m p,q m p,q,0 )    Theorem 3.3. Under the assumptions of Subsection 3.1 and with the notations in Subsection 3.2, the ambient quadratic linking degree of L is the following element of W(F ):

p∈I q∈{p} (1) ∩Z 1 λ p,q,0 u p,q,0 χ odd (m p m p,q m p,q,0 )

Proof. By Denition 2.13, the ambient quadratic linking degree of L is equal to ζ ((i 1 ) * (σ 1,L )).

Note that by Theorem

3.1, σ 1,L ∈ H 1 (Z 1 , K MW 0 {ν Z 1 }) is represented by the cycle p∈I q∈{p} (1) ∩Z 1 u p,q η χ odd (m p m p,q ) ⊗ (π p,q * ⊗ π p * ⊗ g 1 * ) so that (i 1 ) * (σ 1,L ) ∈ H 3 (X, K MW 2
) is represented by the cycle p∈I q∈{p}

(1) ∩Z 1 u p,q η χ odd (m p m p,q ) ⊗ (π p,q * ⊗ π p * ⊗ g 1 * )

since (i 1 ) * is induced by the inclusion of the subcomplex C

•-2 (Z 1 , K MW 0 {ν Z 1 }) in C • (X, K MW 2
) (see Notation 2.12). We then apply (see Denition B.19) the boundary map ∂ :

C 3 (A 4 F \ {0}, K MW 2 ) → C 0 ({0}, K MW -2 {det(N {0}/A 4 F )}), which gives: p∈I q∈{p} (1) ∩Z 1 ∂ π p,q,0 v p,q,0 ( u p,q )η χ odd (m p m p,q ) ⊗ (π p,q,0 * ⊗ π p,q * ⊗ π p * ⊗ g 1 * )
where ∂ π p,q,0 v p,q,0

( u p,q )η χ odd (m p m p,q ) ⊗ (π p,q,0 * ⊗ π p,q * ⊗ π p * ⊗ g 1 * ) ∈ K MW -2 (κ(0), det(N {0}/A 4 F ))
.

By Theorem A.10, we have ∂ π p,q,0 v p,q,0 ( u p,q ) = u p,q,0 η χ odd (m p,q,0 ) thus ∂((i 1 ) * (σ 1,L )) is represented by the cycle:

p∈I q∈{p} (1) ∩Z 1 u p,q,0 η 2 χ odd (m p m p,q m p,q,0 ) ⊗ (π p,q,0 * ⊗ π p,q * ⊗ π p * ⊗ g 1 * )
From Denition B.19 and the notations in Subsection 3.2, using the canonical isomorphism K MW -2 (F ) W(F ) (which sends η 2 to 1), the ambient quadratic linking degree of L is equal to: p∈I q∈{p} (1) ∩Z 1 λ p,q,0 u p,q,0 χ odd (m p m p,q m p,q,0 )

Oriented fundamental cycles η ⊗ (x * ∧ y * ) | η ⊗ (z * ∧ t * ) Seifert divisors x ⊗ y * | z ⊗ t * Apply intersection product xz ⊗ (t * ∧ y * ) Quadratic linking class -z η ⊗ (t * ∧ x * ∧ y * ) ⊕ x η ⊗ (y * ∧ z * ∧ t * ) Apply o 1 ⊕ o 2 -z η ⊗ t * ⊕ x η ⊗ y * Apply ϕ * 1 ⊕ ϕ * 2 -u η ⊗ v * ⊕ u η ⊗ v * Apply ∂ ⊕ ∂ -η 2 ⊗ (u * ∧ v * ) ⊕ η 2 ⊗ (u * ∧ v * ) Quadratic linking degree -1 ⊕ 1 Quadratic linking class -z η ⊗ (t * ∧ x * ∧ y * ) ⊕ x η ⊗ (y * ∧ z * ∧ t * ) Apply (i 1 ) * to the part supp. on Z 1 -z η ⊗ (t * ∧ x * ∧ y * ) Apply ∂ -η 2 ⊗ (x * ∧ y * ∧ z * ∧ t * )
Ambient quadratic linking degree -1

Table 1. The Hopf link

Examples of computations of the quadratic linking degree

In this section, we compute the quadratic linking class, the quadratic linking degree and the ambient quadratic linking degree (as well as their invariants) on examples. To do this we use the method given in Section 3. See Section 2 for denitions and notations.

Example 4.1. (Hopf ) We dene the Hopf link over a perfect eld F as follows:

• Z 1 is the intersection of the closed subscheme of A 4 F = Spec(F [x, y, z, t]) of ideal (x, y) and of X := A 4 F \ {0}; • ϕ 1 : A 2 F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to 0, 0, u, v respectively;
• o 1 is the orientation class associated to the couple (x, y) (i.e. the class of the isomorphism

o 1 : ν Z 1 → O Z 1 ⊗ O Z 1 which maps x * ∧ y * to 1 ⊗ 1); • Z 2 is the intersection of the closed subscheme of A 4
F of ideal (z, t) and of X; • ϕ 2 : A 2 F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to u, v, 0, 0 respectively; • o 2 is the orientation class associated to the couple (z, t) (i.e. the class of the isomorphism

o 2 : ν Z 2 → O Z 2 ⊗ O Z 2 which maps z * ∧ t * to 1 ⊗ 1).
In Table 1 we give oriented fundamental cycles of Z 1 and Z 2 , Seifert divisors of Z 1 (with orientation o 1 ) and Z 2 (with orientation o 2 ) relative to the link, their intersection product and its image by the boundary map ∂ :

H 2 (X\Z, K MW 2 ) → H 1 (Z, K MW 0 {ν Z })
, which is the quadratic linking class (or rather we give a cycle which represents the quadratic linking class). Then we give cycles which represent (

o 1 ⊕ o 2 )(Qlc L ), (ϕ * 1 ⊕ ϕ * 2 )(( o 1 ⊕ o 2 )(Qlc L )), (∂ ⊕ ∂)((ϕ * 1 ⊕ ϕ * 2 )(( o 1 ⊕ o 2 )(Qlc L ))
) respectively and we give the quadratic linking degree (in W(F ) ⊕ W(F )). Finally, we give again the quadratic linking class, then a cycle which represents (i 1 ) * (σ 1,L ), then a cycle which represents ∂((i 1 ) * (σ 1,L )) and then the ambient quadratic linking degree (in W(F )). The points on which the cycles are supported are the obvious ones (for instance x ⊗ y * is supported on the generic point of the hypersurface of X \ Z of equation y = 0).

Recall Theorems 3.1, 3.2 and 3.3 (and their proofs) and note that the intersection of the hypersurfaces of X \ Z of equations y = 0 and t = 0 is irreducible to get the results in Table 1.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the ambient quadratic linking degree of the Hopf link is equal to 1. Note that for every positive even integer k, the image by Σ k of each component of the quadratic linking degree and of the ambient quadratic linking degree of the Hopf link is equal to 0. Note that if F = R then the absolute value of each component of the quadratic linking degree and of the ambient quadratic linking degree of the Hopf link is equal to 1.

Let us now present examples where the intersection of the underlying divisors is not irreducible (and where the invariants of Corollaries 2.17 and 2.18 and of Theorem 2.21 have dierent values).

Examples 4.2. (Binary links) Let F be a perfect eld of characteristic dierent from 2 and a ∈ F * . We dene the binary link B a over F as follows:

• Z 1 is the intersection of the closed subscheme of A 4 F of ideal (f 1 := t-((1+a)x-y)y, g 1 := z -x(x -y)) and of X :

= A 4 F \ {0}; • ϕ 1 : A 2 F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to u, v, u(u -v), ((1 + a)u -v)v respectively;
• o 1 is the orientation class associated to the couple (f 1 , g 1 );

• Z 2 is the intersection of the closed subscheme of A 4 F of ideal (f 2 := t+((1+a)x-y)y, g 2 := z + x(x -y)) and of X;

• ϕ 2 : A 2 F \{0} → X is the morphism associated to the morphism of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to u, v, -u(u -v), -((1 + a)u -v)v respectively;
• o 2 is the orientation class associated to the couple (f 2 , g 2 ).

In Table 2 we give oriented fundamental cycles of Z 1 and Z 2 , Seifert divisors of Z 1 (with orientation o 1 ) and Z 2 (with orientation o 2 ) relative to the link, their intersection product and its image by the boundary map ∂ :

H 2 (X\Z, K MW 2 ) → H 1 (Z, K MW 0 {ν Z }), which is the quadratic linking class. Then we give cycles which represent ( o 1 ⊕ o 2 )(Qlc L ), (ϕ * 1 ⊕ ϕ * 2 )(( o 1 ⊕ o 2 )(Qlc L )), (∂⊕∂)((ϕ * 1 ⊕ϕ * 2 )(( o 1 ⊕ o 2 )(Qlc L ))
) respectively and we give the quadratic linking degree. Finally, we give again the quadratic linking class, then a cycle which represents (i 1 ) * (σ 1,L ), then a cycle which represents ∂((i 1 ) * (σ 1,L )) and then the ambient quadratic linking degree. Unless specied (between parentheses after a central dot), the points on which the cycles are supported are the obvious ones (for instance f 1 ⊗ g 1 * is supported on the generic point of the hypersurface of X \ Z of equation g 1 = 0). 

To see how one gets from the fth line in

-f 2 η ⊗ g 2 * • (x -y) ∈ H 1 (Z 1 , K MW 0 ) is equal to -2((1 + a)x -y)y η ⊗ 2x(x -y) * • (x -y) since in Z 1 : t = ((1 +a)x-y)y and z = x(x -y). Further note that -2((1 +a)x-y)y η ⊗2x(x -y) * • (x -y) = -((1 + a)x -y)yx η ⊗ x -y * • (x -y) and that -((1 + a)x -y)yx η ⊗ x -y * • (x -y) = -ax 3 η ⊗x -y * •(x-y) = -ax η ⊗x -y * •(x-y). Similarly, -f 2 η ⊗g 2 * •(x) ∈ H 1 (Z 1 , K MW 0 ) is equal to -y η ⊗ x * • (x).
A similar reasoning gets one from the tenth line to the eleventh line.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the ambient quadratic linking degree of the binary link B a is 0 (hence the invariant presented in Corollary 2.17 distinguishes between the Hopf link and the binary links). Note that the image by Σ 2 of each component of the quadratic linking degree and of the ambient quadratic linking degree of the binary link B a is a ∈ W(F )/(1). For instance, if F = Q, Σ 2 distinguishes between all the B p with p prime numbers since if p = q are prime numbers then p ∈ W(Q)/(1)

corresponds to 1 ∈ W(Z/pZ) ⊂ r prime W(Z/rZ) and q ∈ W(Q)/(1) corresponds to 1 ∈ W(Z/qZ) ⊂ r prime W(Z/rZ) (via the isomorphism W(Q)/(1) r prime W(Z/rZ) induced by the isomorphism W(Q) W(R) ⊕ r prime W(Z/rZ) which maps p 1 . . . p n ∈ W(Q) (with p 1 , . . . , p n distinct primes) to p 1 . . . p n ⊕ n i=1 j =i p j ∈ W(R) ⊕ n i=1 W(Z/p i Z)
). Note that if F = R then the absolute value of each component of the quadratic linking degree and of the ambient quadratic linking degree of the binary link B a is equal to 2 if a > 0, to 0 if a < 0 (hence the invariant presented in Corollary 2.18 distinguishes between the Hopf link and the binary links, as well as between the binary links with positive parameter and the binary links with negative parameter).

The following family of examples is an analogue of the family of torus links T (2, 2n) (with n ≥ 1 an integer) in knot theory. Note that T (2, 2) is the Hopf link and that its analogue below is slightly dierent from the Hopf link in the example above and has quadratic linking degree (1, -1) and ambient quadratic linking degree -1. Note that T (2, 4) is the Solomon link.

Examples 4.3 (Torus links). Let n ≥ 1. Let us dene an analogue of the torus link T (2, 2n).

Recall that (in knot theory) one of the components of T (2, 2n)

is the intersection of {(a, b) ∈ C 2 , b = a n } with S 3
ε , the 3-sphere of radius ε, and that the other component of

T (2, 2n) is the intersection of {(a, b) ∈ C 2 , b = -a n } with S 3
ε (for ε > 0 small enough). By writing a = x + iy

-(1 + a ) Table 2. The binary link B a and b = z + it (with x, y, z, t ∈ R), the equation b = a n becomes the system of equations              t = n-1 2 k=0 n 2k + 1 (-1) k x n-2k-1 y 2k+1 z = n 2 k=0 n 2k (-1) k x n-2k y 2k
and the equation b = -a n becomes the system of equations

             t = - n-1 2 k=0 n 2k + 1 (-1) k x n-2k-1 y 2k+1 z = - n 2 k=0 n 2k (-1) k x n-2k y 2k
From now on, we denote

Σ t (x, y) := n-1 2 k=0 n 2k + 1 (-1) k x n-2k-1 y 2k+1 , f 1 := t -Σ t (x, y), f 2 := t + Σ t (x, y), Σ z (x, y) := n 2 k=0 n 2k (-1) k x n-2k y 2k , g 1 := z -Σ z (x, y), g 2 := z + Σ z (x, y)
Consequently, we dene our analogue over R of the torus link T (2, 2n) as follows:

• Z 1 is the intersection of the closed subscheme of A 4 R of ideal (f 1 , g 1 ) and of X := A 4 F \{0}; • ϕ 1 : A 2 R \{0} → Z 1 is the morphism associated to the morphism of R-algebras R[x, y, z, t] → R[u, v] which maps x, y, z, t to u, v, Σ z (u, v), Σ t (u, v) respectively;

• o 1 is the orientation class associated to the couple (f 1 , g 1 );

• Z 2 is the intersection of the closed subscheme of A 4 R of ideal (f 2 , g 2 ) and of X;

• ϕ 2 : A 2 R \{0} → Z 2 is the morphism associated to the morphism of R-algebras R[x, y, z, t] → R[u, v] which maps x, y, z, t to u, v, -Σ z (u, v), -Σ t (u, v) respectively;

• o 2 is the orientation class associated to the couple (f 2 , g 2 ).

An oriented fundamental cycle of Z 1 (with orientation o 1 ) is η ⊗ (f 1 * ∧ g 1 * ) (over the generic point of Z 1 ) and a Seifert divisor of Z 1 (with orientation o 1 ) is f 1 ⊗ g 1 * (over the generic point of the hypersurface of X \ Z of equation g 1 = 0). An oriented fundamental cycle of Z 2 (with orientation o 2 ) is η ⊗ (f 2 * ∧ g 2 * ) (over the generic point of Z 2 ) and a Seifert divisor of Z 2 (with orientation o 2 ) is f 2 ⊗ g 2 * (over the generic point of the hypersurface of X \ Z of equation g 2 = 0). The intersection of the underlying divisors has n irreducible components, whose generic points are denoted by P 0 , . . . , P n-1 , where for all j ∈ {0, . . . , n -1}, the component of generic point P j is given in X \ Z by the equations

z = 0, x = tan (n -1 -2j)π 2n y
Indeed, if we denote x + iy = ρe iθ with ρ ∈ R * + , θ ∈ R then:

((x + iy) n ) = 0 ⇔ cos(nθ) = 0 ⇔ θ = (2j + 1)π 2n for some j ∈ {0, . . . , 2n -1} ⇔ x = tan (n -1 -2j)π 2n
y for some j ∈ {0, . . . , n -1}

From now on, for every j ∈ {0, . . . , n -1}, we denote θ j := (n -1 -2j)π 2n

. Thus, the homogeneous polynomial Σ z (x, y) of degree n is equal to n-1 j=0 (x-tan(θ j )y). Note that the tan(θ j ), with j ∈ {0, . . . , n -1}, are distinct, since they are the roots of the polynomial (x + i) n + (x -i) n

(which is coprime with its derivative).

It follows (see Section 3) that the intersection product of these Seifert divisors is equal to:

n-1 j=0 (m j ) f 1 f 2 u j ⊗ (π j * ∧ g 1 * ) • (P j )
where π j (resp. u j ) is a uniformizing parameter (resp. a unit) in O X\Z,P j /(g 1 ) and m j ∈ Z such that g 2 = u j π m j j . Note that one can choose π j = g 2 (hence m j = 1 and u j = 1) since O X\Z,P j /(g 1 ) (R[x, y, z, t]/(z -

n-1 i=0 (x -tan(θ i )y))) (z,x-tan(θ j )y)
R[x, y, t] (x-tan(θ j )y) and in this ring g 2 = 2

n-1 i=0 (x -tan(θ i )y), thus the intersection product of these Seifert divisors is equal to:

n-1 j=0 f 1 f 2 ⊗ (g 2 * ∧ g 1 * ) • (P j )
It follows (see Section 3) that its image by the boundary map, which is the quadratic linking class, is the following:

n-1 j=0 -f 2 η ⊗ (g 2 * ∧ f 1 * ∧ g 1 * ) • (x = tan(θ j )y in Z 1 ) + n-1 j=0 f 1 η ⊗ (g 1 * ∧ f 2 * ∧ g 2 * ) • (x = tan(θ j )y in Z 2 ) Its image by o 1 ⊕ o 2 is: n-1 j=0 -f 2 η ⊗ g 2 * ⊕ n-1 j=0 f 1 η ⊗ g 1 * Its image by ϕ * 1 ⊕ ϕ * 2 is: n-1 j=0 -2Σ t (u, v) η ⊗ 2Σ z (u, v) * ⊕ n-1 j=0 -2Σ t (u, v) η ⊗ -2Σ z (u, v) *
Note that the rst component of the couple above is equal to:

n-1 j=0 - n-1 2 k=0 n 2k + 1 (-1) k (tan(θ j )) n-2k-1 n-1 i =j,i=0 (tan(θ j ) -tan(θ i ))v η ⊗ u -tan(θ j )v *
Its image by the boundary map ∂ is the following:

n-1 j=0 - n-1 2 k=0 n 2k + 1 (-1) k (tan(θ j )) n-2k-1 n-1 i =j,i=0 (tan(θ j ) -tan(θ i )) η 2 ⊗ (v * ∧ u -tan(θ j )v * ) = n-1 j=0 n-1 2 k=0 n 2k + 1 (-1) k (tan(θ j )) n-2k-1 n-1 i =j,i=0 (tan(θ j ) -tan(θ i )) η 2 ⊗ (u * ∧ v * ) Note that n-1 2 k=0 n 2k + 1 (-1) k (tan(θ j )) n-2k-1 = ((tan(θ j ) + i) n ) = ρ j sin( (2j + 1)π 2
) with ρ j a positive real number, hence:

n-1 2 k=0 n 2k + 1 (-1) k (tan(θ j )) n-2k-1 = 1 if j is even -1 if j is odd
Note that for all l ∈ {0, . . . , n -1}, -π 2 < θ l < π 2 hence for all i < j, tan(θ j ) -tan(θ i ) < 0 and for all i > j, tan(θ j ) -tan(θ i ) > 0, hence:

n-1 i =j,i=0 (tan(θ j ) -tan(θ i )) = 1 if j is even -1 if j is odd Therefore ∂(ϕ * 1 ( o 1 (σ 1,L ))) = n η 2 ⊗ (u * ∧ v * )
, hence the rst component of the quadratic linking degree is equal to n ∈ W(R).

With similar computations to the ones above, we nd that the second component of the quadratic linking degree is equal to -n ∈ W(R), hence the quadratic linking degree is equal to (n, -n) ∈ W(R) ⊕ W(R) Z ⊕ Z and we nd that the ambient quadratic linking degree is equal to -n ∈ W(R) Z.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the ambient quadratic linking degree of the analogue of T (2, 2n) is 1 if n is odd, 0 if n is even. Note that the absolute value of each component of the quadratic linking degree and of the ambient quadratic linking degree of the analogue of T (2, 2n) is equal to n, hence the invariant presented in Corollary 2.18 distinguishes between all these links T (2, 2n), similarly to the absolute value of the linking number which distinguishes between all the links T (2, 2n) in knot theory (recall that the linking number of T (2, 2n) is equal to n in classical knot theory). Denition A.4 (Twisted Milnor-Witt K-theory). Let m ∈ Z and L be an F -vector space of dimension 1. The L-twisted m-th Milnor-Witt K-theory abelian group of F , denoted K MW m (F, L), is the tensor product of the Z

[F * ]-modules K MW m (F ) and Z[L \ {0}] (the scalar product of K MW m (F ) being ( f ∈F * n f λ f ) • α = f ∈F * n f f α).
Remark A.5. Note that if we x an isomorphism between L and F then we get an isomorphism of Z[F * ]-modules between K MW m (F, L) and K MW m (F ); nevertheless, K MW m (F, L) is a useful construction because there is no canonical isomorphism between L and F (hence no canonical isomorphism between K MW m (F, L) and K MW m (F ), unless L = F ) and the introduction of

K MW m (F, L)
is what allows us to have canonical residue morphisms.

Denition A.6 (The canonical residue morphism). The canonical residue morphism ∂ v :

K MW * (F ) → K MW * -1 (κ(v), (m v /m 2 v ) ∨ ) (where ∨ denotes the dual) is given by ∂ v = ∂ π v ⊗ π * (with π the class of π in m v /m 2
v (which is nonzero since π is a uniformizing parameter for v) and π * its dual basis).

Note that ∂ v does not depend on the choice of π, since if π is another uniformizing parameter for v then there exists u ∈ O v such that π = u π hence, by Corollary A.

3 , ∂ π v ⊗ π * = u ∂ π v ⊗ π * = ∂ π v ⊗ u π * = ∂ π v ⊗ π * .
Denition A.7 (The twisted canonical residue morphism). Let L be a rank one O v -module.

The twisted canonical residue morphism ∂ v,L :

K MW * (F, L⊗ Ov F ) → K MW * -1 (κ(v), (m v /m 2 v ) ∨ ⊗ κ(v)
Remark B.11. Note that since i * (resp. j * ) is the inclusion of a subcomplex (resp. the projection to a quotient complex), it commutes with the dierentials of the complexes, hence induces a morphism i * :

H n (Z, K MW m {ν Z }) → H n+d X -d Z (X, K MW m+d X -d Z ) (resp. j * : H n (X, K MW m ) → H n (U, K MW m ))
. Also note that this morphism i * coincides with the pushforward along the closed immersion i : Z → X (see [Fas20, Subsection 2.3]) and that this morphism j * coincides with the pullback along the open immersion j : U → X (see [Fas20, Subsection 2.4]). Denition B.12 (Boundary map). Let (Z, i, X, j, U ) be a boundary triple. The boundary map associated to this boundary triple is the morphism

∂ : C • (U, K MW * ) → C •+1+d Z -d X (Z, K MW * +d Z -d X {ν Z })
induced by the dierential d of the Rost-Schmid complex C(X, K MW * ), i.e.:

∂ = i * • d • j *
The following theorem is a special case of the more general exact triangle theorem in homological algebra (the boundary maps being the connecting morphisms).

Theorem B.13. Let (Z, i, X, j, U ) be a boundary triple. The boundary map induces a morphism

∂ : H n+d X -d Z (U, K MW m+d X -d Z ) → H n+1 (Z, K MW m {ν Z })
and we have the following long exact sequence, called the localization long exact sequence:

. . . / / H n (Z, K MW m {ν Z }) i * / / H n+d X -d Z (X, K MW m+d X -d Z ) j * / / j * / / H n+d X -d Z (U, K MW m+d X -d Z ) ∂ / / H n+1 (Z, K MW m {ν Z }) / / . . . B.
2. The Rost-Schmid groups of punctured ane spaces. Let us now compute the Rost-Schmid groups of A n F \ {0} for n ≥ 2. To do this, we use the following lemma (which is also used in the main part of the paper).

Lemma B.14. Let L be an invertible O X -module. For all i, j ∈ Z, the morphism

   C i (X, K MW j {L ⊗ L}) → C i (X, K MW j ) x∈I k x ⊗ (l x ⊗ l x ) → x∈I k x
where I is a nite subset of

X (i) , k x ∈ K MW j-i (κ(x), ν x ) and l x ∈ L |x \ {0}, is a well-dened isomorphism which commutes with dierentials. Proof. Note that elements of C i (X, K MW j {L ⊗ L}) are of the form x∈I m x ⊗ t x with I a nite subset of X (i) , m x ∈ K MW j-i (κ(x)) and t x ∈ Z[(ν x ⊗(L⊗L) |x )\{0}]. Let x ∈ I. Since ν x ⊗(L⊗L) |x is a κ(x)-vector space of dimension 1, there exist n x ∈ K MW j-i (κ(x)) and s x ∈ (ν x ⊗(L⊗L) |x )\{0} such that m x ⊗ t x = n x ⊗ s x . By denition of K MW j-i (κ(x), ν x ), there exist h x ∈ K MW j-i (κ(x), ν x ) and l x , r x ∈ L |x \ {0} such that n x ⊗ s x = h x ⊗ (l x ⊗ r x ). Since L |x is a κ(x)-vector space of dimension 1, there exists v x ∈ κ(x) * such that r x = v x l x . It follows that h x ⊗ (l x ⊗ r x ) = v x h x ⊗ (l x ⊗ l x ). Denoting k x := v x h x , we get that elements of C i (X, K MW j {L ⊗ L}) are of the form x∈I k x ⊗ (l x ⊗ l x
) with I a nite subset of X (i) , k x ∈ K MW j-i (κ(x), ν x ) and l x ∈ L |x \ {0}.

This morphism is well-dened since if x∈I k x ⊗ (l x ⊗ l x ) = x∈J k x ⊗ (l x ⊗ l x ) with I, J nite subsets of X (i) , k x , k x ∈ K MW j-i (κ(x), ν x ) and l x , l x ∈ L |x \ {0}, then for all x ∈ I ∪ J \ (I ∩ J), k x = k x = 0, and for all x ∈ I ∩ J, l x = u x l x for some u x ∈ F * and k x ⊗ (l x ⊗ l x ) = u 2

x k x ⊗ (l x ⊗ l x ) = k x ⊗ (l x ⊗ l x ) hence k x ⊗ (l x ⊗ l x ) = k x ⊗ (l x ⊗ l x ) hence k x = k x . The preceding equality k x ⊗ (l x ⊗ l x ) = k x ⊗ (l x ⊗ l x ) shows that the morphism    Proof. Denition B.20 (The intersection product). Let ∆ : X → X × X be the diagonal. The intersection product • : H i (X, K MW j ) × H i (X, K MW j ) → H i+i (X, K MW j+j ) is the composite of the exterior product µ : H i (X, K MW j ) × H i (X, K MW j ) → H i+i (X × X, K MW j+j ) with the pullback (a.k.a. Gysin morphism) ∆ * : H i+i (X × X, K MW j+j ) → H i+i (X, K MW j+j ).

C i (X, K MW j ) → C i (X, K MW j {L ⊗ L}) x∈I k x → x∈I k x ⊗ (l x ⊗ l x )
The proposition below states that the intersection product is a product.

f i g i ∈ m X,D i is a generator of m X,D i since (a representative of ) f i is a unit in O X,D i and g i is a generator of m X,D i ). Therefore, by Theorem B.23, the intersection product of f 1 ⊗ g 1 * with f 2 ⊗ g 2

  Acknowledgements. The author thanks Frédéric Déglise and Adrien Dubouloz for their mentoring during her PhD, and more generally everyone (including the referees) who provided feedback on this work. The author was partially supported by Project ISITE-BFC ANR-15-IDEX-0008 Motivic Invariants of Algebraic Varieties and ANR Project PRC HQDIAG ANR-21-CE40-0015 Motivic Homotopy, Quadratic Invariants and Diagonal Classes . The IMB received support from the EIPHI Graduate School (contract ANR-17-EURE-0002). The author was then supported by the Research Training Group 2553 Symmetries and Classifying Spaces: Analytic, Arithmetic and Derived , funded by the German Research Foundation DFG.

  For Y a smooth nite-type F -scheme, j ∈ Z and L an invertible O Y -module, we denote the Rost-Schmid complex by C(Y, K MW j {L}) (see Denition B.2) and the i-th Rost-Schmid group of this complex by H i (Y, K MW j {L}) (see Denition B.5) or simply H i (Y, K MW j

  by Proposition A.2 and Proposition B.21:

3. 3 .

 3 Computing the quadratic linking class and degree. Theorem 3.1. Under the assumptions of Subsection 3.1 and with the notations in Subsection 3.2, the cycle p∈I q∈{p}

  is well-dened, which shows that the morphism in the statement is an isomorphism. The commutation with dierentials is straightforward. Denition B.15. Let n ≥ 2, j ∈ Z be integers and o : det(N {0}/A n F ) → O {0} ⊗ O {0} be an isomorphism. The isomorphism o gives rise to an isomorphism H 0 ({0}, K MW j {det(N {0}/A n F )}) → H 0 ({0}, K MW j {O {0} ⊗ O {0} }) hence to an isomorphism o : H 0 ({0}, K MW j {det(N {0}/A n F )}) → H 0 ({0}, K MW j ) = K MWj (F ) by Lemma B.14. We call o the isomorphism induced by o. Proposition B.16. Let n ≥ 2, i ≥ 0 and j ∈ Z be integers. Denoting by ψ : A n F \ {0} → A n F the inclusion and by ∂ the boundary map associated to the boundary triple ({0}, A n F , A n F \ {0}),the morphismsψ * : K MW j (F ) H 0 (A n F , K MW j ) → H 0 (A n F \ {0}, K MW j ) and ∂ : H n-1 (A n F \ {0}, K MW j ) → H 0 ({0}, K MW j-n {det(N {0}/A n F )}) K MW j-n(F ) are isomorphisms and if i / ∈ {0, n-1} then H i (A n F \ {0}, K MW j ) = 0.

H 0 (F)F)B. 3 .

 03 {0}, K MW -2 {det(N {0}/A 2 F )}) → K MW -2 (F ) induced by the isomorphism det(N {0}/A 2 → O {0} ⊗ O {0} which sends u * ∧ v * to 1 ⊗ 1, where A 2 F = Spec(F [u, v]) (see Denition B.15) and of the canonical isomorphism (which sends η 2 to 1)K MW -2 (F ) → W(F ) Denition B.19 (The conventional isomorphism for A 4 F \ {0}). The conventional isomorphism ζ : H 3 (A 4 F \ {0}, K MW 2 ) → W(F )is the composite of the boundary map∂ : H 3 (A 4 F \ {0}, K MW 2 ) → H 0 ({0}, K MW -2 {det(N {0}/A 4 F )})(which is an isomorphism by Proposition B.16), of the isomorphismH 0 ({0}, K MW -2 {det(N {0}/A 4 F )}) → K MW -2 (F ) induced by the isomorphism det(N {0}/A 4 → O {0} ⊗ O {0} which sends x * ∧ y * ∧ z * ∧ t * to 1 ⊗ 1, where A 4 F = Spec(F [x, y, z, t]) (see Denition B.15) and of the canonical isomorphism (which sends η 2 to 1)K MW -2 (F ) → W(F )The intersection product of oriented divisors. The intersection product is dened from the exterior product (see [Fas20, Subsection 3.1]), which is also known as the cross product (see[START_REF] Feld | Milnor-Witt cycle modules[END_REF] Section 11]) and the pullback along the diagonal (see [Fas20, Subsection 3.3]), which is also known as the Gysin morphism induced by the diagonal (see [Fel20, Section 10]).

  induced by o i is the same as the one induced by o i , hence the oriented fundamental class [o i ] only depends on the orientation class o i .

	Recall that the boundary map

  Seifert class and Seifert divisors). Let L be an oriented link with two components. The couple of Seifert classes of L is the couple

		is an isomorphism
	(see Denition B.12 and Theorem B.13 and note that the groups H 1 (X, K MW 1	) and H 2 (X, K MW 1	)
	vanish (by Proposition B.16)).		
	Denition 2.6 (		

  is the multiplication by an element of Γ(Z i , O * Z i ), i.e. by an element of F * . The result follows directly.

	Recall that automorphisms of A 2 F \{0} are restrictions of automorphisms of A 2 F which preserve
	the origin (see [GW10, Theorem 6.45 (Hartogs' theorem)]), hence they induce changes of coor-

  1) p∈P W(Z/pZ) (with P the set of prime numbers) is very interesting (see the discussion at the end of Examples 4.2). This provides new invariants of the (ambient) quadratic linking degree: given two oriented links L 1 and L 2 , one rst compares Σ 2

  It follows from Denition 2.6 and Theorem A.10 that the Seifert class

  Table 2 to the sixth line in this Table, note that

  The localization long exact sequence (see Theorem B.13) associated to the boundary triple ({0}, ϕ, A n F , ψ, A n F \ {0}) gives us the following exact sequences for all j ∈ Z and i / ∈ {0, n -1}: Remark B.17. Note that the Rost-Schmid groups of A n F \{0} are already known (combine [AF14, Lemma 4.5] with [Mor12, Corollary 5.43], [Fel21, Example 1.5.1.19] and [Mor12, Theorem 5.46]), but the explicit denition of isomorphisms we did above is important for the two following denitions, the rst of which is used in the denition of the quadratic linking degree (see Denition 2.11) and the second of which is used in the denition of the ambient quadratic linking degree (see Denition 2.13).

		0	/ / H 0 (A n F , K MW j	)	ψ *	/ / H 0 (A n F \ {0}, K MW j	)	/ / 0
	0	/ / H n-1 (A n F \ {0}, K MW j	)			∂ / / H 0 ({0}, K MW j-n {det(N {0}/A n F )})	/ / 0
			0	/ / H i (A n F \ {0}, K MW j	)	/ / 0
	Denition B.18 (The conventional isomorphism for A 2 F \ {0}). The conventional isomorphism
			ζ : H 1 (A 2 F \ {0}, K MW 0	) → W(F )
	is the composite of the boundary map			
		∂ : H 1 (A 2 F \ {0}, K MW 0	) → H 0 ({0}, K MW -2 {det(N {0}/A 2 F	)})

(which is an isomorphism by Proposition B.16), of the isomorphism

Appendix A. An explicit definition of the residue morphisms of Milnor-Witt

K-theory

In this appendix, we give an explicit denition (i.e. one which allows computations) of the noncanonical residue morphism and prove that it is indeed the noncanonical residue morphism (as dened by Morel in [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF] and recalled in Denition A.1). Note that explicit denitions of the canonical residue morphism (see Denition A.6) and of the twisted canonical residue morphism (see Denition A.7) follow directly. We use the case n ≤ 0 in Theorem A.10 to compute the quadratic linking class and degree in Sections 3 and 4; the case n ≥ 1 is included for its usefulness in other computations.

See [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]Section 3.1] for recollections about Milnor-Witt K-theory. Throughout this Appendix, F is a perfect eld, v : F * → Z is a discrete valuation (of residue eld κ(v) and ring O v ) and π is a uniformizing parameter for v. For all u ∈ O * v , we denote by u its class in κ(v) (which is in κ(v) * since u ∈ O * v ). We denote the usual generators of the Milnor-Witt K-theory ring of F by [a] ∈ K MW 1 (F ) (with a ∈ F * ) and η ∈ K MW -1 (F ) (see [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]Denition 3.1]). We denote a := 1 + η[a] ∈ K MW 0 (F ), := --1 and for all n ∈ N 0 , n := n i=1 (-1) i-1 and (-n) := n . We denote by χ odd : Z → {0, 1} the characteristic function of the set of odd numbers.

We now recall Morel's denition of the noncanonical residue morphism.

Denition A.1 (The noncanonical residue morphism). The residue morphism ∂ π

is the only morphism of graded groups which commutes to product by η and satises, for all n ∈ N 0 , u 1 , . . . ,

In [Mor12, Theorem 3.15], Morel proves that such a morphism exists and that it is unique.

Before we dene the canonical residue morphism, we recall the following facts and denition:

Proposition A.2 (Proposition 3.17 in [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]).

) is the morphism of graded groups which satises for all α ∈ K MW * (F ) and l ∈ L:

Before we prove Theorem A.10, we recall the following facts.

Lemma A.8. For all m, n ∈ Z, (mn) = m n . Lemma A.9. For all m ∈ Z, ηm = ηχ odd (m).

Recall that by [Mor12, Lemma 3.6], for all n ≤ 0,

) is a group morphism (see Denition A.1), we only need to give

Theorem A.10. For all n ≤ 0, m ∈ Z and u ∈ O * v :

For all n ≥ 1, m 1 , . . . , m n ∈ Z and u 1 , . . . , u n ∈ O * v :

Remark A.11. This last formula may seem daunting, but for n = 1 it is merely

and so on.

We obtained this last equality by developing the product and using [Mor12, Corollary 3.8] ( -graded commutativity), as well as the fact that η = η.

The index p corresponds to the number of terms coming from an η(m i ) [π, u i ], the index l corresponds to the number of terms coming from a [u i ] or an η(m i ) [π, u i ], the set J = {j 1 , . . . , j l } (with j 1 < • • • < j l ) corresponds to the indices the terms coming from a [u i ] or an η(m i ) [π, u i ] and the set I corresponds to the indices of the j i such that u j i comes from an η(m

By [Mor12, Lemma 3.7] and Lemma A.8:

By Lemma A.9 :

Note that the term l = n in the rst double sum vanishes since ∂ π v ([u 1 , . . . , u n ]) = 0 (by Denition A.1).

Appendix B. The Rost-Schmid complex and Rost-Schmid groups

In this appendix, we recall notions about the Rost-Schmid complex and its cohomology groups which are used in our paper. See [Mor12, Section 3.1] for recollections about Milnor-Witt Ktheory. Throughout this appendix, F is a perfect eld and X is a smooth nite-type F -scheme. We denote the usual generators of the Milnor-Witt K-theory Denition B.1 (Determinant of a locally free module). The determinant of a locally free O Xmodule V of constant nite rank r, denoted det(V), is its r-th exterior power Λ r (V).

Denition B.2 (Rost-Schmid complex). Let j ∈ Z and L be an invertible O X -module. The Rost-Schmid complex associated to X, j and L is :

where X (i) is the set of points of codimension i in X,

Recall Denition A.7 and the following notation (taken from [Mor12, pp. 121-122]). Notation B.3. Let x ∈ X be such that {x} is smooth, y ∈ {x}

(1) and L be an invertible O X -module. We denote by

the twisted canonical residue morphism associated to the discrete valuation of O {x},y .

If {x} is not smooth, the morphism ∂ x y :

is the sum over the points z above y in the normalisation of {x} of the composition of the adequate twisted canonical residue morphism and of the transfer morphism associated to y and z (see [Fas20, Subsection 2.1] or Feld's article [START_REF] Feld | Milnor-Witt cycle modules[END_REF] (take M = K MW in Feld's notations) or Déglise's notes [START_REF] Déglise | Notes on Milnor-Witt K-theory[END_REF]). Denition B.4 (Dierential of the Rost-Schmid complex). Let j ∈ Z and L be an invertible O X -module. The dierential of the Rost-Schmid complex associated to X, j and L is the morphism d X,j,L : C * (X, K MW j {L}) → C * +1 (X, K MW j {L}), denoted d for short, given by:

Note that the sum which appears in the above denition is well-dened since, with the same notations as above, for every k x the number of y ∈ {x}

(1)

Sections 4 and 7] (especially axiom FD) or Déglise's notes [START_REF] Déglise | Notes on Milnor-Witt K-theory[END_REF]).

By [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]Theorem 5.31], the Rost-Schmid complex is a complex, i.e. for all i ∈ N 0 , d i+1 • d i = 0, hence we can dene the Rost-Schmid groups as follows.

Denition B.5 (Rost-Schmid groups). Let i, j ∈ Z, L be an invertible O X -module. The i-th Rost-Schmid group associated to X, j and L, denoted by H i (X, K MW j {L}), is the i-th cohomology group of the Rost-Schmid complex C(X, K MW j {L}), i.e.:

where by convention

Note that by denition, for all i ∈ N 0 and j ∈ Z, C i (Spec(F ),

Remark B.6. Note that by [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]Theorem 5.47] Rost-Schmid groups generalize Chow-Witt

Let us now state the property of homotopy invariance of Rost-Schmid groups.

Theorem B.7 (Theorem 5.38 in [START_REF] Morel | A 1 -algebraic topology over a eld[END_REF]). Let π : A 1 X → X be the projection, i ∈ N 0 and j ∈ Z. The induced morphism π * :

) is an isomorphism.

Note that it follows from this theorem that for all n, i ∈ N 0 and j ∈ Z,

We now dene boundary triples and boundary maps, which were introduced by Feld in [START_REF] Feld | Milnor-Witt cycle modules[END_REF] (following what Rost did in [START_REF] Rost | Chow groups with coecients[END_REF]).

Denition B.8 (Boundary triple).

A boundary triple is a 5-tuple (Z, i, X, j, U ), or abusively a triple (Z, X, U ), with i : Z → X a closed immersion and j : U → X an open immersion such that the image of U by j is the complement in X of the image of Z by i, where Z, X, U are smooth F -schemes of pure dimensions. We denote by d Z and d X the dimensions of Z and X respectively and by ν Z the determinant of the normal sheaf of Z in X.

Remark B.9. Let (Z, i, X, j, U ) be a boundary triple. Note that, similarly to [Ros96, (3.10)], for each integer m, the complex

, and that we have for each integer n a canonical isomorphism

Notation B.10. We denote the projections by i * : [START_REF] Fasel | Lectures on Chow-Witt groups[END_REF] or Theorem 11.6 in [START_REF] Feld | Milnor-Witt cycle modules[END_REF]). The intersection product makes i∈N 0 CH i (X) into a graded K MW 0 (F )-algebra, which is called the Chow-Witt ring.

In this paper, we are interested in the intersection product of oriented divisors and often use the following proposition. Proposition B.22 (Subsection 3.4 in [START_REF] Fasel | Lectures on Chow-Witt groups[END_REF]). Let c 1 , c 2 be oriented divisors in X, i.e. c 1 , c 2 ∈ H 1 (X, K MW 1 ). The intersection product of c 1 with c 2 , denoted by c 1 • c 2 , is -1 -commutative:

The following formula (or rather the formula in Corollary B.24) is used to compute the intersection product in Sections 3 and 4. This theorem, which has been proved by Déglise, will be made available in the second part of his notes [START_REF] Déglise | Notes on Milnor-Witt K-theory[END_REF]; we give a proof sketch below.

Theorem B.23. Let X be a smooth F -scheme. Let D 1 , D 2 be smooth integral divisors in X such that D 1 ∩ D 2 is of codimension 2 in X. For all i ∈ {1, 2}, let g i be a local parameter for D i , i.e. g i is a uniformizing parameter for O X,D i . The intersection product of

) of the sum over the generic points x of the irreducible components of D 1 ∩ D 2 of (m x ) u x ⊗ (π x * ⊗ g 1 * ) (over the point x), where π x is a uniformizing parameter for O X,x /(g 1 ), u x is a unit in O X,x /(g 1 ) and m x ∈ Z such that g 2 = u x π mx x ∈ O X,x /(g 1 ).

The ideas of the proof are the following:

• Reduce the problem to the case where D 1 = div(g 1 ).

• Denoting by i 1 : D 1 → X the inclusion and by Θ 1 : H

) is equal to (i 1 ) * (Θ 1 (1)). • Use the projection formula (Theorem 3.19 in [START_REF] Fasel | Lectures on Chow-Witt groups[END_REF]) to show that:

• Use Proposition 3.2.15 in [START_REF] Déglise | Perverse homotopy heart and MW-modules[END_REF], which states that if i is the closed immersion of a principal divisor D = div(π) and j is the complementary open immersion to i, 

and conclude.

Corollary B.24. Let X be a smooth F -scheme. Let D 1 , D 2 be smooth integral divisors in X such that D 1 ∩D 2 is of codimension 2 in X. For all i ∈ {1, 2}, let g i be a local parameter for D i and f i be a unit in κ(D i ) = O X,D i /m X,D i such that for all generic points x of irreducible components of

x is a unit. The intersection product of f 1 ⊗g 1 * ∈ H 1 (X, K MW 1 ) (over the generic point of D 1 ) with f 2 ⊗ g 2 * ∈ H 1 (X, K MW 1 ) (over the generic point of D 2 ) is the class in H 2 (X, K MW 2 ) of the sum over the generic points x of the irreducible components of D 1 ∩ D 2 of (m x ) f 1 f 2 u x ⊗ (π x * ⊗ g 1 * ) (over the point x), where π x is a uniformizing parameter for O X,x /(g 1 ), u x is a unit in O X,x /(g 1 ) and m x ∈ Z such that g 2 = u x π mx x ∈ O X,x /(g 1 ).

Proof. First note that, with the notations above, f i ∈ κ(x) is well-dened since if f i and f i are two representatives in O X,D i of f i ∈ κ(D i ) (hence dier by an element of m X,D i ) and if f i , f i ∈ O X,x are sent by the canonical morphism ψ : O X,x → O X,D i to f i , f i ∈ O X,D i respectively, then f i , f i ∈ O X,x dier by an element of m X,x (since ψ -1 (m X,D i ) ⊂ m X,x ).

Note that for all i ∈ {1, 2}, f i ⊗ g i * = 1 ⊗ f i g i * with f i g i a local parameter for D i (f i g i ∈ m X,D i /m 2 X,D i is well-dened since f i ∈ O X,D i /m X,D i and g i ∈ m X,D i and (a representative of )