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THE QUADRATIC LINKING DEGREE

CLEMENTINE LEMARIE--RIEUSSET

ABSTRACT. By using motivic homotopy theory, we introduce a counterpart in algebraic geom-
etry to oriented links and their linking numbers. After constructing the (ambient) quadratic
linking degree — our analogue of the linking number which takes values in the Witt group of
the ground field — and exploring some of its properties, we give a method to explicitly compute
it. We illustrate this method on a family of examples which are analogues of torus links, in
particular of the Hopf and Solomon links.
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1. INTRODUCTION
In 1999, Morel and Voevodsky founded motivic homotopy theory (see | |) in order to
import topological methods into algebraic geometry (see also the second section of | | for a

brief overview). The goal of this paper is to explore the possibility of defining a counterpart to
knot theory in algebraic geometry by using motivic homotopy theory. Specifically, we develop
an algebro-geometric theory of linking in a setting inspired by classical linking in knot theory
and follow it through to explicit computations on families of algebraic varieties.

We begin by defining counterparts, over a perfect field F', to oriented links with two compo-
nents (i.e. couples of disjoint oriented knots). Specifically, we replace the circle St with A%\ {0}
and the 3-sphere S? with A%\ {0}. We then define a counterpart to the linking number, which
in knot theory is an invariant of oriented links with two components which corresponds to the
number of times one of the oriented components turns around the other oriented component, and
a counterpart to the linking couple, which is a couple of integers whose absolute values coincide
with the absolute value of the linking number. We call these counterparts the ambient quadratic

2020 Mathematics Subject Classification. Primary 14F42, 57K10; Secondary 11E81, 14C25, 19E15.
Key words and phrases. Motivic homotopy theory, Knot theory, Links, Witt groups, Milnor-Witt K-theory,
Rost-Schmid complex.
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linking degree and the quadratic linking degree (couple) respectively. To define these, we use
Chow-Witt groups, and more generally Rost-Schmid groups, instead of the singular cohomology
groups used in classical knot theory. The Rost-Schmid groups are the cohomology groups of the
Rost-Schmid complex (see Appendix B) which is built from Milnor-Witt K-theory groups; this
is where motivic homotopy theory comes into play, as Milnor-Witt K-theory groups are in fact
groups of morphisms of motivic spheres in the stable motivic homotopy category (see [ ,
Corollary 1.25]).

In knot theory, the cohomological definitions of the linking number use the notion of Seifert
class of an oriented knot, which is the class (in cohomology) of Seifert surfaces of an oriented
knot (compact connected oriented surfaces whose oriented boundary is the oriented knot; see for
instance | , Chapter 5, Sections A and DJ). The following theorem-definition establishes the
possibility of defining the quadratic linking class, the quadratic linking degree and the ambient
quadratic linking degree in a similar manner to the linking class, the linking couple and the
linking number respectively (see | , Chapter 1] for more details on these).

Theorem-Definition 1.1 (Quadratic linking degrees). Let Z = Z; U Zy C A} \ {0}, with
Z1 ~ A2\ {0} and Zy ~ A%\ {0}, be an oriented link with two components (see Definition 2.2

for details). There exist two elements of the Chow-Witt group Cf'\Efl((A% \{0})\ Z) — called
Seifert classes (see Definition 2.6) — such that their intersection product in Cﬁ%(A%\{O})\Z)
and its image by the boundary map O : C/'\EQ((A% \{oMH)\ Z2) — HY(Z, Kg/lw{det(NZ/A%\{o})})
— called the quadratic linking class (see Definition 2.8) — only depend on the oriented link Z.
Denoting by W(F') the Witt group of F, we call the image of the quadratic linking class by the
isomorphism H(Z, Kglw{det(NZ/A%\{o})}) — W(F) @ W(F) the quadratic linking degree (see
Definition 2.11) and the image of the pushforward (by the inclusion) of the part of the quadratic

linking class which is supported on Zy by the isomorphism H?(A% \ {0}, KY™) — W(F) the
ambient quadratic linking degree (see Definition 2.13).

Let us illustrate this definition on the Hopf link Z = {x = y = 0} U {z =t = 0} C
Spec(F[z,y, z,t])\{0} over a perfect field F' (see Example 4.1). Its Seifert classes are the classes of
(z)®@y* and (2)®F " in (Tﬁl((A%\{O})\Z), their intersection product is the class of (z2)® (" AT*)
in CA’fI2((A% \ {0})\ Z) and the quadratic linking class is the class of —(2)n ® (£* AZT* AY*) @
(@me @ Azt AT) in HY(Z, K5V {detWNy p100y)}) = H'(Z1, K§™W{det(Ny, jas\ o)) }) ©
Hl(Zg,K%lw{det(./\/'ZﬂA%\{o})}), which gives (—1,1) € W(F) & W(F') as quadratic linking
degree and —1 € W(F') as ambient quadratic linking degree.

In Section 2, we give the definitions of the quadratic linking class, the quadratic linking degree
and the ambient quadratic linking degree, then we determine how they depend on choices of
orientations and of parametrisations of A% \ {0} — A% \ {0} (see Lemma 2.16) and deduce
invariants of the (ambient) quadratic linking degree (see Corollaries 2.17 and 2.18 and Theorem
2.21). For instance, in the case F' = R, the absolute values of the components of the quadratic
linking degree and of the ambient quadratic linking degree (which are in W(R) ~ Z) are invariant
under changes of orientations and of parametrisations of A%\ {0} — A%\ {0}. This is similar to
the fact that the absolute value of the linking number does not depend on choices of orientations.
In the general case, the ranks modulo 2 of the components of the quadratic linking degree and of
the ambient quadratic linking degree are invariants, and more importantly we have the following
lemma-definition and theorem:

Lemma-Definition 1.2. Let d =" (a;) € W(F). There ezists a unique sequence of abelian
groups Qg and of elements ¥(d) € Qq, where k ranges over the nonnegative even integers,
such that Qqo = W(F'), Xo(d) =1 € Qg0 and:

e for each positive even integer k, Qq is the quotient group Qqr—2/(Xk—2(d));

e for each positive even integer k, X (d) = Zl§i1<-~<ik§n<H1§j§k ai;) € Qdk-
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Theorem 1.3. Let .Z be an oriented link with two components and k > 0 be even. We denote
the quadratic linking degree of £ by Qld o = (di1,d2) € W(F)®W(F') and the ambient quadratic
linking degree by AQld . Then Xi(d1), Xx(d2) and Xk (AQld o) are invariant under changes of
orientation classes 01,03 and under changes of parametrisations of 1,2 : AL\ {0} — A%\ {0}.

Note that even though these invariants give the same value on d, ds and AQld & in all of the
examples in this paper, the author has found no reason for this to be true in general (over an
arbitrary perfect field). The author conjectures that this is true in the real case, as this is a
direct consequence of the conjecture that the real realization of the ambient quadratic linking
degree is the linking number and that the real realization of the quadratic linking degree is
the linking couple, at least up to a sign (this is a work in progress). In the classical case, the
equality between each component of the linking couple and the linking number up to a sign
results from the fact that the linking number is the image of each component of the linking
couple by a surjective group morphism Z — Z (i.e. W(R) — W(R)) and from the fact that
there are only two such morphisms: the identity on Z and its opposite. On the other hand, for an
arbitrary perfect field F', the ambient quadratic linking degree is the image of each component
of the quadratic linking degree by a group morphism W(F') — W(F') which may or may not be
surjective, and in addition there may be many surjective group morphisms W(F') — W(F).

In Section 3 we give a method to explicitly compute the quadratic linking class (see Theorem
3.1), the quadratic linking degree (see Theorem 3.2) and the ambient quadratic linking degree
(see Theorem 3.3) when the link Z; L Zo C A%\ {0} is such that for each i € {1,2} the closure
Z; C A;’; of Z; is given by two irreducible equations {f; = 0, g; = 0} such that {g1 = 0, g2 = 0}
is of codimension 2 in (A% \ {0}) \ (Z1 U Z») and for each generic point p of an irreducible
component of {g1 = 0,g2 = 0}, f1 and fo are units in the residue field x(p).

In Section 4 we compute the quadratic linking class, the quadratic linking degree and the
ambient quadratic linking degree (as well as their invariants) on several examples. The Examples
4.2 (which we call binary links) showcase the usefulness of the invariant X9 by showing that it
can distinguish between an infinity of different links. The Examples 4.3 are inspired by the torus
links T'(2,2n) of linking number n (the Hopf link if n = 1, the Solomon link if n = 2 and the
n-gonal link (two intertwined n-gons) if n > 3).

In Appendix A we give an explicit definition (one which allows computations) of the residue
morphisms of Milnor-Witt K-theory (see Theorem A.10), which is used in Sections 3 and 4.

In Appendix B we recall some useful notions about the Rost-Schmid complex and its groups.

Acknowledgements. The author thanks Frédéric Déglise and Adrien Dubouloz for their
mentoring during her PhD, and more generally everyone (including the referees) who provided
feedback on this work. The author was partially supported by Project ISITE-BFC ANR-15-
IDEX-0008 “Motivic Invariants of Algebraic Varieties” and ANR Project PRC “HQDIAG” ANR-
21-CE40-0015 “Motivic Homotopy, Quadratic Invariants and Diagonal Classes”. The IMB re-
ceived support from the EIPHI Graduate School (contract ANR-17-EURE-0002). The author
was then supported by the Research Training Group 2553 “Symmetries and Classifying Spaces:
Analytic, Arithmetic and Derived”, funded by the German Research Foundation DFG.

2. THE QUADRATIC LINKING DEGREE

In this section, we define oriented links with two components, oriented fundamental classes
(and cycles), Seifert classes (and divisors) relative to the link, the quadratic linking class and the
(ambient) quadratic linking degree of the link. We then explicit how the quadratic linking class
and the (ambient) quadratic linking degree depend on choices of orientations and parametrisa-
tions of A%\ {0} — A% \ {0} and deduce a series of invariants of the quadratic linking degree.

2.1. Conventions and notations. Throughout this section, F is a perfect field, we put A2 =
Spec(F[u,v]), A% = Spec(F|z,y,z,t]) and X := A%\ {0}.
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For Z a smooth closed subscheme of a smooth scheme Y, we denote by N 7y the normal
sheaf of Z in Y, i.e. the dual of the Oz-module JZ/JZ2 with 7 the ideal sheaf of Z in Y.

We denote the usual generators of the Milnor-Witt K-theory ring of F by [a] € KMV (F) (with
a € F*) and n € KMW(F) (see | , Definition 3.1]). We put (a) := 1+ n[a] € K}V (F).

For Y a smooth finite-type F-scheme, j € Z and £ an invertible Oy-module, we denote the
Rost-Schmid complex by C(Y, KE/IW{E}) (see Definition B.2) and the i-th Rost-Schmid group
of this complex by H (Y, KY"W{L}) (see Definition B.5) or simply H'(Y, K}'V) if £L = Oy.

We identify H1(AZ\ {0}, K}™) with W(F) via the (noncanonical) isomorphism ¢ : H(AZ\
{0}, KMW) — W(F) which factorizes as follows:

H (A3 {0}, K3™W) 2 HO({0}, KMV {det(Wigy 3))) — KMV (F) 20 w(r)

where 0 is the boundary map (see Definition B.12 and Theorem B.13) and the map in the
middle is induced by the isomorphism det(/\/{o}m%) — Og0y ® Ogp) which sends " AT* to 1®1
(see Definition B.18). We also identify H3(A% \ {0}, K}™) with W(F) via the (noncanonical)
isomorphism ¢’ : H3(A%\ {0}, KX™) — W(F) which is defined in a similar manner to ¢, with
TEAT AT AT € det(./\/'{o}/A%) instead of w* AT* € det(/\f{o}/&%) (see Definition B.19).

2.2. Definitions of the quadratic linking class and degree. In this subsection, we give a
series of definitions which conclude with the definitions of the quadratic linking class and the
(ambient) quadratic linking degree of an oriented link with two components.

In order to define oriented links with two components, we need the following definition (which
was given by Morel in | D.

Definition 2.1 (Orientation of a locally free module). An orientation of a locally free module
V of constant finite rank r over an F-scheme Y is an isomorphism o : det(V) = A"(V) - L® L
where £ is an invertible Oy-module.

Two orientations o : det(V) — L ® L,0" : det(V) — L' @ L' are said to be equivalent if there
exists an isomorphism v : £ — £’ such that (¥ ® 1) oo = o/. The equivalence class of o, denoted
0, is called the orientation class of o.

Definition 2.2 (Oriented link with two components). An oriented link £ with two components
is the following data:
e a couple of closed immersions ; : A%\ {0} — X with disjoint images Z;;
e for i € {1,2}, an orientation class 0; of the normal sheaf N /x, represented by an
isomorphism o; : vz, := det(NZi/X) — L; R L;.
We denote Z := Zy U Zs, vz = det(Nz/x).

Remark 2.3. The canonical morphisms ; : Z; — Z induce an isomorphism
Ui ey HY(Z, K" {vz}) = H'(Z1, K" {vz,}) @ H' (Zs, K} {vz,})
which allows us to identify H*(Z, K}V {vz}) with H'(Z1, K};"V{vz,}) ® H'(Zs, K} {vz,}).

Definition 2.4 (Oriented fundamental class and cycles). Let £ be an oriented link with two
components and ¢ € {1,2}. The oriented fundamental class of the i-th component of ., denoted
by [0], is the unique element of H°(Z;, KMWV{v,.}) which is sent to n € H(Z;, KMV) by the
isomorphism H®(Z;, KMWV{vz.}) — H(Z;, KMV) induced by o; (see Lemma B.14).

Furthermore, an oriented fundamental cycle of the i-th component of .Z is a representative
in CO(Z;, KMW{vz.}) of the oriented fundamental class [o;].

Remark 2.5. Note that if o; and o} represent the same orientation class then the isomorphism
HO(Z;, KMV{v, 1) — H(Z;, KMV) induced by 0} is the same as the one induced by o;, hence
the oriented fundamental class [o;] only depends on the orientation class o;.
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Recall that the boundary map 0 : HY(X \ Z, K}'V) — H°(Z, KMV {vz}) is an isomorphism
(see Definition B.12 and Theorem B.13 and note that the groups H*(X, K)™W) and H?(X, K)'W)
vanish (by Proposition B.16)).

Definition 2.6 (Seifert class and Seifert divisors). Let .Z be an oriented link with two com-
ponents. The couple of Seifert classes of £ is the couple (S,,,S,,), or (S1,S2) for short, of
elements of H'(X \ Z, K}W) such that 9(S1) = ([01],0) and 3(S2) = (0, [02]).

For i € {1,2}, we call S; the Seifert class of Z; relative to the link .. Furthermore, a Seifert
divisor of Z; relative to the link .Z is a representative in C*(X \ Z, KMW) of S;.

Remark 2.7. For i € {1,2}, the Seifert class of Z; relative to . depends on Z and not only on
Z; (and its orientation class 0;). We could define a weaker notion of Seifert class of Z;, which
would only depend on Z; (and 0;), but it is important for what follows to have this stronger
notion of Seifert class.

See Definition B.20 for the intersection product, which is used in the following definition.

Definition 2.8 (Quadratic linking class). Let . be an oriented link with two components.
The quadratic linking class of £, denoted by Qlc, is the image of the intersection product
of the Seifert class S; with the Seifert class Sy by the boundary map 9 : H*(X \ Z, K}™W) —
HY(Z, KY™{vz}). Wedenote Qlcy = (01,09 ¢) € H'(Z1, K™ {vz, O HY(Z2, Ky {vz,})
(see Remark 2.3).

Remark 2.9. Note that the quadratic linking class Qlcy contains as much information as the
intersection product Sy - Sy since the boundary map 0 : H*(X \ Z, KYW) — H'(Z, K}™{v,})
is injective (see the localization long exact sequence (in Theorem B.13) and note that the group
H?(X, K3™W) vanishes (by Proposition B.16)). Also note that Qlcg € ker(is) since the image
of 0 is the kernel of i, : HY(Z, KYW{vz}) — H3(X, KYW), where i, is the pushforward of the
closed immersion i : Z — X (see the localization long exact sequence (in Theorem B.13)).

Notation 2.10. For i € {1,2}, we denote by 0; the isomorphism H'(Z;, Ky"W{vz}) —
HY(Z;, K§™W) induced by o; (see Lemma B.14) and by ¢! the isomorphism H'(Z;, K)™) —
HY(AZ\ {0}, K}™W) induced by ¢;.

Recall that we fixed an isomorphism ¢ : H'(A% \ {0}, K}™) — W(F) (see Subsection 2.1).

Definition 2.11 (Quadratic linking degree). Let £ be an oriented link with two components.
The quadratic linking degree of £, denoted by Qld &, is the image of the quadratic linking class
of £ by the isomorphism (¢ @ ¢) o (¢} @ @3) o (01 ® 02) : HY(Z, KYW{vz}) — W(F) @ W(F).

Notation 2.12. We denote by (i1). the inclusion of the subcomplex C*~2(Zy, KYW{vz,}) in
C*(X, K3"W) (and the induced morphism in cohomology; see Remark B.11) and by (i)« the
inclusion of the subcomplex C*~2(Zy, K™ {vz,}) in C*(X, K3™W) (and the induced morphism
in cohomology; see Remark B.11).

Recall that we fixed an isomorphism ¢’ : H3(A% \ {0}, K3™W) — W(F) (see Subsection 2.1).

Definition 2.13 (Ambient quadratic linking degree). Let £ be an oriented link with two
components. The ambient quadratic linking degree of £, denoted by AQld g, is the element
¢'((i1)«(01,2)) of W(F) (see Definition 2.8 and Notation 2.12).

Remark 2.14. Since Qlcy € ker(ix) (see Remark 2.9) and i, = (i1) @ (i2)« (as Z = Z1 U Z),
we have (i2)«(02,¢) = —(i1)«(01,2) hence ¢'((i2)«(02,2)) = = ((i1)«(01,2)) = — AQld &.
2.3. Invariants of the quadratic linking degree. By construction, the quadratic linking
degree depends on choices of orientations and of parametrisations of A% \ {0} — X and the
ambient quadratic linking degree depends on choices of orientations. In this subsection we
determine how these depend on such choices and construct invariants from them.

Throughout this subsection, .Z is an oriented link with two components and we denote
Qldy = (d1,d2) € W(F) & W(F).

We start by recalling how orientation classes can change.
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Lemma 2.15. Let i € {1,2} and 0, : vz, — L, ® L be an orientation of the normal sheaf of
Z; in X. There exists a € F* such that the orientation class of 0 is the orientation class of
0; O (><a).

Proof. Recall that every invertible (’)A% -module is isomorphic to (’)A% (since A% is factorial)
and that every invertible OA?F \{oy-module is the restriction of an invertible OAzF -module hence
every invertible Oz \(g;-module is isomorphic to Oz, (). Since Z; ~ A2\ {0}, there exist
isomorphisms ¢ : £; — Oz, and ¢’ : L, — Og,. From Definition 2.1, (¢ ® ¢)) o 0; = 0; and
(¢ @)oo, = o). Denoting by m : Oz, ® Oz, — Oz, the multiplication, the morphism
mo ((/ @y )ool)o((p®1)oo;) tom™! is an automorphism of O, hence is the multiplication
by an element of I'(Z;, 0% ), i.e. by an element of F*. The result follows directly. O

Recall that automorphisms of A%\ {0} are restrictions of automorphisms of A% which preserve
the origin (see | , Theorem 6.45 (Hartogs’ theorem)|), hence they induce changes of coor-
dinates of A% = Spec(F[u,v]). We denote by J,, the Jacobian determinant of an automorphism
¥ of A%\ {0}; note that Jy is in F* since (Flu,v])* = F*.

Lemma 2.16. Let a = (ay1,a2) be a couple of elements of F* and ¢ = (¢1,12) be a couple of
automorphisms of A%\ {0}.

(1) Let £, be the link obtained from £ by changing the orientation class 01 into o1 o (Xay)
and the orientation class 03 into 030 (xaz). Then Qlcy = (a1a2)Qlcy, Qldy =
({a2)dy, (a1)d2) and AQld ¢ = (aiaz) AQld .

(2) Let £y be the link obtained from & by changing o1 : A%\ {0} — X into @1 011 and
@2 1 AL\ {0} = X into w2 01)a. Then Qleg, = Qley, Qldg, = ((Jy,)d1, (Jy,)d2) and
AQldy, = AQldg.

(3) Let £’ be the link obtained from £ by changing the order of the components. Then
Qng/ = — QlCz, Qldg/ = (—dg, —dl) and AQldgl = AQldz

Proof. (1) Note that for all i € {1,2}, [0; o (xa;)] = (a; *)[0i] = (a;)[0;] hence, by Proposition
A.2 and Proposition B.21:
Solo(xm) = <a1>801 and 8020(><a2) = (a2>802
Solo(xal) : SOQO(X(IQ) = <a1a2>801 ’ 802
a(Solo(xal) '8020(><a2)) = <a1a2>8(801 '802>
Qlcy, = (a1a2)Qlcy

Note that OL_O\Q<G1)(<G1@2>UL$) = (a1)01({a1a2)01,¢) = (aa2)o1(01,2) = (a2)01(01, ) and
similarly o o (xaz)((a1a2)02 ) = (a1)02(02, #). It follows that Qldy, = ((a2)d1, (a1)d2).

The equality AQldy,, = (a1a2) AQldy, follows from the equality Qlcy, = (aiaz)Qlcy. In-
deed, AQld, is by definition equal to ¢'((i1)«(01,%,)), hence is equal to ¢'((i1)«({a1a2)01,)).
The result follows from the fact that (1), (which is the inclusion of a subcomplex; see Notation
2.12) and ¢’ commute with product by (ajaz2) (see Proposition A.2 and Definition B.19).

(2) From the definitions, Qlcy, = Qlcy and (01 @ 02)(Qlegy,) = (01 @ 02)(Qlcy). Let
i € {1,2}. We denote by ¥F : HY(AZ\ {0}, K§™) — H'(AZ \ {0}, K}™V) the isomorphism
induced by ;. Note that (¢;01;)*(0i(0i, %)) = ¥} (¢} (0i(0i «))) and that the following diagram
is commutative:

H' (43 {0}, K§™) —= HO({0}, KM {det(Ngy 42 )})
v lw
H' (43 \ {0}, K§™) — HO({0}, KM {det (N5 2 )})

Hence 0((i © ¢i)*(0i(0i.2))) = ¢} (9(¢; (0i(0i,2))))-
6



Finally note that for all « € KMW(F), ¢f (a® (@ AD*)) = (Jy,)a® (@* Av*). It follows from
Definition B.18 that Qldg, = ((Jy,)d1, (Jy,)d2). As for AQld g , it is clearly equal to AQldy
since @1 and 9 are not used in its definition (nor in the definition of the quadratic linking class).

(3) By Proposition B.22, S - & = (—1)(S1 - S2) hence by Proposition A.2, 9(Ss - S1) =
(=1)0(S1 - Sy), thus Qlecgyr = (=1)Qlecy = — Qley (since Qley € HY(Z, KY™W{vz}) and for
every field k and o € KMW(k), (~1)a = —a). Tt follows that Qldy = (—ds, —d;) and that
AQIld g = AQldy (as ¢'((i2)«(02,2)) = —C'((i1)«(01,2)) by Remark 2.14). O

We have proved in particular that the ambient quadratic linking degree and each component
of the quadratic linking degree are each only multiplied by an (a) € W(F') with a € F* when the
orientation classes or the parametrisations are changed, so that we get the following invariants.

Corollary 2.17. The rank modulo 2 of dy, the rank modulo 2 of do and the rank modulo
2 of AQld o are invariant under changes of orientation classes 01,02 and under changes of
parametrisations of p1,p2 : AL\ {0} — X.

Proof. For all a € F*, the rank modulo 2 of an element of the Witt ring W(F) is invariant under
the multiplication by (a). The result follows directly from Lemma 2.16. O

Recall that W(R) ~ Z (via the signature).

Corollary 2.18. If F' = R then the absolute value of di, the absolute value of dy and the absolute
value of AQld o are invariant under changes of orientation classes 01,02 and under changes of
parametrisations of p1,p2 : A2\ {0} — X.

Proof. For all a € R*, (a) = (1) =1 € W(R) or (a) = (—1) = —1 € W(R) since every real
number is a square or the opposite of a square. The result follows directly from Lemma 2.16. O

In the family of examples 4.3, we provide for each positive integer n an example of an oriented
link over R whose ambient quadratic linking degree has absolute value n (and the same is true
of each component of the quadratic linking degree); for examples of oriented links over R whose
(ambient) quadratic linking degree is 0, see Examples 4.2 (with a < 0 in these examples).

The following Lemma-Definition is an inductive definition. For each d € W(F'), with k ranging
over the nonnegative even integers, we define an abelian group Q4 and an element X;(d) € Qq.-
In Theorem 2.21 we will see that X (dy1), Xx(d2) and Xx(AQld &) are invariants for even k > 0
(this is also true for k£ = 0 but uninteresting, as ¥y is a constant map on W(F') which we only
defined for convenience); the assumption that k is even is important for Theorem 2.21.

Lemma-Definition 2.19. Let d € W(F). There exists a unique sequence of abelian groups
Qar and of elements ¥(d) € Qqr, where k ranges over the nonnegative even integers, such
that:

° Qd70 = W(F) and Eo(d) =1€ Qd,();

e for each positive even integer k, Qg is the quotient group Qqr—2/(Xk—2(d));

e for each positive even integer k, as soon as n € Ng and ay,...,a, € F* verify that
n
D (ai) =d e W(F), we have Sp(d) = > ([ as;) € Qax-
i=1 1<ip < <ip<n 1<j<k

Remark 2.20. The uniqueness in the previous statement is clear, whereas the existence requires
work (which is done below) since in W(F) the equality > i (a;) = 372, (bj) does not imply that
the a; are equal to the b;. Moreover, this equality does not imply that > ;.. i, <, (I T1<j<r @i;)
isequal t0 > 1) . < T l1<4<i bp,) iIn W(F), which is why we need the abelian groups Qg -

Proof. Recall the following presentation of the abelian group W(F'): its generators are the (a)
for a € F* and its relations are the following:

(1) (ab?) = {(a) for all a,b € F*;

(2) {(a) + (b) = (a+b) + ((a + b)ab) for all a,b € F* such that a + b # 0;

3) (1) +{-1) =0. i



We denote by G the free abelian group of generators the (a) for a € F*, by G the quotient of
G by the first relation above and by G9 the quotient of G1 by the second relation above, so that
W(F) is the quotient of G by the third relation above.

Let k£ be a nonnegative even integer such that for all nonnegative even integers | < k, Qg
is an abelian group and ¥;(d) € Qg4; which verify the conditions of the statement. Note that
the quotient of the abelian group Qg r—2 by its subgroup (X;_2(d)) is well-defined, so we can
fix Qar = Qdr—2/(Xk—2(d)). To show that ¥j(d) is well-defined (by the formula given in the
statement), we proceed in four steps, in which we consider a representative of d in G, in Gy,
in G2 and in W(F') (i.e. d itself) respectively. Let n € Ny and ay,...,a, € F* be such that
> i1 {a;) is a representative of d in G.

First step: By definition of G, Z ( H ai;) is well-defined in G hence in Qg

1<iy < <ig<n 1<j<k
(since Qg is obtained from G by quotienting several times).
Second step: For all b € F*, o dat? I ey + D (] @) =
2<in < <ip<n 2<j<k 2<iy <--<ip<n 1<j<k
Z ( H ai;) in G hence in Qg (since Qg is obtained from G by quotienting
1St <-<ig<n 1<j<k
several times) and similarly for other indices. Thus Z ( H a;;) € Qg only depends
1<ii<-<ig<n 1<j<k

on the class of Z(aﬁ in Gy.

i=1
Third step: If a; + ao # 0 then in Ga:

Z (a1 + a2)*ayas H a;;) + Z ( H ai;)

3<ig<-<ig<n 3<j<k 3<iy <<ip<n 1<j<k

+ g <(al + az) H ai]) + E ((a1 + ag)achQ H ai])
3<ip<<ig<n 9<j<k 3<ig<<ig<n 2<j<k

= E <a1a2 H aij> + E < H al-j>
3<ig<<ip<n 3<j<k 3<iy <<ip<n 1<j<k

+ ((a1 + a2) + ((a1 + az)araz)) Z ( H ai;)

3<ip<<ip<n 2<j<k

= Z (aras H ai;) + Z ( H aij)

3<ig<<ip<n 3<j<k 3<ii<<ip<n 1<j<k

+ () +az) > (] )

3<ip<<ip<n 2<j<k

= > (]I e

1<) <--<ip<n 1<j<k

and similarly for other indices. This is true in Qg since Qg is obtained from Ga by quotienting

n
several times. Thus Z ( H ai;) € Qa only depends on the class of Z(ai> in Ga.
1<iy <--<ip<n 1<j<k i=1
Fourth step: With the convention that Z ( H a;;) = 1, note that
1<iz<-<ip<n 3<j<2

Yo (Il e+ > (I ep+=0 > (][ @

1<y <--<ip<n 1<j<k 1<ig<-<ip<n 2<j<k 1<iz<--<ip<n 3<j<k
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is equal to Z ( H ai;) — Z ( H ai;) in W(F) hence in Qg (since Qg is
1<iy<--<ip<n 1<j<k 1<ig<--<i<n 3<j<k
obtained from W(F) by quotienting several times). Since Z ( H ai;) = Yp—2(d) =0
1<iz<--<ip<n 3<j<k

in Qg (by definition of Qg ), Z ( H ai;) € Qa, only depends on the class of Z(az)
1<ip<-<ip<n 1<j<k i=1
in W(F), i.e. on d. Thus we can fix Xx(d) = Z ( H ai;) € Qdk- O

1<y <-<ip<n 1<j<k

It follows from Lemma-Definition 2.19 that we have for each positive even integer k a map
Xkt W(F) = Ugew(r) Qae which verifies that for all d € W(F), Ej(d) € Qq - How interesting
the map 3o : W(F) — W(F)/(1) is depends on the ground field F. For instance, if FF = R
then the map ¥s : W(R) ~ Z — W(R)/(1) = 0 is uninteresting since it is constant (but in the
real case, Corollary 2.18 already provides the best possible invariant) whereas if F' = Q then
the map X : W(Q) =~ W(R) & D,cp W(Z/pZ) - W(Q)/(1) ~ D,cp W(Z/pZ) (with P the
set of prime numbers) is very interesting (see the discussion at the end of Examples 4.2). This
provides new invariants of the (ambient) quadratic linking degree: given two oriented links %}
and %5, one first compares ¥2(AQld g ) € W(F)/(1) with ¥2(AQldg,) € W(F)/(1); if this
was not enough to distinguish .#7 from %5, i.e. if ¥ := ¥3(AQld g, ) = ¥2(AQld, ), then one
compares X4(AQldy,) € (W(F)/(1))/(X) with ¥4(AQldg,) € (W(F)/(1))/(X), and so on.

Theorem 2.21. Let £ be an oriented link with two components and k be a positive even integer.
We denote the quadratic linking degree of £ by Qld o = (d1,d2) € W(F)®SW(F). Then X (dy),
Yi(d2) and Xk (AQld y) are invariant under changes of orientation classes 01,02 and under
changes of parametrisations of @1, 2 : A%\ {0} — X.

n
Proof. Let Z(aﬁ € W(F). Note that for all b € F*:

i=1
n n
S la) = > O J] ey = D (] ay) ==k (ai)
i=1 1<ip<-<ixg<n  1<j<k 1<ip < <ip<n 1<j<k i=1
since b* is a square as k is even. The result follows directly from Lemma 2.16. (]

3. HOow TO COMPUTE THE QUADRATIC LINKING DEGREE

In this section, we give a method to compute the quadratic linking class, the quadratic linking
degree and the ambient quadratic linking degree under reasonable assumptions on the link (which
are verified in the examples of Section 4). See Subsection 2.1 for notations and Subsection 2.2
for definitions.

3.1. Assumptions. Let 2" be an oriented link with two components such that for all i € {1,2},
the closure Z; C A‘; of Z; is given by two equations

fi(xa Y, th) = ngi(xa Y, Zat) =0

with f; and g; irreducible. We also assume that the subscheme of X \ Z given by the equations
g1 = 0 and go = 0 is of codimension 2 in X \ Z and that for each generic point p of an irreducible
component of this subscheme, f; and fs are units in the residue field x(p).

Let ¢ € {1,2}. Note that we can define an orientation of Nz, /x from the (ordered) couple
(fi»9i)- Indeed, Nz, x is the dual of the conormal sheaf Cz,/x = fzi/gﬁ{,, where %, is the
ideal sheaf of Z; in X, and we have the following short exact sequence (see | , B.7.4)):

0——(Cv(gy/as)1zi —=Cziyx = (Cz;a
9
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We define the orientation oy, 4,y as the isomorphism vz, — Oz ® Oz, which sends Fi" NG to
1® 1. By Lemma 2.15, there exists a; € F™* such that 0; = o(y, 4,) © (xa;) = Ot 90): Without

loss of generality (since we can replace f; with a;l fi), we assume that o; = o(f, 4,)-

3.2. Notations. We denote by x°4 : Z — {0,1} the characteristic function of the set of odd
numbers.

We denote € := —(—1) and for all n € Ny, n. := > {((—1)""1) and (—n). := en..

In order to make explicit computations, we introduce the following notations. Note that the
quadratic linking class, the quadratic linking degree and the ambient quadratic linking degree of
% which are computed in Theorems 3.1, 3.2 and 3.3 respectively do not depend on the choices
of uniformizing parameters 7Tp,7Tp7q,7Tp7q70,7T;’q’0 made below, since these are not used in their
Definitions (recall Definitions 2.8, 2.11 and 2.13).

We denote by I the set of generic points of irreducible components of the subscheme of X \ Z
given by the equations g1 = 0 and g2 = 0.

For every p € I, we denote by m, a uniformizing parameter of the discrete valuation ring
Ox\zp/(91), by up a unit in Ox\z,,/(g1) and by m;, € Z such that go = upTy * € Ox\zp/(91)-

—(1
For every p € I and ¢ € {p}( )ﬂ Z, we denote by 7, , a uniformizing parameter of the discrete
. . . . m

valuation ring O@g, by up 4 a unit in (’)@’q and by mp 4 € Z such that fifou, = up ¢mpg* €
Oi

{pha

For every i € {1,2}, p€ I and ¢ € {p} 'n Z;, we denote by 7, 4 € v such that 7, ;* @ T,* @
T =Tpg® (fis A7), by Up,q,0 the discrete valuation of O{ “Th0

parameter for vy, 4 0. Note that such a 7, 4 ex1sts since Ty 4" @7, @g1" € Z[(Vp,q@u(q) (V2:)1q) \10}].

and by 7, 40 a uniformizing

For every i € {1,2}, p € I and q € {p} ' Zi, we let (upq,0,Mpg0) € OF

X
{7 1(q)} 0
be the unique couple such that ¢! (u,4) = upqowpé’go and we denote by \,q,0 € K}W(F)

such that 7% ® (Tpg0" @ ¢} (Tpg)) = Apgon® @ (W* Av*). Note that such a Ay 40 exists since
a0 ® ¢} (Tpq) € Z[(det(f\/{o}/A2 \0) \ {0}].
For every p €I and q € {p} ' Z1, we denote by v, the discrete valuation of (9{ 1.0

€ O*_ x 7Z be the

and by m, o a uniformizing parameter for v, , o; we let ( Uy, 005 My g.0) 7 }0

P,q,00
unique couple such that @, = u, . o(7, ,0)" ra0 and we denote by Npao € KYW(F) such that
e (., pqo ®7rpq QT Q1) = A, 0 @ (T AT ANZEAL *). Note that such a Ap.qg.0 €xists
since m, o @ Tpg" @M @ g1 € Z[(det(Nyoy a1 )j0) \ {0}].

3.3. Computing the quadratic linking class and degree.

Theorem 3.1. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the cycle

YD (@ X (mpmpg) ® (Tpg" @ T @ 7T
pel qem(l)ﬂZ

where (Tpq)n x° (mpmyp, ) (Tp g @7, @g1*) € KMW (k(q), vg®(vz)),), represents the quadratic
linking class of Z.

Proof. From Definition 2.4, the oriented fundamental class [0;] is the class in HO(Zi,KIX%W{VZi})
of n® (i Agi*). Tt follows from Definition 2.6 and Theorem A.10 that the Seifert class S; of Z; is
the class in H'(X\ Z, K}Y™WV) of (f;)®7i* (over the generic point p; of the hypersurface of X\ Z of
equation g; = 0). In the expression above, (fi) € K} (k(p;)) and g;* € Z[det(]\fm/x\z)\{()}];
with a slight abuse of notation, we denoted by f; the image in the fraction field of F[z,y, z,t]/(g:)

of f; € Flx,y, z,t]. We will make similar slight abuses of notation below.
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By Corollary B.24, the intersection product of the Seifert class S of Z; with the Seifert class
Sy of Zy is the class in H?(X \ Z, KXWV of the cycle:

Z(mp)e<f1f2up> ® (M ®ag17)
pel
The quadratic linking class is the image of this intersection product by the boundary map
0: HX(X\ Z, KXW = HY(Z, K}'™{vz}) thus the cycle
Yo Y (my)d ({fifeup)) © (Tpg" © T @ G17)
pel qém(l)ﬂz

represents the quadratic linking class (note that we used Proposition A.2 to extract (my)e from
the morphism 8{2’"’). By Theorem A.10 and Lemma A.9, the cycle

— dd ———% ——% ——
Z Z (Up,g)n X°° (mpmipq) @ (Tpg" @ ®G17)
pel qGE(I)OZ
represents the quadratic linking class of .Z. (]

Theorem 3.2. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the quadratic linking degree of £ is the following couple of elements of W(F'):

—\ _odd —\ _odd
Z Z Ap,q,0{Up,g,0) X° (mpmp7qmp,q,0)vz Z Ap,0.0{Up,q,0) X (Mpmip g .0)

—(1 —(1
pel qe{p}( 'nz, pel qE{p}( 'z,

Proof. Recall from Definition 2.11 that the first step in computing the quadratic linking degree
from the quadratic linking class consists in applying 01 @ 02. It follows from Theorem 3.1 and
the assumption that for all i € {1,2}, 0; = o(y, 4,) (see Subsection 3.1) that the couple of cycles

S dd S— dd
Z Z (Up,q)1 X (Mpmp.g) @ Tp,q Z Z (Up,g)n X" (Mpmip.g) @ Tpq

—(1 —(1
Pl ez, Pl ez,

where (@, 4)n XOdd(mpmpyq) ® Tpg € KE/[lW(m(q), Vp.q), represents (01 @ 02)(Qlcy).
It follows that the couple of cycles

YooY (W@ X (mymype) © ¢(1p),

I —(1
Pl 4eprVnz,

Yoo (e @m))nx (mymyg) © ©5(7p.0)

—(1
Pl oeprVnz,

where for all i € {1,2}, (¢} (@yq))n x°M (mpmp,g) @ ¢ (7p,4) € Kyl\]v(“(@;l(@)»’/@i—l(q))a rep-
resents (pf @ ¢3)(01 @ 02)(Qlcy). This is the second step in computing the quadratic linking
degree (see Definition 2.11).

Recall from Definition 2.11 and Definition B.18 that the third step in computing the quadratic
linking degree consists in applying the boundary map

9 CH (AR {0}, K5™) — ({0}, KM {det (Nyg) /a2 )})



to each element of the couple above, which gives:

Z Z agf;f(@f (Up,g)))n XOdd(mpmp,q) ® (Tpg0" @ ¢1(Tpq));
pel qe@(l)ﬁZl

P4, *(o— dd —% *
Z Z Oy ({23 (W) ) X (Mpiip,g) @ (Tpg0” ® ©5(Tp,q))
pel qe@(l)ﬂZz

where 9,775 ({0F (Up,g)) )0 X°M (mpimp,q) @ (Tpq0" @ ¢ (7,4)) € K25V (k(0), det(N{o}/AQF)>~

Up,q,0

By Theorem A.10, for every i € {1,2} we have 9,72 ((¢} (Upg))) = (Upg.0)m X° (M g,0) thus
the third step gives:

P dd — % %
Z Z (Wp.00) 1 X°4 (M g 4.0) © (Tpg0” © 21 (Tp.0)),
pel qe@(l)mzl

— dd SR— *
E E (Up,q,0) 772 X (Mpmyp,gMp.g.0) @ (Tpg0 @ ©3(Tpq))
pel (1)
qe{p} 'NZ2

From Definition B.18 and the notations in Subsection 3.2, using the canonical isomorphism
KMW(F) ~ W(F) (which sends 7? to 1), the final step gives:

Z Z Ap,g,0(Up,q,0) X% (MpMp,gMyp,g,0), Z Z Ap,q,0{Up,q,0) X% (MpMp,gMyp,g,0)

Pl etV nz, Pl ez,
O

Theorem 3.3. Under the assumptions of Subsection 3.1 and with the notations in Subsection
3.2, the ambient quadratic linking degree of L is the following element of W(F):

/ / odd /
Z Z Ap,0{Up,g.0) X° (MpTTp gy, 4 )
7 -
pE qe{p}( )le

Proof. By Definition 2.13, the ambient quadratic linking degree of . is equal to ¢'((i1)«(01,2))-
Note that by Theorem 3.1, 01 ¢ € HY(Zy, K§™W{vz,}) is represented by the cycle

— dd ——k ——k ——%
Z Z (Up,g)n X (Mpmpg) @ (Tpg" @7 @ G17)
pel qE@(l)mzl
so that (i1)«(01.¢) € H3(X, KY™W) is represented by the cycle
— dd ——k ——% ——%
Z Z (Up,g)n X (mpmpq) ® (Tpg" @ @ G17)
pel qE@(l)mzl

since (i) is induced by the inclusion of the subcomplex C*~2(Z;, KY™W{vz,}) in C*(X, KX'W)
(see Notation 2.12). We then apply (see Definition B.19) the boundary map 9 : C3(A% \
{0}, K3™) — CO({0}, KMV {det(Ngy /a1 ) }), which gives:

a0 ( (1 dd —
> D a:qqoo (W) ) X (mpmpg) @ (7] o @ Tpg” @ 7" @ FT7)
pel qem(l)ﬁz1

ﬂ'/ . % . — —
where 3U§’j’()°((up,q>)n X4 (mymy,q) (Tpg0 O Tpg" @Tp" @G17) € KMV (k(0), det(N{o}/A‘;))~
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By Theorem A.10, we have 07" (T55)) = (), o) x** (1 ) thus O((i1).(0,2)) is rep-

resented by the cycle:

/ 2 . odd / 7 * J— — % J——
Z Z <up,q,0>77 X (mpmpvqmnqﬁ)@(wp,q,() © Tpq @Tp @ g1 )
—(1
Pel 4emrVnz,;

From Definition B.19 and the notations in Subsection 3.2, using the canonical isomorphism
KMWV(F) ~ W(F) (which sends 72 to 1), the ambient quadratic linking degree of .Z is equal to:

/ 7 odd /
Z Z Ap7q70<up,q,0> X (mpmpvqmp,q,O)
—(1
Pl 4y Vnz

4. EXAMPLES OF COMPUTATIONS OF THE QUADRATIC LINKING DEGREE

In this section, we compute the quadratic linking class, the quadratic linking degree and the
ambient quadratic linking degree (as well as their invariants) on examples. To do this we use
the method given in Section 3. See Section 2 for definitions and notations.

Example 4.1. (Hopf) We define the Hopf link over a perfect field F as follows:

e 7, is the intersection of the closed subscheme of A% = Spec(F[z,y,z,t]) of ideal (x,y)
and of X := A%\ {0};

e 1 : A2\{0} — X is the morphism associated to the morphism of F-algebras F[z,y, z,t] —
F[u,v] which maps z,y, z,t to 0,0, u, v respectively;

e 07 is the orientation class associated to the couple (x,y) (i.e. the class of the isomorphism
o1 : vz, = Oz ® Oz, which maps TF A7* to 1 ® 1);

e 7, is the intersection of the closed subscheme of A% of ideal (z,t) and of X;

e o : A2\{0} — X is the morphism associated to the morphism of F-algebras F[z,vy, z,t] —
F[u,v] which maps z,y, z,t to u, v, 0,0 respectively;

e 07 is the orientation class associated to the couple (z,t) (i.e. the class of the isomorphism
03 : vz, = Oz, @ Oz, which maps Z* AT to 1 ®1).

In Table 1 we give oriented fundamental cycles of Z; and Z,, Seifert divisors of Z; (with
orientation o1) and Zs (with orientation og) relative to the link, their intersection product and
its image by the boundary map 0 : H2(X\Z, KXW) — HY(Z, K}"™"{vz}), which is the quadratic
linking class (or rather we give a cycle which represents the quadratic linking class). Then we
give cycles which represent (31 ®2) (Qle ), (91 ® 03)((61 ®2)(Qle ), (9 ) (125 ®¢5) (61 @
02)(Qlcy))) respectively and we give the quadratic linking degree (in W(F') @ W(F)). Finally,
we give again the quadratic linking class, then a cycle which represents (i1)«(co1,¢), then a cycle
which represents 0((i1)«(01,#)) and then the ambient quadratic linking degree (in W(F')). The
points on which the cycles are supported are the obvious ones (for instance (z) ®g* is supported
on the generic point of the hypersurface of X \ Z of equation y = 0).

Recall Theorems 3.1, 3.2 and 3.3 (and their proofs) and note that the intersection of the
hypersurfaces of X \ Z of equations y = 0 and ¢ = 0 is irreducible to get the results in Table 1.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the Hopf link is equal to 1. Note that for every positive
even integer k, the image by > of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the Hopf link is equal to 0. Note that if ' = R then the
absolute value of each component of the quadratic linking degree and of the ambient quadratic
linking degree of the Hopf link is equal to 1.

Let us now present examples where the intersection of the underlying divisors is not irreducible
(and where the invariants of Corollaries 2.17 and 2.18 and of Theorem 2.21 have different values).

Examples 4.2. (Binary links) Let F' be a perfect field of characteristic different from 2 and
a € F*. We define the binary link B, over F' as follows:
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Oriented fundamental cycles N (T NTG¥) | neEZ AT
Seifert divisors (x) @ y* \ ()@t
Apply intersection product (x2) @ (F ATY)

Quadratic linking class ~n@E AT AY) @ (o [T AZTAL)
Apply 01 & 0y —(zn @t @ (tmey
Apply ¢ @ ¢5 —(u)n @ v ® (u)yn ®v*
Apply 0@ 0 —n? ® (a* AT¥) ® n”? @ (@ AT*)
Quadratic linking degree -1 P 1
Quadratic linking class — 2@ ([T AT AT) @ (2@ AZTAL)
Apply (i1)« to the part supp. on Z; | —(2)n® (£ AT* AT")

Apply 9 2@ (T NG AT AE)

Ambient quadratic linking degree -1

TABLE 1. The Hopf link

e 7 is the intersection of the closed subscheme of A% of ideal (f; := t—((1+a)z—y)y, g1 ==
z—z(r —y)) and of X := A%\ {0};

e 1 : A2\{0} — X is the morphism associated to the morphism of F-algebras F[z,vy, z,t] —
F[u,v] which maps z,y, z,t to u,v,u(u —v), ((1 + a)u — v)v respectively;

e 07 is the orientation class associated to the couple (f1,91);

e 7, is the intersection of the closed subscheme of A% of ideal (f2 := t+((1+a)z—y)y, g2 ==
z+xz(r —y)) and of X;

e o : AZ\{0} — X is the morphism associated to the morphism of F-algebras F[z,y, z,t] —
F[u,v] which maps x,y, z,t to u,v, —u(u — v), —((1 + a)u — v)v respectively;

e 07 is the orientation class associated to the couple (f2,g2).

In Table 2 we give oriented fundamental cycles of Z; and Z,, Seifert divisors of Z; (with
orientation o1) and Zs (with orientation og) relative to the link, their intersection product and
its image by the boundary map 0 : H2(X\Z, KXW) — HY(Z, K} {vz}), which is the quadratic
linking class. Then we give cycles which represent (01 @ 02)(Qlc &), (01 @ ¢3)((01 D 02)(Qlcy)),
(090)((pieps)((01902)(Qle »))) respectively and we give the quadratic linking degree. Finally,
we give again the quadratic linking class, then a cycle which represents (i1)«(o1,¢), then a cycle
which represents 0((i1)«(01,#)) and then the ambient quadratic linking degree. Unless specified
(between parentheses after a central dot), the points on which the cycles are supported are the
obvious ones (for instance (f1) ® g1* is supported on the generic point of the hypersurface of
X \ Z of equation g; = 0).

To see how one gets from the fifth line in Table 2 to the sixth line in this Table, note that
—(foneg*-(x—y) € HY(Zy, K}™) is equal to —(2((1+a)z —y)y)n @2z (z — y) - (z —y) since
in Z1: t = (1+a)z—y)y and z = z(z—y). Further note that —(2((1+a)z —y)y)n®2z(z — y) -
(z—y) = —((L+a)z—y)yz)n@z —y - (r—y) and that —(((1 +a)z—y)yz)n®@z —y - (v —y) =
—(a*)ner—y" - (r—y) = —(ax)n@z — y"-(z—y). Similarly, —(fo)n@g*-(x) € H' (21, Kg')
is equal to —(y)n®T*- (). A similar reasoning gets one from the tenth line to the eleventh line.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the binary link B, is 0 (hence the invariant presented in
Corollary 2.17 distinguishes between the Hopf link and the binary links). Note that the image
by 39 of each component of the quadratic linking degree and of the ambient quadratic linking
degree of the binary link B, is (a) € W(F)/(1). For instance, if FF = Q, Xy distinguishes
between all the B, with p prime numbers since if p # ¢ are prime numbers then (p) € W(Q)/(1)
corresponds to 1 € W(Z/pZ) C D, yime W(Z/rZ) and (g) € W(Q)/(1) corresponds to 1 €
W(Z/qZ) C @D, prime W(Z/rZ) (via the isomorphism W(Q)/(1) ~ B, ime W(Z/rZ) induced
by the isomorphism W(Q) ~ W(R) & D, ime W(Z/rZ) which maps (p;...p,) € W(Q) (with
P1,- .., pp distinct primes) to (p1...pn) ©@ @i (I p) € WR) @ Di; W(Z/piZ)). Note
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Or. fund. cyc. ne (fi Agrt) | n® (f2 AgzY)
Seifert divisors (fi)@qr* ] (f2) ® g2*
Apply (fife) ® (2" Ngi™) - (2,2 —y)
inter. prod. +(f1f2) ® (G2" Ag1") - (2, )
Quad. link. —(pme @ A AGT) -y o (A @ AR AR (v —y)
class —(fan® (2" N fi ANgi*) - (z) e @A f2 AGY) - (2)
Apply —(fo)neg" - (z-y) o (funeg”- (v —y)
01 B 03 —(fa)n® " - (x) +H{fn® g1 - (x)
Apply —(auyn@u—v" - (u—wv) " (auyn@u—v" - (u—v)
o D —(vne@u* - (u) +Hon@u* - (u
Apply 069 (L+(a)n” ® (@ A T*) ® —(1+ (a)n* ® (@ A7)
Quad. 1k. deg. 1+ (a) ® —(1+ (a))
Quad. link. —(pme @ AL AGT) (w—y) o (e @ AR AR (v —y)
class —(fo)n® (@ ANfi Agr") - (2) +Hf)n® (@ A f2 AR") - (2)

. —(fo)n® (@ AF AT - (v —y)
Apply (i1)« —<f2)<77>®2(gg*(/\ AT (afk))

—(a)P? @ (T AT Az AT

Apply 0 @@ AT AT AT
Ambient quad. k. deg. —(1+ (a))

TABLE 2. The binary link B,

that if F' = R then the absolute value of each component of the quadratic linking degree and of
the ambient quadratic linking degree of the binary link B, is equal to 2 if a > 0, to 0 if a < 0
(hence the invariant presented in Corollary 2.18 distinguishes between the Hopf link and the
binary links, as well as between the binary links with positive parameter and the binary links
with negative parameter).

The following family of examples is an analogue of the family of torus links 7°(2,2n) (with
n > 1 an integer) in knot theory. Note that 7'(2,2) is the Hopf link and that its analogue below
is slightly different from the Hopf link in the example above and has quadratic linking degree
(1,—1) and ambient quadratic linking degree —1. Note that T'(2,4) is the Solomon link.

Examples 4.3 (Torus links). Let n > 1. Let us define an analogue of the torus link 7'(2,2n).

Recall that (in knot theory) one of the components of T'(2,2n) is the intersection of {(a,b) €
C2,b = a™} with S2, the 3-sphere of radius ¢, and that the other component of T'(2,2n) is the
intersection of {(a,b) € C?,b = —a"} with S? (for ¢ > 0 small enough). By writing a = = + iy
and b = z + it (with z,y, z,t € R), the equation b = a™ becomes the system of equations

_ n \k,n—2k—1, 2k+1
= <2k+1)( 1)'e Y

k=0
5] n
_ _ 1Yk pn—2k, 2k
=Y () 0ty
k=0
and the equation b = —a'™ becomes the system of equations
=1,
- _ _1\k,n—2k—1, 2k+1
==, <2k+1>( 1) Y
k=0
15] n
_ _ 1)k n—2k, 2k
F= 3 ()
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From now on, we denote
125+ n
Si(z,y) = kZ_O (Qk‘ N 1) (—1)Fan2kLy 2kt g m S y), fo =t + Sy, y),
L3]

n —
Ez($>y) = Z <2k> (_1)k$n 2ky2kagl =z EZ(xvy)ng =z+ ZZ(xay)
k=0

Consequently, we define our analogue over R of the torus link 7'(2,2n) as follows:

e 7, is the intersection of the closed subscheme of Aj of ideal (f1, g1) and of X := A%\ {0};

e 1 : A2\{0} — Z; is the morphism associated to the morphism of R-algebras R[z, y, 2, ] —
R[u, v] which maps z,y, z,t to u,v, X, (u,v), X¢(u, v) respectively;

e 07 is the orientation class associated to the couple (fi,¢1);

e 7 is the intersection of the closed subscheme of A} of ideal (f2,g2) and of X;

e o : A2\{0} — Z5 is the morphism associated to the morphism of R-algebras R[z, y, z,t] —
R[u, v] which maps z,y, z,t to u,v, =X, (u,v), —3(u, v) respectively;

e 03 is the orientation class associated to the couple (f2, g2).

An oriented fundamental cycle of Z; (with orientation o1) is 7 ® (fi° Agr*) (over the generic
point of Z1) and a Seifert divisor of Z; (with orientation 01) is (f1) ® g™ (over the generic point
of the hypersurface of X \ Z of equation g1 = 0).

An oriented fundamental cycle of Zo (with orientation 03) is 7 ® (fa~ Aga*) (over the generic
point of Z3) and a Seifert divisor of Z5 (with orientation o2) is (f2) ® g2* (over the generic point
of the hypersurface of X \ Z of equation go = 0).

The intersection of the underlying divisors has n irreducible components, whose generic points
are denoted by Py, ..., P,_1, where for all j € {0,...,n—1}, the component of generic point P;
is given in X \ Z by the equations

z:O,x:tan(m_l_Z‘WT)y

2n
Indeed, if we denote x + iy = pe?® with p € R* |0 € R then:
R((z +1iy)") =0 < cos(nf) =0

@H:W for some j € {0,...,2n — 1}
& = tan (W)yfor some j € {0,...,n—1}
From now on, for every j € {0,...,n — 1}, we denote §; := (n_12;2‘])7r Thus, the
homogeneous polynomial ¥, (z, y) of degree n is equal to nl_[l(a:—tan(ej)y). Note that the tan(6;),
§=0

with j € {0,...,n—1}, are distinct, since they are the roots of the polynomial (x+7)" 4 (x — )"
(which is coprime with its derivative).
It follows (see Section 3) that the intersection product of these Seifert divisors is equal to:

n—1
> (mj)elfifaug) @ (75 A7) - (Py)
§=0
where 7; (resp. ;) is a uniformizing parameter (resp. a unit) in Ox\zp,/(g91) and m; € Z
such that gy = Ujﬂ';-nj. Note that one can choose m; = g2 (hence m; = 1 and u; = 1) since
n—1
OX\Z,Pj/(gl) = (R[x,y,z,t]/(z - H(:IZ - ta’n(ei)y)))(z,zftan(Hj)y) = R[x7y7t](mftan(9j)y) and in
i=0
16



n—1
this ring go = 2 H (z — tan(6;)y), thus the intersection product of these Seifert divisors is equal
i=0

to:
n—1

Y (fife) @ (3" AT - ()
§=0
It follows (see Section 3) that its image by the boundary map, which is the quadratic linking
class, is the following:

Z (fo)n @ (G@2" A" AGT) - (z = tan(0)y in Z1)
=0

n—1
Y (@ @ A2 ARY) - (z = tan(h;)y in Zo)
=0

Its image by 01 @ 09 is:
n—1

i
L

—(fomegE @) (hmeg"
j=0 j=0
Its image by ] @ ¢} is:
n—1 n—1
> (25w, 0))n @ 252 (u,0) DY (—254(u, 0))n ® —25(u,v)
§=0 7=0

Note that the first component of the couple above is equal to:

n—1 LHT_lJ n—1
D=2 <2ki 1)(—1)’f(tan(«9j))"—2’f—1 [I (tan(6)) — tan(8:))v)n ® u — tan(d;)v"
j=0 k=0 i#,i=0

Its image by the boundary map 0 is the following:

n—1 L";lj n—1
—_— %

> (= ( " )(—D’“(tan(@j))"‘”“‘l [T (tan(6)) — tan(6:)))n* ® (v* Au— tan(@;)v")

j=0 k=0 2k+1 1#£5,1=0

nol ; n—1
<2k + 1>( DF(tan(0;))" 1 T (tan(6;) — tan(6;))n* ® (@* A %)
7= 0 k=0 i5,i=0

[*5~] )
Note that Z (5" 1) 0¥ tan@y 1 = S(ctan@) + ) = pysind 2EDT) vy

pj a positive real number, hence:

n n—ok—1, _ (1) if j is even
(2 <2k+1>(_1)k(tan(9j)) = {(—1> if j is odd

k=0
Note that for all [ € {0,.. — 1}, =% < 0; < § hence for all i < j, tan(f;) — tan(f;) < 0
and for all ¢ > j, tan(§;) — tan(Hi) > 0, hence:
n—1 PP
(1) if j is even
tan(0;) — tan(6;))) =
(T Gan(e) ~ anie) { U e

Therefore (¢} (01(01.#))) = nn* ® (@* A v*), hence the first component of the quadratic
linking degree is equal to n € W(R).
With similar computations to the ones above, we find that the second component of the

quadratic linking degree is equal to —n € W(R), hence the quadratic linking degree is equal to
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(n,—n) € W(R) @& W(R) ~ Z& Z and we find that the ambient quadratic linking degree is equal
to —n € W(R) ~ Z.

Note that the rank modulo 2 of each component of the quadratic linking degree and of the
ambient quadratic linking degree of the analogue of 7'(2,2n) is 1 if n is odd, 0 if n is even. Note
that the absolute value of each component of the quadratic linking degree and of the ambient
quadratic linking degree of the analogue of T'(2,2n) is equal to n, hence the invariant presented
in Corollary 2.18 distinguishes between all these links 7'(2,2n), similarly to the absolute value
of the linking number which distinguishes between all the links 7'(2,2n) in knot theory (recall
that the linking number of T'(2,2n) is equal to n in classical knot theory).

APPENDIX A. AN EXPLICIT DEFINITION OF THE RESIDUE MORPHISMS OF MILNOR-WITT
K-THEORY

In this appendix, we give an explicit definition (i.e. one which allows computations) of the
noncanonical residue morphism and prove that it is indeed the noncanonical residue morphism
(as defined by Morel in | | and recalled in Definition A.1). Note that explicit definitions
of the canonical residue morphism (see Definition A.6) and of the twisted canonical residue
morphism (see Definition A.7) follow directly. We use the case n < 0 in Theorem A.10 to
compute the quadratic linking class and degree in Sections 3 and 4; the case n > 1 is included
for its usefulness in other computations.

See | , Section 3.1 for recollections about Milnor-Witt K-theory. Throughout this
Appendix, F'is a perfect field, v : F* — Z is a discrete valuation (of residue field x(v) and ring
O,) and 7 is a uniformizing parameter for v. For all u € O}, we denote by @ its class in k(v)
(which is in k(v)* since u € O}). We denote the usual generators of the Milnor-Witt K-theory
ring of F by [a] € KMW(F) (with a € F*) and n € KMW(F) (see | , Definition 3.1]). We
denote (a) := 1+ nla] € KY™W(F), € :== —(—1) and for all n € Ng, n, := > 1 {((—1)""!) and
(—n)c := en.. We denote by x° : Z — {0,1} the characteristic function of the set of odd
numbers.

We now recall Morel’s definition of the noncanonical residue morphism.

Definition A.1 (The noncanonical residue morphism). The residue morphism 97 : KMW(F) —
KMV (k(v)) is the only morphism of graded groups which commutes to product by 7 and satisfies,
for all n € No,uy,...,u, € Oy

O ([myut, ... uy)]) = [a1,. .., 4y and O ([u1, ..., u,)) =0.
(For n = 0, this means 9] ([x]) = 1 and 0] (1) =0.)

In | , Theorem 3.15], Morel proves that such a morphism exists and that it is unique.
Before we define the canonical residue morphism, we recall the following facts and definition:

Proposition A.2 (Proposition 3.17 in | -
Yu € O, Va € KW (F), 97 ((u)a) = (@) (a)
Corollary A.3. If 7' = u/'m with v’ € O then 0T = (u/)OT .

Definition A.4 (Twisted Milnor-Witt K-theory). Let m € Z and L be an F-vector space of di-
mension 1. The L-twisted m-th Milnor-Witt K-theory abelian group of F', denoted KMW(F, L),
is the tensor product of the Z[F*]-modules KMW(F) and Z[L \ {0}] (the scalar product of

KMW(F) being (ZfeF* ngAf) - = ZfeF* ne(f)o).

Remark A.5. Note that if we fix an isomorphism between L and F' then we get an isomorphism
of Z[F*]-modules between KMW(F, L) and KMW(F); nevertheless, KMV (F, L) is a useful con-
struction because there is no canonical isomorphism between L and F (hence no canonical iso-
morphism between KMW(F, L) and KMW(F), unless L = F) and the introduction of KMW (F, L)
is what allows us to have canonical residue morphisms.
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Definition A.6 (The canonical residue morphism). The canonical residue morphism 9, :
KMWV(F) = KMV (k(v), (my/m2)V) (where V denotes the dual) is given by 9, = 9F @ T (with
7 the class of 7 in m,/m? (which is nonzero since 7 is a uniformizing parameter for v) and 7*
its dual basis).

Note that 9, does not depend on the choice of 7, since if 7’ is another uniformizing parameter
for v then there exists v/ € O, such that 7' = u/m hence, by Corollary A.3 | 97 @ 7T =
Whor T =% @ur =T @ .

Definition A.7 (The twisted canonical residue morphism). Let L be a rank one O,-module.
The twisted canonical residue morphism 9, 1, : KMV (F, Lo, F) — KW (k(v), (my/m2)Y @,y
(L ®0, K(v))) is the morphism of graded groups which satisfies for all « € KMW(F) and I € L:
Oyrla® (©1)) =) (T @ (@1))
Before we prove Theorem A.10, we recall the following facts.
Lemma A.8. For all m,n € Z, (mn)e = men..

Lemma A.9. For all m € Z, nm. = nx°%(m).

Recall that by | , Lemma 3.6], for all n < 0, KMW(F) is generated by elements of the
form (7™u)n~" with m € Z and u € O, hence, since 97 : KMV (F) — KMY(k(v)) is a group
morphism (see Definition A.1), we only need to give 9] ((m™u)n™").

Recall that by | , Lemma 3.6], for all n > 1, KMW(F) is generated by elements of
the form [7"™uq,..., 7" u,] with mq,...,m, € Z and uy,...,u, € O}, hence, since 97 :
KMW(F) — KMW(k(v)) is a group morphism (see Definition A.1), we only need to give
Or ([ uy, ..., " uy]).

Theorem A.10. For alln <0, m € Z and u € O:

Oy ("™ uy™") = (@~ " x4 (m)

Foralln>1, my,...,m, € Z and uy,...,u, € O
O ([r™ g, ..., 7" uy)) =
n—1 .
> S ((nZe=r T T mp)d =L LT
1=0 JC{1,..,n},|J|=l ke{l,.n\J n1—1 terms

J={j1<<gi}

+3 N S > M x T m)l -1 -1, )

p=1 1=p JC{L,..n}|J|=l IC{1,.i}|I|=p icl ke{L,...n\J e Ttpel torms
J={j1<<gi}

Remark A.11. This last formula may seem daunting, but for n = 1 it is merely

0y ([w™u)) = me +nx°4 (m)[a]
(i.e. OF([m™u]) = (u)m,, similarly to the case n < 0 where OF((z™u)n™") = (Wyn~""lm,, see
Lemma A.9), for n = 2 it is merely

Oy ([ ur, w2 ugl) = (mama)e[=1] + (=ma)e[ur] + (ma)[uz]

+ x99

+ (¥ (ma) + x4 (me)) [T, 3]

+ 72x° (myma) [—1, U1, )

mima)[—1,71] + nx°*(ma)[—1, ug]

and so on.
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Proof. Let n <0, m € Z and u € O}.
Oy ({(m"™u)n™") = o7 (L +n[w"ul)n™")
= 05 (L +n([x"] + [u] +nl7"™, u]))n™™")

= O (1 +mme[n] + nlu] + 1 me[m, u])n™") by |  Lemma 3.14]
="y (1) + " me ([n])

+ 0 " ([u]) + 07" P meo] ([, u)) by Prop. A.2 and Def. A.1
_ 77_n+1m€ I 77—n-1-2m6 ] by Def. A.1
= (7" 4 2 [E]) 0% (m) by Lemma A.9

— <ﬂ>n7n+1xodd (m)

Let n > 1,my,...,my €Z, ui,...,uy € OF and N :={1,...,n}.

[ ) = T 4 ] + nlr™, i)
i=1
= [T(ma)elm] + [ua] + nlma)elm, wi)) by | , Lemma 3.14]
i=1
Hence [7"™ uy, ..., 7" uy,] = Z H (M )e X 625:1 ol [Ty, Ujys - - >ujz}
1=0 JC{1,....,n},|J|=l keN\J
J={j1<<g}
+ZZ Z ( Z anH(mji)E X H (mp)e)lm, .- mougy, - uy)]
p=1l=p JC{1,...;n},|J|=l IC{1,..,1},|[|=p i€l keN\J
J={j1<<4}
We obtained this last equality by developing the product and using | , Corollary 3.8]

(e-graded commutativity), as well as the fact that ne = 7.

The index p corresponds to the number of terms coming from an n(m;)¢[m, u;], the index [
corresponds to the number of terms coming from a [w;] or an n(m; )¢, u;], the set J = {j1,...,ji}
(with j1 < --- < ji) corresponds to the indices of the terms coming from a [u;] or an n(m; )|, u;]
and the set I corresponds to the indices of the j; such that u;, comes from an n(m;,)[r, u;,].

By | , Lemma 3.7| and Lemma A.8:

n
1 ..
[Ty, .. Uy, = Z Z ((—1)2zi=1 P i H my)elm, —1,..., =1 uj, ..., u5]+

1=0 Jc{1,....,n},|J|=l keN\J
J={j1<<gi}

ZZ Z ( Z np(Hmjix H mi)e)[m, —1,..., =1, uj, ..., uj]

p=1l=p JC{1,...,n},|J|=l IC{1,...,l},|I|=p iel keN\J
J={j1<<m}
By Lemma A.9 :
n l
n j— —l+i— 'i
[Ty, ., T Uy :Z Z ((—1) 2= iy H my)elm,—1,..., =1, uj, ..., u5]+
1=0 JC{1,...n},|J|=l keEN\J

J={j1<<gi}

ZZ Z ( Z anOdd(Hmjix H my))|[m, =1, ..., =1L uj,. .. u,]

p=1 1=p JC{L,..nh|J|=l IC{1,..i}|I|=p icl KEN\J
J={j1<<gi}
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By Definition A.1 and Proposition A.2 ;| 97 ([7" uy, ..., 7" uy]) is equal to:

n—1
Z Z ((fl)Z{i:l”_H'i_ji H mk)e[—l,...,*laujp'"7ujl]+

1=0 JC{1,...,n},|J|=1 kEN\J
J={ii<<ai}

n n

>0 > o I T mal=1 Loy

p=1I=p JC{1,...n},|J|=l IC{1,...01},|I|=p i€l keN\J

J={j1<<q}
Note that the term [ = n in the first double sum vanishes since 97 ([u1,...,u]) = 0 (by

Definition A.1). O

APPENDIX B. THE ROST-SCHMID COMPLEX AND ROST-SCHMID GROUPS

In this appendix, we recall notions about the Rost-Schmid complex and its cohomology groups
which are used in our paper. See | , Section 3.1] for recollections about Milnor-Witt K-
theory. Throughout this appendix, F'is a perfect field and X is a smooth finite-type F-scheme.
We denote the usual generators of the Milnor-Witt K-theory ring of F by [a] € KMW(F) (with
a € F*)and n € KMV (F) (see | , Definition 3.1]). We denote (a) := 1+ nfa ] e KY™W(F).

B.1. Definitions and first properties. We are about to give the definition of the Rost-Schmid
complex that Morel gave in | , Chapter 5|. Note that an earlier (equivalent) definition of
the Rost-Schmid complex was given in | ]. (The equivalence of these definitions follows
from | , Theorem 6.4.5].) Before we define it, recall Definition A.4 (twisted Milnor-Witt
K-theory) and the following definition.

Definition B.1 (Determinant of a locally free module). The determinant of a locally free Ox-
module V of constant finite rank r, denoted det(V), is its r-th exterior power A™(V).

Definition B.2 (Rost-Schmid complex). Let j € Z and £ be an invertible Ox-module. The
Rost-Schmid complex associated to X, j and L is :

(X, K;"™{Ly) = € ¢'(X, K3 (L
i€Np
with
C(X,E™{ch) = @ KMV (k(x),ve ®nge) Lia)
zeX®

where X () is the set of points of codimension i in X, Ly =Ly @0y, k(x) and v, = det(N,/x)
with NV x the normal sheaf of z in X, i.e. the dual of mxyx/mg(vx. We denote C(X, K;\/IW) =
C(X, K}"™V{Ox}).

Recall Definition A.7 and the following notation (taken from | , bp. 121-122]).
Notation B.3. Let 2 € X be such that {} is smooth, y € @(1) and £ be an invertible
Ox-module. We denote by

a; : Kivlw(/g(x), Vg ®n(z) ﬁ\x) — K}k\{\?](ﬁ(y)7 Vy ®n(y) 'C\y)
the twisted canonical residue morphism associated to the discrete valuation of (’)my.

If {x} is not smooth, the morphism ay KMW(k(x), vy Pp(z) Llz) = KMY(k(y), vy ®u(y) Liy)
is the sum over the points z above y in the normalisation of {x} of the composition of the
adequate twisted canonical residue morphism and of the transfer morphism associated to y and

z (see | , Subsection 2.1] or Feld’s article | | (take M = KMW in Feld’s notations) or
Déglise’s notes | -
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Definition B.4 (Differential of the Rost-Schmid complex). Let j € Z and £ be an invertible
Ox-module. The differential of the Rost-Schmid complex associated to X, j and L is the
morphism dx j ¢ : C*(X, K;VIW{E}) — (X, K}-“W{ﬁ}), denoted d for short, given by:

Y k=YY g
zeX () zeX () yem(l)
Note that the sum which appears in the above definition is well-defined since, with the same

notations as above, for every k, the number of y € m(l) such that 0 (k;) # 0 is finite (see
[ , Sections 4 and 7| (especially axiom FD) or Déglise’s notes | D).

By | , Theorem 5.31], the Rost-Schmid complex is a complex, i.e. for all i € Ny,
d* o d’ = 0, hence we can define the Rost-Schmid groups as follows.

Definition B.5 (Rost-Schmid groups). Let i, € Z, £ be an invertible Ox-module. The
i-th Rost-Schmid group associated to X, j and £, denoted by H'(X, K?IW{E}), is the i-th
cohomology group of the Rost-Schmid complex C(X, K?AW{L’}), ie.

HY(X, KY"{L}) = ker(d")/ im(d" ")
where by convention d* = 0 if i < 0. We denote H*(X, KMW) Hi(X, KMW{OX})

Note that by definition, for all i € Ny and j € Z, C*(Spec(F ),K?WV) = K]MW( )if i =0, to
0 otherwise, hence Hi(Spec(F),K;-VIW) = K]MW(F) if i =0, to 0 otherwise.
Remark B.6. Note that by | , Theorem 5.47] Rost-Schmid groups generalize Chow-Witt
groups CA'I;TZ(X) if X is a smooth F-scheme and i € Ny then H*(X, KMW) = é\ﬁl(X)

Let us now state the property of homotopy invariance of Rost-Schmid groups.

Theorem B.7 (Theorem 5.38 in | ). Let m: Ak, — X be the projection, i € Ny and j € Z.
The induced morphism 7 : H'(X, Kivlw) — H"(Ak,ﬂyw) is an isomorphism.

Note that it follows from this theorem that for all n,i € Ny and j € Z, Hi(A%,K?4W) is
canonically isomorphic to Hi(Spec(F),K?lw) hence to K]MW(F) if i = 0, to 0 otherwise.

We now define boundary triples and boundary maps, which were introduced by Feld in | |
(following what Rost did in | D

Definition B.8 (Boundary triple). A boundary triple is a 5-tuple (Z,7, X, j, U), or abusively a
triple (Z, X,U), with i : Z — X a closed immersion and j : U — X an open immersion such
that the image of U by j is the complement in X of the image of Z by ¢, where Z, X, U are
smooth F-schemes of pure dimensions. We denote by dz and dx the dimensions of Z and X
respectively and by vz the determinant of the normal sheaf of Z in X.

Remark B.9. Let (Z,i,X,j,U) be a boundary triple. Note that, similarly to | , (3.10)], for
each integer m, the complex C*+42~dx (7, Km+dZ dx 1vz}) is a subcomplex of C*(X, KMW) with
quotient complex C*(U, K. %W) and that we have for each integer n a canonical isomorphism

CM X K, Y) = et (2, K Yy, g {vz)) @ € (U K™)

Notation B.10. We denote the projections by i* : C*(X, KMW) — ¢e*tdz—dx (7, KEEFVXZ dx1vz})
and j* : C*(X, KMWV) — ¢*(U, KMW) and the inclusions by i, : C*+t92~dx(Z, K?&VEZZ dx1vz}) =
C* (X, KMW) and j, : C*(U, KMV) = ¢*(X, KMW) (see Remark B.9).

Remark B.11. Note that since i, (resp. j*) is the inclusion of a subcomplex (resp. the projection
to a quotient complex), it commutes with the differentials of the complexes, hence induces a
morphism i, : H"(Z, KMV{v;}) — Hntdx—dz(x, K%dex d4,) (resp. j* : HY(X, KMW)
H™(U, KMWY)).  Also note that this morphism i, coincides with the pushforward along the
closed immersion 7 : Z — X (see | , Subsection 2.3]) and that this morphism j* coincides

with the pullback along the open immersion j : U — X (see | , Subsection 2.4]).
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Definition B.12 (Boundary map). Let (Z,4, X, j,U) be a boundary triple. The boundary map
associated to this boundary triple is the morphism

9:C(UKMWV) — cotttdz—dx (7 kMW {vz})

induced by the differential d of the Rost-Schmid complex C(X, KMW), i.e.:
0=1i"odo j,

The following theorem is a special case of the more general exact triangle theorem in homo-
logical algebra (the boundary maps being the connecting morphisms).

Theorem B.13. Let (Z,i, X, j,U) be a boundary triple. The boundary map induces a morphism
0 : H"+dx—dZ(U,K%YdX_dZ) — H" N Z, KMW{uz)) and we have the following long exact
sequence, called the localization long exact sequence:

%
n+dx —d MW J
H X Z(X7Km+dx—dz) -

(=

H™(Z, K3 {vz})

0

J* Hn+dX_dZ(U, KIVIW )

m+dx—dz Hn+1(Zv K%W{VZ}) R

B.2. The Rost-Schmid groups of punctured affine spaces. Let us now compute the Rost-
Schmid groups of A%\ {0} for n > 2. To do this, we use the following lemma (which is also used
in the main part of the paper).

Lemma B.14. Let L be an invertible Ox-module. For all i, € Z, the morphism
Cl(X, K {ceL}) — Cc(X,KMW)

Y he®@la®l) Y ks

zel zel

where 1 is a finite subset of X k, € Kjl\/i\iv(m(x),yx) and Iy € L, \ {0}, is a well-defined
isomorphism which commutes with differentials.

Proof. Note that elements of C?(X, K?/[W{E ® L}) are of the form ) .; m, ®t, with I a finite
subset of X m, € Kjl\f‘iv(ls(:c)) and t, € Z[(v2®(LR®L)|;)\{0}]. Let x € I. Since v, @(LRL)|,
is a k(z)-vector space of dimension 1, there exist n, € Kjl\/i\,fv(n(x)) and s; € (12 ®(LRL)|;)\{0}
such that m, ® t, = ny ® s,. By definition of Kjl\f\;v(/{(x), vy ), there exist hy € Kjl\f\;v(/{(x), Vy)
and Iy, 7z € L), \ {0} such that ny ® sz = hy ® (Il ® r). Since L), is a k(z)-vector space
of dimension 1, there exists v, € k(x)* such that r, = v.l,. It follows that h, ® (I, ® ry) =
(V2)hy @ (I ® ;). Denoting ky := (v;)h,, we get that elements of C*(X, K?/IW{E ® L}) are of
the form » "k, ® (I, ®1,) with I a finite subset of X@, k, € KMW(k(),v,) and I, € £}, \ {0}.
This mi)i)hism is well-defined since if - k, @ (o ®1z) = > oy ki ® (I, ®1},) with I, J finite
subsets of X, k., k, € KMW (k(z),v,) and I, I}, € £}, \ {0}, then for all z € TUJ\ (INJ),
ky = ki, = 0, and for all x € TN J, Il, = ugl, for some u, € F* and k, @ (I, ® l,) =
(W2 k!, @ (I @ 1) = k.. @ (I, ® ;) hence k!, @ (I ® I;) = ks @ (I, ® I;) hence k!, = k,. The
preceding equality k, ® (I, ®l),) = k; ® (I ® l;) shows that the morphism
Ci(X,Ki"™") — CY{X,K}"{L®L})

ke o D ke ® (e ®L)

xel zel
is well-defined, which shows that the morphism in the statement is an isomorphism. The com-
mutation with differentials is straightforward. U
Definition B.15. Let n > 2,j € Z be integers and o : det(Ngy/an) — Oqoy ®@ Ojgy be an

isomorphism. The isomorphism o gives rise to an isomorphism H°({0}, Kﬁuw{det(/\/’{o} /an)})
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— HO({0}, K} {00y ® Ofq}}) hence to an isomorphism o : HO({O},Kyw{det(N{o}/A%)})
— HO({O},Ké\/IW) = KJMW(F) by Lemma B.14. We call o the isomorphism induced by o.

Proposition B.16. Let n > 2,7 > 0 and j € Z be integers. Denoting by ¢ : A%\ {0} — A'L
the inclusion and by O the boundary map associated to the boundary triple ({0}, A%k, A%\ {0}),
the morphisms ¥* : KJMW(F) o~ HO(AT},K?/IW) — HO(A%\ {0},5?4“7) and & : H" L(AT \
{0},&?4“/) — HO({O},K?/I_W{det(/\/{o}/&%)}) ~ KJI\EVX(F) are isomorphisms and if i ¢ {0,n—1}

n

then H'(AT\ {0}, K}™) = 0.
Proof. The localization long exact sequence (see Theorem B.13) associated to the boundary triple
({0}, p, AL, 9, A%\ {0}) gives us the following exact sequences for all j € Z and ¢ ¢ {0,n — 1}:
w*
0 HO(AR, KY™) " HO(AR\ {0}, )W) —0

0

0 — H" (AR \ {0}, K}"™) —— H ({0}, K™ {det(N{o}/an)}) —=0

j_
0—— (A} {0}, K)™) —0
O

Remark B.17. Note that the Rost-Schmid groups of A%\ {0} are already known (combine | ,
Lemma 4.5] with | , Corollary 5.43], | , Example 1.5.1.19] and | , Theorem 5.46]),
but the explicit definition of isomorphisms we did above is important for the two following defi-
nitions, the first of which is used in the definition of the quadratic linking degree (see Definition
2.11) and the second of which is used in the definition of the ambient quadratic linking degree
(see Definition 2.13).

Definition B.18 (The conventional isomorphism for A% \ {0}). The conventional isomorphism
¢: HY AR\ {0}, K3™) — W(F)
is the composite of the boundary map
0 HY (AR \ {0}, K3™) — HO({0}, K3 {det(Nygy /2) )
(which is an isomorphism by Proposition B.16), of the isomorphism
HO({0}, KM {det(Wgy 03 )}) — K3 (F)
induced by the isomorphism det(/\/{o}m%) — Og0) ® O(oy which sends ©* A?* to 1 ® 1, where
A2 = Spec(F[u,v]) (see Definition B.15) and of the canonical isomorphism (which sends n? to 1)
KMYV(F) — W(F)
Definition B.19 (The conventional isomorphism for A%\ {0}). The conventional isomorphism
¢+ H (A \ {0}, K3™) — W(F)
is the composite of the boundary map
0« H(Ap \ {0}, K3™) — HO({0}, KXY {det(Ngy /)3
(which is an isomorphism by Proposition B.16), of the isomorphism
H°({0}, KMV {det (Mg} ja1)}) — K25V (F)
induced by the isomorphism det(N{O}/A%) — Og0y ® Oygy which sends Z5 A7* AZ* A ftol®l,

where A% = Spec(F[z,y, 2,t]) (see Definition B.15) and of the canonical isomorphism (which
sends 7% to 1)

KMW(F) - W(F)
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B.3. The intersection product of oriented divisors. The intersection product is defined

from the exterior product (see | , Subsection 3.1]), which is also known as the cross product
(see | , Section 11]) and the pullback along the diagonal (see | , Subsection 3.3]), which
is also known as the Gysin morphism induced by the diagonal (see | , Section 10]).

Definition B.20 (The intersection product) Let A : X — X x X be the diagonal. The
intersection product - : H (X, KMW) x H" (X, KMW) — H (X, KMW) is the composite of the

=545
exterior product p : H'(X, KMW) x H" (X, KMW) H*H (X x X, K¥VW) with the pullback
(a.k.a. Gysin morphism) A* : H (X x X, Ké\ivjv) — H'' (X, K%VJV)

The proposition below states that the intersection product is a product.

Proposition B.21 (Subsection 3.4 in | | or Theorem 11.6 in | ). The intersection

product makes @ a\ﬁl(X) into a graded KY™ (F)-algebra, which is called the Chow- Witt ring.
1€Np
In this paper, we are interested in the intersection product of oriented divisors and often use
the following proposition.

Proposition B.22 (Subsection 3.4 in | ). Let c1,co be oriented divisors in X, i.e. c1,cq €
HY(X, K}W). The intersection product of ¢; with ¢y, denoted by ¢y - ca, is (—1)-commutative:

Cy-Cl = <—1>(01 . 02)

The following formula (or rather the formula in Corollary B.24) is used to compute the
intersection product in Sections 3 and 4. This theorem, which has been proved by Déglise, will
be made available in the second part of his notes | |; we give a proof sketch below.

Theorem B.23. Let X be a smooth F'-scheme. Let D1, Do be smooth integral divisors in X such
that D1 N Dy is of codimension 2 in X. For all i € {1,2}, let g; be a local parameter for D;, i.e.
gi 15 a uniformizing parameter for Ox p,. The intersection product of 1 ® gi* € HY(X, Kllww)
(over the generic point of D) with 1 ® gz* € H'(X, K)™W) (over the generic point of Dy) is
the class in H?(X, KIQVIW) of the sum over the generic points x of the irreducible components of
D1 N D3 of (mg)e(ug) @ (T2 @71*) (over the point x), where 7, is a uniformizing parameter for
Ox2/(g1), ug is a unit in Ox 5/(g1) and my € Z such that go = uym)** € Ox 5/ (91)-

The ideas of the proof are the following:

e Reduce the problem to the case where Dy = div(gy).

e Denoting by i1 : D1 — X the inclusion and by ©7 : HO(Dl,Klan) — HO(Dl,K%WV{l/Dl})
(where vp, is the determinant of the normal sheaf of D; in X) the isomorphism which
sends 1 to 1 ® gr*, check that 1® gr* € HY(X, K}MW) is equal to (i1).(01(1)).

e Use the projection formula (Theorem 3.19 in | |) to show that:

(i1)(01(1)) - (1 ®G2") = (i1)«(O1(1) - (i1)"(1 @ 72))

e Use Proposition 3.2.15 in | |, which states that if ¢ is the closed immersion of a
principal divisor D = div(w) and j is the complementary open immersion to 4, then it =
Y] 0j', to show that (i1)* = 01 0Y(g;10(J1)*; with j1 the complementary open immersion
to i1, 01 the boundary map associated to the boundary triple (D1,41, X, j1, X \ D1) and
Y(gy) the multiplication by [g1].

e Deduce from the previous steps the equality below and conclude:

(1®g") - (1©72%) = (i1)«(O1(1) - (01 0 yfgy) © (71)") (1 ® 527))
Corollary B.24. Let X be a smooth F-scheme. Let D1, Do be smooth integral divisors in X such
that D1N Dy is of codimension 2 in X . For alli € {1,2}, let g; be a local parameter for D; and f;
be a unit in k(D;) = Ox p,/mx p, such that for all generic points x of irreducible components of
DiNDs, fi € k(z) = Ox z/mx ;. is a unit. The intersection product of {f1)®g1* € H'(X, KMW)

over the generic pomt [4) D1 with 12 ®92* € Hl X, [(1\4 over the genem’c pomt o D2 18
=1
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the class in H?(X, 534“’) of the sum over the generic points x of the irreducible components of
Di1N Dy of (myg)e(fifoug) @ (Tz" @a1*) (over the point x), where  is a uniformizing parameter
Jor Ox 2/(g1), ug is a unit in Ox 5/(g1) and my € Z such that go = uymy* € Ox4/(91).

Proof. First note that, with the notations above, f; € r(z) is well-defined since if f; and f/
are two representatives in Ox p, of fi € k(D;) (hence differ by an element of mx p,) and
if fi, fl € Ox, are sent by the canonical morphism ¢ : Ox, — Oxp, to fi,fl € Ox.p,
respectively, then f;, f/ € Ox, differ by an element of mx , (since ¢71(mX7Di) Cmyz).

Note that for all ¢ € {1,2}, (fi) ®g* =1® Figi- with f;g; a local parameter for D; (figi €
mX,Di/m%(,Di is well-defined since f; € Ox p,/mx p, and g; € mx p, and (a representative of)
figi € mx p, is a generator of mx p, since (a representative of) f; is a unit in Ox p, and g; is a
generator of mx p,).

Therefore, by Theorem B.23, the intersection product of (fi) ® g1* with (f2) ® gz* is the
sum over the generic points x of the irreducible components of D1 N Dy of (my)(vy) @ (T* ®
E*) (over the point z), where 7, is a uniformizing parameter for Ox ,/(f191), vy is a unit in
Ox z/(f191) and my € Z such that fags = v,7)"* € Ox/(f191)-

Note that since fp is a unit in k(z), uz := f; ‘v, is a unit in &(z) and (mg)e(ve) ®@ (T @
Fi91) = (ma)e( foug) @ (T* @ figr ). Further note that since fi is a unit in x(z), the ideal (f1g1)
is equal to the ideal (g1) in Ox , and (Mmg)c( fous) ® (T ®flgl*) = (mg)e(f1foug) @ (T2* R71%).
Finally note that, by definition of uz, g2 = w7} € Ox/(g1)- O
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