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Abstract  24 

Over the course of history, humans have moved crops from their regions of origin to new 25 

locations across the world. The social, cultural, and economic drivers of these movements 26 

have generated differences not only between current distributions of crops and their climatic 27 

origins, but also between crop distributions and climate suitability for their production. 28 

Although these mismatches are particularly important to inform agricultural strategies on 29 

climate change adaptation, they have, to date, not been quantified consistently at the global 30 

level. Here, we show that the relationships between the distributions of twelve major food 31 

crops and climate suitability for their yields display strong variation globally. After 32 

investigating the role of biophysical, socio-economic and historical factors, we report that 33 

high-income world regions display a better match between crop distribution and climate 34 

suitability. In addition, although crops are farmed predominantly in the same climatic range as 35 

their wild progenitors, climate suitability is not necessarily higher there, a pattern that reflects 36 

the legacy of domestication history on current crop distribution. Our results reveal how far the 37 

global distribution of major crops diverges from their climatic optima and call for greater 38 

consideration of the multiple dimensions of the crop socio-ecological niche in climate change 39 

adaptive strategies.  40 

 41 
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 47 

Introduction 48 

Ensuring food security while adapting to climate change and preserving the environment is a 49 

central challenge for humanity [1,2]. Adaptive strategies in agriculture notably include the 50 

migration of cropland to areas that will be more suitable for agricultural production according 51 

to different scenarios of climate change (e.g. [3–6] and the selection of new species and 52 

varieties better adapted to future climatic regimes (e.g., [7–9]). These strategies should lead to 53 

a better adjustment of the distribution and identity of crops to climatic conditions which could 54 

in turn reduce the need for agricultural inputs [10] and improve the resilience of agricultural 55 

systems to climate change [11]. However, apart from limited evidence of crop presence in 56 

areas of low climatic suitability (e.g., [12]), the relationships between the current distribution 57 

of crops and the suitability of climate for their growth have been largely overlooked, leaving 58 

unknown the potential for improving matches between crop distribution and climate. 59 

Recent shifts in where crops are grown at both global and regional scales suggest that human 60 

societies modulate the distribution of cropland areas to buffer the adverse effects of climate 61 

change on crop yields [13,14]. Conversely, environmental and agricultural factors that 62 

directly affect crop yields, such as soil characteristics (e.g., [3]), crop pests (e.g. [15]) or the 63 

use of agricultural inputs (e.g. irrigation and fertilisation, [16,17]) can decouple the 64 

distribution of crops from the suitability of climate for their growth. The fact that farmers 65 

adapt the crops they grow according to complex socioeconomic factors can also lead to strong 66 

inconsistencies in the distribution of crops with respect to climate [18]. Deciphering the role 67 

of multiple biophysical, agricultural and socio-economic factors in shaping the relationships 68 

between crop distribution and climate suitability is therefore a crucial step in assessing the 69 

potential levers that human societies have to reduce crop distribution-climate suitability 70 

mismatches. 71 



In addition, crops have undergone substantial geographical expansion over millennia, from 72 

their respective centres of origin to the rest of the world [19]. Such historical changes in the 73 

geographical distributions of crops are well documented globally (e.g. [20]). However, the 74 

extent to which climatic conditions in areas where crops have been introduced (i.e. the 75 

introduced range) differs from that in the crop's centres of origin (i.e. the native range) 76 

remains largely unknown. This is particularly problematic given that sites of crop origin host 77 

much of the associated agrobiodiversity, including numerous crop wild progenitors and 78 

relatives as well as traditional farmer varieties [21,22]. As such, these centres are perceived as 79 

reservoirs from which to draw new genetic resources to improve crop resilience and 80 

adaptation to future climatic conditions [23,24]. However, if historical globalization, together 81 

with innovations in agricultural practices, have shifted the climatic niche of crops (i.e. the 82 

range of climates where a crop is grown) from the one of their wild progenitors, domesticated 83 

plants may no longer share the same climatic optima as their wild progenitors.  84 

In this study, we use a global dataset of the geographic distribution of crop areas and yields 85 

[25] to characterise the current climatic niche of twelve major food crops and investigate how 86 

the distribution of their harvested areas co-vary with climate suitability for their yields (Figure 87 

1). Using multiple regressions, we quantify the marginal effects of climate on crop yields 88 

while controlling for the role of multiple soil, topography, agricultural inputs and socio-89 

economic factors to determine climate suitability for the yield of each crop. Then, we build a 90 

mismatch index to analyse the relationship between harvested areas and climate suitability 91 

and to examine the role of non-climatic factors in producing these (mis)matches. Finally, we 92 

quantify shifts between the native and the introduced climatic range of crops and test whether 93 

harvested areas, climate suitability and crop areas-climate suitability mismatch differ across 94 

the two ranges.  95 

 96 



Material and Methods 97 

Crop data set 98 

We tested the relationship between the distribution of harvested areas and climate suitability 99 

for barley, cassava, groundnut, maize, potato, rapeseed, rice, sorghum, soybean, sugarbeet, 100 

sunflower and wheat (Supplementary Table S1). The 12 crops were chosen because they are 101 

widely cultivated worldwide, providing more than 70% of calorie intake globally [16], and 102 

because agronomic and wild progenitor data are available. For each of these crops, the global 103 

distribution of harvested area and yield was extracted from public data sources that have been 104 

created by combining national-, state-, and county-level census statistics with a global data set 105 

of croplands for the 1997-2003 period at a 5 arc-minute (~10km) resolution [25]. We 106 

controlled for the influence of the availability of agricultural land [26] by computing the 107 

fraction of available cropland allocated to each crop’s growth in each grid cell. For each crop, 108 

harvested areas is therefore expressed in terms of percentage of available cropland.  109 

Crop progenitors data set 110 

We used native occurrences of each crop´s wild progenitors to delineate the climatic range of 111 

the centre of origin of each crop (i.e. native climatic range). We identified 23 progenitors of 112 

the 12 crops using published literature (Supplementary Table S1; [27]). Wheat includes 113 

Triticum aestivum and Triticum durum, which are the two main wheat species cultivated 114 

worldwide. Therefore, we considered the progenitors of both wheats. There are also two 115 

species of cultivated rice, Oryza sativa (Asian rice) and Oryza glaberrima (African rice). 116 

However, because O. sativa is by far the main cultivated species of rice, we only considered 117 

the wild progenitor of the Asian rice in our analysis. We extracted progenitor occurrence 118 

records from five global and two regional databases. We used the BIEN and rgbif packages in 119 

R to download global occurrence records from the Botanical Information and Ecology 120 



Network [28] and the Global Biodiversity Information Facility databases, respectively. In 121 

addition, we extracted global occurrences of crop wild progenitors from “A global database 122 

for the distributions of crop wild relatives”, the BioTIME database [29] and GENESYS 123 

(https://www.genesys-pgr.org/). We downloaded further regional occurrences using the 124 

RAINBIO database, which contains records for Sub-Saharan African vascular plants [30] and 125 

speciesLink, a national database for plant and animal occurrences in Brazil 126 

(https://splink.cria.org.br/). Because occurrence data are often inaccurate [31], we removed 127 

records that were documented before 1950. Further, we used the CoordinateCleaner package 128 

in R [32] to remove occurrence records found within a 1 km radius of country and capital 129 

centroids, with equal longitude and latitude coordinates, or assigned to institutional locations 130 

such as botanical gardens, herbaria or the GBIF Headquarters. We also removed records with 131 

high coordinate uncertainty (over 10 km), cultivated records (e.g. breeding/research material, 132 

advanced/improved cultivar, GMO and those found in markets or shops, institutes/research 133 

stations and genebanks and from seed companies), and records located in the sea/oceans. For 134 

progenitors with the same species name as their crop, we only extracted records confirmed as 135 

wild and ignored any record with an unknown cultivation status. We also removed records 136 

outside of the wild species native range to ensure no introduced or cultivated records were 137 

included. Native ranges were identified at administrative levels according to the USDA 138 

Agricultural Research Service, Germplasm Resources Information Network. After filtering, 139 

8715 occurrence points remained for 23 wild progenitor species of the 12 crops 140 

(Supplementary Table S1). 141 

Climatic, soil, topographic, agronomic and socio-economic data set 142 

We collected eight bioclimatic variables from the CHELSA database [33] at a 30 arc-seconds 143 

(~1 kilometre) resolution that corresponded to the mean of annual data for the years 1979–144 

2013 (Supplementary Table S2). This includes mean annual temperature (BIO1), temperature 145 



seasonality (BIO4), maximum temperature of the warmest month (BIO5), minimum 146 

temperature of the coldest month (BIO6), annual sum of precipitation (BIO12), precipitation 147 

of the wettest (BIO13) and driest (BIO14) months, and precipitation seasonality (BIO15). 148 

These eight variables were selected to capture mean, seasonal and extreme (potentially 149 

limiting) temperature and precipitation regimes.  150 

We estimated the role of agricultural factors by gathering the amount of nutrients applied on 151 

individual crops (hereafter fertilisation in ton/ha) and the percentage of land area equipped for 152 

irrigation (hereafter irrigation). We used the Nutrient-Application-For-Major-Crops maps [17] 153 

that compiled national and subnational data of mineral fertilizers, manure, and atmospheric 154 

deposition with detailed maps of crop areas to produce crop-specific nutrient application rate 155 

(tons per ha) at a 5 arc-minute resolution (Supplementary Table S2). These data represent 156 

mean annual values for the 1997-2003 period. We downloaded the Global Map of Irrigation 157 

Areas from the FAO AquaStat portal that represents the percentage of area equipped for 158 

irrigation circa 2005 as a 5 arc-minute raster (Supplementary Table S2). Soil pH, organic 159 

content and maximum water holding capacity were used to define soil conditions. These data 160 

were collected from the ISRIC World Soil information portal at a 250m resolution 161 

(Supplementary Table S2). Topography was characterized by terrain slope from the EarthEnv 162 

portal at a 1km resolution (Supplementary Table S2). Finally, socio-economic factors were 163 

approximated by the Human Development Index (HDI) and Gross Domestic Product (GDP). 164 

HDI is a composite index of average achievement in three key dimensions of human 165 

development (a long and healthy life, being knowledgeable and having a decent standard of 166 

living [34]). We downloaded these data from the Gridded global datasets for Gross Domestic 167 

Product and Human Development Index over 1990-2015 at a 5 arc-min resolution 168 

(Supplementary Table S2). For each index, we computed the mean of 1990-2015 annual data. 169 

Climate, soil and topography layers were all upscaled to a 5 arc-minutes resolution using the 170 



aggregate function from the raster package [35]in the R software to match the resolution of 171 

the crop dataset. 172 

Data analyses 173 

We used a PCA to characterize the main axes of variation of the climatic conditions of the 174 

terrestrial surfaces occupied by cropland globally (step 1 in Figure 1). We used the global 175 

distribution of cropland areas at a 5 arc-minute resolution [26] and selected pixels with 176 

cropland cover >0. We extracted the values of the bioclimatic variables previously described 177 

for each of these pixels and summarized their variation according to the two first principal 178 

component axes (Dim. 1 and Dim. 2, respectively). Dim.1 explained 51.1% of the variance 179 

and principally reflected the variation in temperature with increasing values corresponding to 180 

increasing mean annual temperatures and decreasing seasonality in 181 

temperature (Supplementary Figure 1). Dim.2 explained 26.8% of the variance. It was related 182 

to precipitation, with increasing values corresponding to increasing seasonality in 183 

precipitation and decreasing total annual precipitation (Supplementary Figure S1). The PCA 184 

was performed using the factoMineR R package (Husson et al., 2020). Hereafter we use 185 

“climatic niche” to refer to the portion of the climatic space made by Dim.1 and Dim.2 that is 186 

occupied by a crop (i.e. the range of climatic conditions where a crop is found). Dim.1 and 187 

Dim.2 are identical among crops and thus comparable.  188 

We then projected harvested areas (in % of available cropland) and yields within the climatic 189 

niche of each crop (step 2 in Figure 1). We used the function rasterize from the raster R 190 

library [35] to build a 150 x 150 pixels grid defined by Dim.1 and Dim.2. For each pixel of 191 

this climatic grid, we computed the average values of the fraction of cropland allocated to 192 

each crop and average crop yield. This grid size was chosen so that each of these 150x150 193 

pixels corresponded on average to 25 pixels of the geographical distribution of crops (and 194 



thus to 25 measures of yields and harvested areas). We smoothed harvested areas values using 195 

a loess regression to identify hot- and cold-spots of cultivation (Supplementary Figure S2). 196 

Furthermore, we assessed climate suitability by computing the marginal effects of climate (i.e. 197 

Dim.1 and Dim.2) on the yields of each crop while accounting for soil (i.e. soil organic 198 

content, soil pH, soil water capacity), topography (i.e. slope), agricultural inputs (i.e. 199 

fertilisation rate and irrigation) and socio-economics (i.e. gross domestic product and human 200 

development index) factors. For each 150 x 150 pixel of the climatic grid and each crop, we 201 

calculated the average values of these non-climatic factors. We used linear models and the 202 

function predict from the stats R library to quantify the marginal effects of Dim. 1 and Dim. 2 203 

(as second order polynomials) while controlling for the effects of non-climatic factors.  204 

Climate suitability thus corresponds to the expected yields given the climate, all other things 205 

being equal. 206 

 Third, we quantified the extent to which the distribution of harvested areas matched climate 207 

suitability for the yields of each crop (step 3 in Figure 1). We calculated Spearman correlation 208 

between smoothed values of harvested areas and climate suitability. For each crop, we 209 

randomly sampled 1,000 pixels of the 150 x 150 pixels climatic grid, computed Spearman 210 

correlation index and repeated the process 1,000 times to calculate 95% confidence intervals 211 

of the correlation index.  212 

Then, we analysed variation in the relationships between harvested areas and climate 213 

suitability within the climatic niche of each crop by computing a local mismatch index (step 4 214 

in Figure 1). We computed for each crop and for each pixel of the climatic niche the centiles 215 

of the smoothed values of harvested areas and the centiles of climate suitability. We 216 

calculated the log-ratio between climate suitability centiles and crop areas centiles. The 217 

resulting mismatch index varied between log(0.01) (climate suitability value belonging to the 218 

1
st
 centile/harvested areas value belonging to the 100

th
 centile) and log(100) (climate 219 



suitability value belonging to the 100
th

 centile/ harvested areas value belonging to the 1
st
 220 

centile). When equal to zero, this index indicates a balanced situation (i.e. absence of 221 

mismatch) between  harvested areas and climate suitability. Positive values describe situations 222 

where climate suitability is disproportionately large with respect to the portion of cropland 223 

allocated to a crop while negative values indicate situations where crop harvested areas are 224 

disproportionately large with respect to climate suitability.  225 

We examined the role of agricultural inputs, soil conditions, topography and socio-economic 226 

factors in generating matches and mismatches between harvested areas and climate suitability. 227 

We used linear models to quantify the effects of each of these factors on the absolute values 228 

of the mismatch index of each crop. Using the absolute value of the crop area-climate 229 

suitability mismatch index allowed differentiating factors that are associated with a low 230 

mismatch from the ones associated with a high mismatch, whether the mismatch was in the 231 

direction of  harvested areas or climate suitability. All covariates were scaled before analysis 232 

so that estimated coefficients are comparable.  233 

Finally, we compared the climatic conditions in areas where crops have been introduced (i.e. 234 

introduced range) to those where the wild progenitors live (i.e. native range) to investigate 235 

how agricultural expansion could affect the relationships between current crop areas and 236 

climate suitability. We defined the native climatic range of each crop by drawing convex 237 

polygons around occurrence points of its wild progenitors (see step 2 in Figure 1; [21]). 238 

Because species occurrence data is prone to geo-referencing errors and because the use of 239 

convex polygons is sensitive to outliers, we removed crop wild relative occurrence points 240 

with Mahalanobis distance to the centroid of the native climatic range ≥ 10. The introduced 241 

climatic range of a crop corresponded to the portion of its climatic niche occupied by the crop 242 

but outside its native range. For each crop, we compared mismatch index, crop distribution 243 



and climate suitability between the two climatic ranges through an analysis of variance. All 244 

analyses were conducted using R version 4.0.3. 245 

Results 246 

Relationships between harvested areas and climate suitability  247 

The models used to quantify climate suitability explained between 35% (groundnut) and 73% 248 

(maize) of the variance of crop yields (Supplementary Table S3). We found significant 249 

positive correlations between the distribution of harvested areas and climate suitability for 250 

eight of the 12 major crops under study (barley, groundnut, maize, rapeseed, soybean, 251 

sugarbeet, sunflower and wheat) (Figure 2). The other four crops - cassava, potato, rice and 252 

sorghum - displayed significant, negative harvested areas-climate suitability correlations 253 

(Figure 2). The magnitude of positive correlations varied between 0.2 (maize) and 0.9 (barley) 254 

while negative correlations varied between -0.25 (sorghum) and -0.5 (cassava) (Figure 2).  255 

Local (mis)matches between harvested areas and climate suitability 256 

The analysis of the mismatch index revealed strong variation in the relationships between 257 

harvested areas and climate suitability for crop yields (Figure 3). This index allowed the 258 

identification of climatic zones where crop areas (in % of available cropland) were 259 

disproportionately large with respect to climate suitability (blue zones in Figure 3), zones 260 

where climate suitability was disproportionately large with respect to harvested areas (red 261 

zones in Figure 3) and zones with balanced harvested areas and climate suitability (beige 262 

zones in Figure 3). Imbalanced zones were particularly marked for cassava, potato, rice and 263 

sorghum (i.e. crops displaying negative harvested areas - climate suitability correlations). The 264 

harvested areas of cassava, rice and sorghum was disproportionally large with respect to 265 

climate suitability in the warmest climates with strong precipitation seasonality while zones 266 

with lower harvested areas with respect to climate suitability were concentrated in colder 267 



climates with strong temperature seasonality (Figure 3). The mismatch index of barley (i.e. 268 

the crop showing the strongest positive correlation between harvested areas and climate 269 

suitability) showed the lowest variation, situations with balanced harvested areas and climate 270 

suitability predominating (Figure 3).  271 

Drivers of harvested areas - climate suitability (mis)matches  272 

Overall, soil conditions, topography, agricultural inputs and socio-economic factors together 273 

explained between 16% (groundnut) and 43% (wheat) of the variation in the absolute value of 274 

the mismatch index (Figure 4). For all crops except groundnut, cells with higher Human 275 

Development Index (HDI) and/or Gross Domestic Product (GDP) showed a higher match 276 

between the amount of cropland area devoted to a crop and climate suitability for its yield (i.e. 277 

negative effect on the mismatch index; Figure 4 & Supplementary Table S3). Soil conditions 278 

and topography were other important drivers of the mismatches but their effects varied among 279 

crops (Figure 4 & Supplementary Table S3). For all crops except cassava and sugarbeet, cells 280 

with higher soil organic content displayed greater mismatches between harvested areas and 281 

climate suitability (Figure 4 & Supplementary Table S3). Higher soil pH was associated to 282 

higher mismatches for barley, groundnut, maize, potato, rape, rice, sorghum, soybean and 283 

sugarbeet and wheat and to lower mismatches for cassava and sunflower (Figure 4 & 284 

Supplementary Table S3). Compared to these biophysical factors, agricultural inputs exerted 285 

lower influences on harvested areas - climate suitability mismatches (Figure 4 & 286 

Supplementary Table S3). Increasing fertilisation had negative effects on the mismatch index 287 

for barley, groundnut, maize, rapeseed, sorghum and wheat (Figure 4 & Supplementary Table 288 

S3). Similarly, increasing irrigation had negative effects on the mismatch index for barley, 289 

cassava, groundnut, rape, rice, soybean and wheat (Figure 4 & Supplementary Table S3).  290 

Native vs introduced climatic ranges 291 



Native and introduced climatic ranges always fully overlapped, with native ranges 292 

corresponding approximately to the centre of the climatic niche of each crop (Figure 3). The 293 

average mismatch between harvested areas and climate suitability in the native climatic 294 

ranges was negative for all crops except barley, indicating relatively large harvested areas 295 

with respect to climate suitability for crop yields (Figure 5). By contrast, the average 296 

mismatches in the introduced climatic ranges was null or slightly positive, with the highest 297 

values observed for rice and sorghum (Figure 5). In addition, the harvested areas of all crops 298 

were larger in native climatic ranges (Figure 5 & Supplementary Figure 2) while the average 299 

climate suitability for crop yields was worse in introduced ranges (Figure 5 & Supplementary 300 

Figure 3).   301 

Discussion 302 

Here, we report for the first time the relationship between the global distribution of twelve 303 

major food crops and climate suitability for their yields. We find that the amount of available 304 

cropland allocated to a crop and climate suitability for its yields are positively correlated for 305 

eight of these crops, confirming that climate is a determinant element in the choice of 306 

cultivation areas [13,14]. However, we report negative correlations between harvested areas 307 

and climate suitability for cassava, potato, rice and sorghum. We also reveal strong variation 308 

in the relationships between harvested areas and climate suitability for all crops, even for 309 

those crops that display positive harvested areas-climate suitability correlations. Together, 310 

these results clearly indicate that the global distribution of crop areas is not optimised for 311 

climate and that several other factors limit this adjustment. 312 

Our results demonstrate the importance of socio-economic factors in regulating the 313 

relationships between the distribution of crop harvested areas and climate suitability for 314 

yields. Globally, regions with high gross domestic product and high human development 315 



index display better adjustments of crop distributions to climate. The richest regions of the 316 

world also display the lowest differences between observed yields and those potentially 317 

attainable (so-called “yield-gap”, [17,36]). These regions might therefore be best able to 318 

optimize the distribution of crop areas in relation to climate and environment, potentially 319 

through strong investments in agricultural policies, centralized planning and greater 320 

regionalization of production areas in these countries [37]. In addition, we report negative 321 

correlations between harvested areas and climate suitability for the yields of three crops that 322 

are all commonly found across smallholder and subsistence food systems, namely cassava, 323 

sorghum and rice. Cassava is notably a key crop for food security across the African continent 324 

and represents a lifeline when other crops fail due to droughts or pest outbreaks, especially 325 

during famine period [38]. Sorghum is also staple crops of smallholder farmers in sub-326 

Saharan Africa [12,39], and almost 30% of rice cultivation in South Asia takes place in low-327 

input farming systems [40]. These results suggest that poorer regions may grow staple crops 328 

that still produce food under harsh climatic conditions that deviate from crop climatic optima, 329 

so that harvested areas are disproportionately large with respect to climate suitability. 330 

Soil conditions and farming practices are other important drivers of the relationships between 331 

harvested areas and climate suitability, which can either enhance or limit the adjustment of 332 

crop distribution to climate. Soil conditions are indeed important drivers of crop yield and 333 

modulate crop responses to extreme climatic events such as drought [41]. However, a panel of 334 

farming practices can modify edaphic conditions, including liming, mulching and the addition 335 

of organic matter [42]. These practices can therefore enhance the potential of crop cultivation 336 

in zones with suitable climate but unsuitable soil characteristics. Conversely, irrigation and 337 

fertilisation can be used to overcome low climate suitability by allowing crops to be cultivated 338 

beyond their biophysical limits. Accordingly, the use of agricultural inputs can generate 339 

mismatches between harvested areas and climate suitability. This is notably the case for 340 



potato (i.e. the fourth crop that displays negative harvested areas - climate suitability 341 

correlation) for which we found positive effects of both irrigation and fertilisation on the 342 

mismatch index (Figure 4). However, we also report numerous cases where agricultural inputs 343 

have negative effects on the mismatch index, indicating higher rates of fertilization and 344 

irrigation where climate suitability and harvested areas are in balance. This result can reflect 345 

the fact that agricultural inputs are mostly used to increase the productive capacity of areas 346 

that are already (climatically) suitable for crop yield  [16,17].  347 

Other factors, not directly considered in this study, can further explain the decoupling 348 

between the distribution of harvested areas and climate suitability for crop yields. The fact 349 

that some crops share the same climatic optima (e.g. wheat and barley, Supplementary Figure 350 

3), leading to competition for space, can for example increase the mismatches between 351 

harvested areas and climate suitability. These mismatches may also arise because local food 352 

systems, and especially smallholder ones, typically cultivate a diversity of crops to serve 353 

multiple purposes (livelihood, subsistence, pest control [43]). Management factors such as 354 

multiple cropping systems [44] and year-to-year crop rotations [45] can further create patterns 355 

of harvested areas that deviate from climate suitability. Interspecific interactions, and notably 356 

the presence of natural enemies (pests and pathogens), may be another important driver of 357 

these mismatches since farmers may choose to reduce the area allocated to a crop that is 358 

exposed too intensely to pests. Although there is no globally available dataset for pests across 359 

many crops, we were able to test this hypothesis for sunflower using published occurrence 360 

records of Sclerotinia sclerotiorum [46], a major sunflower pathogenic fungus worldwide (see 361 

Supplementary Figure S4 for details). We found that harvested areas were disproportionately 362 

large compared climate suitability in presence of the pest (Supplementary Figure S4). This 363 

result shows that the presence of S. sclerotiorum and the associated yield damage can hardly 364 

be separated from the effects of climate at this scale, probably because the pest share the same 365 



climatic niche as its host [46]. Nevertheless, these results, if true for other crops and pests, 366 

would suggest a strong ecological anchoring of the harvested areas - climate suitability 367 

mismatches.  368 

Finally, our results bring novel insights to understand how the geographical expansion of 369 

crops from their origin centres to the rest of the world has affected their climatic niche. 370 

Despite the global homogenization of cropping patterns [20,47], we show that major crops are 371 

still farmed predominantly in their native climatic range. Such differences in the distribution 372 

of harvested areas between native and introduced climatic ranges can highlight the biological 373 

constraints of crop species to wide climate adaptation. However, we find that native climatic 374 

ranges do not necessarily represent the highest climate suitability for crop yields. This might 375 

reflect the fact that farming practices and plant breeding has modified the climatic 376 

requirements of crops with regard to their wild progenitors [48], so that crops and their wild 377 

progenitors no longer share the same climatic optimums. These findings have major 378 

implication for agricultural science and breeding programs that increasingly look at crop wild 379 

relative as promising reservoir of genetic diversity to enhance crop adaptation to heat or 380 

drought (e.g. [21,24,49,50]. Accounting for differences in climate suitability between crops 381 

and their wild progenitors will be a critical issue for the development of novel crop varieties 382 

from these wild species.  383 

Before concluding, it is important to mention some limitations of our study, which are mainly 384 

related to the nature of the datasets available for this work. First, we cannot exclude that our 385 

approach might overestimate the mismatches observed between crop’s harvested areas and 386 

climate suitability. This is notably because we cannot account for intra-specific (e.g., 387 

commercial varieties, landraces) variations in climatic ranges within each crop species. 388 

However, intra-specific variations are expected to play a lesser role at global scale, compared 389 

to a finer spatial scale[51]. Second, conclusions about the role of irrigation might be limited 390 



since the nature of the data (i.e. % of land equipped for irrigation) does not depict the actual 391 

irrigation of each crop. Finally, the agricultural data we used may appear a bit dated, as it 392 

presents the average, global distribution of crop areas and yields for the 2000s [25]. It also 393 

neglects year-to-year variability in the global distribution of crop areas and yields. Although 394 

temporal changes in the global distribution of crop harvested areas can mitigate the negative 395 

effects of climate on agricultural production [13], the extent to which these dynamics do 396 

affect the magnitude of the harvested areas-climate suitability mismatch remains to be 397 

quantified. Another promising extension of this work will be to consider the temporal 398 

variability of crop yields, yield stability being key for the adaptation of global agriculture to 399 

climate change [52]. 400 

To conclude, many strategies for coping with climate change in agriculture implicitly aim to 401 

improve the match between the distribution of crop areas and climate. Accordingly, studies 402 

have focused on the climatic niche of crops to predict future patterns of crop distribution and 403 

to identify crops and wild relatives best adapted to future conditions. However, the fact that 404 

multiple ecological, agricultural, socio-economic and historical factors govern the choice of 405 

farmers to cultivate a particular species strongly limits the global adjustment of crop 406 

distribution to climate, today. A main challenge for the coming years will therefore be to 407 

comprehensively integrate these dimensions to define the socio-ecological niche of crops [53] 408 

so as to design efficient strategies that can sustainably deal with climate change in agriculture. 409 

Extrapolating the socio-ecological niche of crops to future climate conditions will also 410 

provide crucial information for estimating the socio-economic costs that will need to be 411 

invested in order to improve the match between crops and future climate. 412 
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Figures 579 

580 
Figure 1: General framework for estimating (mis)matches between harvested areas and 581 
climate suitability for crop yields. First, we compute a unique 2D climatic space based on the 582 

global distribution of cropland and the two first dimensions of a PCA (Dim.1 and Dim. 2) that 583 
summarizes variations in eight bioclimatic variables related to mean, seasonality and extremes 584 

values of temperature (temp) and precipitation (prec). The portion of this climatic space that a 585 
crop occupies defines its climatic niche. Second, we project the global distributions of 586 
harvested areas and yields of twelve major food crops (here maize) as well as the distribution 587 

of their wild progenitors into the climatic niche of each crop (see Methods for details). The 588 
portion of the climatic niche that is occupied by wild progenitors (black polygons) represents 589 
the native range of the crop. We use multiple regression to model climate suitability as the 590 
marginal effects of Dim.1 and Dim.2 on crop yields while controlling for numerous non-591 

climatic factors. Third, we quantify the relationship between harvested areas and climate 592 
suitability by computing Spearman’s correlation index. Fourth, we analyse variation in the 593 
harvested areas-climate suitability relationship by computing a local mismatch index (see 594 
Methods for details). Positive values (red) indicate climatic zones with higher climate 595 
suitability with respect to harvested areas. Negative values (blue) indicate climatic zones with 596 
higher harvested areas with respect to climate suitability. Null values (beige) represent 597 
balanced harvested areas and climate suitability.  598 
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 599 

Figure 2: Correlation between the distribution of harvested areas and climate suitability for 600 

the yield of twelve major food crops. For each crop, we randomly sampled 1,000 pixels of the 601 

climate grid, computed Spearman correlation index between harvested area and climate 602 

suitability and repeated the process 1,000 times. Black dots indicate mean spearman 603 

correlation indices and horizontal bars indicate 95% confidence intervals.  604 
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 607 

Figure 3: Variation in the harvested areas-climate suitability mismatch index within the 608 

climatic niche of twelve major food crops. Dim. 1 summarizes the variation in mean, seasonal 609 

and extreme temperature. Dim. 2 summarizes the variation in mean, seasonal and extreme 610 

precipitation. Beige colours indicate balanced harvested areas and climate suitability. Red 611 

represents zones where climate suitability is disproportionately high with respect to harvested 612 

areas. Conversely, blue indicates regions where harvested areas are disproportionately large 613 

with respect to climate suitability. Black polygons delineate the climatic space occupied by 614 

crop wild progenitors (i.e. native climatic range). 615 
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 618 

Figure 4: Estimated coefficients of the mismatch models for twelve major food crops. The 619 

effects of agricultural inputs (Fertilisation and Irrigation; blue), topography (slope; green), soil 620 

(SOC, pH, water capacity; brown) and socio-economic (GDP and HDI; pink) factors are 621 

modelled as linear terms. Positive effects on the absolute values of crop distribution – climate 622 

suitability mismatch indicate an increase in the decoupling between the distribution of 623 

harvested areas and climate suitability for crop yields while negative effects indicate an 624 

increasing match between both parameters. Coefficients of determination are shown (r²). 625 
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 628 

Figure 5: Average mismatch index (a), climate suitability (b) and harvested areas (c) in the 629 

native (red) and introduced (blue) climatic ranges of twelve major food crops. Dots indicate 630 

average values +/- 95% confidence intervals.  631 
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