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ABSTRACT
The management of Big Data requires flexible systems to handle
the heterogeneity of data models as well as the complexity of ana-
lytical workflows. Traditional systems like data warehouses have
reached their limits due to their rigid schema-on-write paradigm,
that requires well identified and defined use cases to ingest data.
Data lakes, with their schema-on-read paradigm, have been pro-
posed as more flexible systems in which raw data are directly stored
in their original format associated with metadata, to be accessed
and transformed only when users need to process or analyze them.
Thus, it is necessary to define and control the different levels of ab-
straction and the dependencies among functionalities of a data lake
to use it efficiently. In this article, we present a formal framework
aiming to define a data lake pattern and to unify the interactions
among the functionalities. We use the category theory as theoreti-
cal foundations to benefit from its high level of abstraction and its
compositionality. By relying on different categories and functors,
we ensure the navigation among the functionalities and allow the
composition of multiples operations, while keeping track of the
entire lineage of data. We also show how our framework can be
applied on a simple example of data lake.

CCS CONCEPTS
• Information systems→ Decision support systems; Business intel-
ligence; Data management systems; Information storage sys-
tems; • Software and its engineering → Architecture description
languages; • Computer systems organization → Architectures;
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1 INTRODUCTION
Changes in the way of producing and consuming data have led to
the emergence of new issues for information systems. Big Data are
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especially tied to 5 main concerns, usually referred to 5V: Volume,
Variety, Velocity, Veracity and Value. Management of such data
requires appropriate environments offering enough flexibility to
support heterogeneous data with different models, but also multiple
data analysis tools and complex pipelines or workflows. Traditional
systems like data warehouses have thereby reached their limits due
to their schema-on-write paradigm. Indeed, when using Extract-
Transform-Load (ETL) processes to ingest data, the time-consuming
and difficult data integration and cleaning steps require well known
use cases, that hinder the flexibility of such systems.

Data lakes have been proposed as flexible environments for stor-
ing and analyzing Big Data [13] with a schema-on-read paradigm.
In other words, raw data are usually directly stored in their original
format and only processed when needed, but at the cost of complex
model transformations that are supported by users. Different kind
of metadata are proposed to help users to navigate, select, validate
and transform data according to their needs. To a certain extent,
it prevents from turning data lakes into data swamps [20], whose
usability is reduced because of the difficulty to localize data.

Data lakes have been described multiple times in the literature
[9, 41, 44], but we follow Hai et al.’s definition [25]:

A data lake is a flexible, scalable data storage and man-
agement system, which ingests and stores raw data
from heterogeneous sources in their original format,
and provides query processing and data analytics in
an on-the-fly manner.

This definition is fairly complete. It presents the data lake as an
integrated system from the user’s perspective (for example a data
engineer), exposing multiple functionalities. At a technical level, a
data lake is in fact an architecture that brings together specialized
components.

Despite being defined as systems for both storing and processing
data with management and analytical processes, few architectures
of data lakes take all these aspects into consideration in a unified
manner [44]. This has led to the creation of alternative systems like
Delta Lakes [2], Lakehouses [3] and Data Mesh [10], that focus on
improving a subset of functionalities of data lakes. As a result, these
systems have major drawbacks: they do not necessarily meet the
functional requirements and they lack robustness. One of the main
causes is that they are built as an assembly of isolated components
having different behavioral properties, and thus it is difficult to
ensure the validity of the expected properties for the whole system.
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However, the use of multiple components to support all the
functionalities of the data lake is inevitable. Thus, the notion of data
lake is in fact an architecture pattern in which the functionalities
are well-defined. To avoid the data lake construction issues, some
works narrow their system for a specific use case according to
different domains [31, 34, 36, 40, 43]. We adopt a more abstract
point of view, and aim to define a framework allowing to generalize
the data lake pattern and to unify the component interactions.

The greater control offered by robust systems is usually obtained
through solid theoretical foundations [5, 29], such as Codd’s rela-
tional model [8] and algebra for database management systems,
which can provide formal frameworks for studying different prop-
erties and their preservation or for building optimization processes.
Data lakes, as pragmatic solutions originally designed to resolve
industrial issues, were not defined at the time with strong theoret-
ical foundations to describe and validate their functionalities, or
to control their uses. Nevertheless, they could benefit from such
framework.

Category theory [15] is a meta-mathematical formalism intro-
duced in the 1940s by Saunders MacLane and Samuel Eilenberg. It
has already been successfully used for building formal frameworks
in various domains of computer science like functional program-
ming or software architectures. These domains especially benefit
from the high level of abstraction and compositionality of this the-
ory. Data lakes can greatly take advantage of these characteristics,
as data and functions need to be represented altogether. Indeed, the
schema-on-read paradigm requires enough expressivity to allow
all kind of processing, but it also necessitates constraints in order
to control data and metadata organization as well as their trans-
formations and analysis. Category theory can provide all of these
requirements.

In this article, we propose to use category theory to build a for-
mal framework allowing the interconnections among the different
functionalities of a data lake, and unifying the levels of abstraction.
It allows to compose the functionalities, and thus to keep track
of the lineage of data, in order to give a formal structure to data
lakes while coping with their need for flexibility. We also show the
usability of the framework by applying it to an example of simple
data lake.

The remainder of this paper is structured as follows. First, we
describe in section 2 the main functionalities of data lakes according
to the literature, we present other formalisms previously proposed
for data lakes and we show how the category theory can contribute
to the formalization of these systems. In section 3, we introduce the
main concepts of the category theory and our formal framework.
We then use it to model a small example of data lake in section 3.3.
Finally, we draw conclusions of our work and open up perspectives
for the future in section 4.

2 STATE OF THE ART AND DISCUSSION
In this section, after describing the main functionalities of data
lakes, we argue that various levels of abstraction and dependencies
among functionalities justify the need of a formalism allowing both
abstraction and composition. In a second part, we study the major
works regarding the formalization of data lake components and we
show how category theory can be used in this context.

2.1 Main Functionalities of Data Lakes
Reviews of the literature [9, 25, 41, 44] agree on 4 main function-
alities for data lakes, namely Data Storage, Data Ingestion, Data
Maintenance and Data Exploration.

Data Storage can take several forms in data lakes, from single
systems handling data heterogeneity with generic models [16, 39] to
polystores built as an assembly of specialized database management
systems [4, 24, 27]. As datasets must be properly and accurately
annotated with metadata so that the data lake does not become a
data swamp [20], the data storage functionality also includes the
storage of metadata.

Data Ingestion provides tools for connecting the system to data
sources, loading the data in streaming and/or batch manner and
retrieving or producing basic metadata [19, 38]. Some data may
require to only store aggregated insights to reduce their important
volume, as it is the case for data streams of sensor data with high
velocity.

Data Maintenance ensures: 1) the usability of the data by orga-
nizing the lake [1, 33] and by extracting more advanced metadata
[4, 17, 27], for example through profiling or through the discovery
of relationships among datasets; 2) the quality of data [16, 26], by
guarantying or improving it, for example through the application
of integrity constraints; and 3) the ease of use of the system by
providing functionalities that make schema-on-read simpler and
more efficient such as schema pre-integration [24].

Finally, Data Exploration functionality allows the discovery
of content in data lakes through unified query interfaces [4, 24]
or navigational algorithms based on measures of relatedness [17]
or faceted search [27]. During the exploration phase, datasets are
retrieved and integrated in an on-the-fly manner. Queries and algo-
rithms can be applied on them in order to obtain results according
to the case study.

The description of the functionalities extracted from the liter-
ature reveals two major characteristics of data lakes. Firstly, it
brings to light different levels of abstraction related to: 1) data,
including various models, formats and metadata; 2) software archi-
tectures, with different strategies and components that can be used
to store and process data; and finally 3) functionalities themselves,
composed to implement other higher level services. Secondly, the
definitions also reveal existing dependencies among the main
functionalities. Data exploration depends on data maintenance
and on data storage, data storage depends on data ingestion and
finally data maintenance depends on data storage.

The higher complexity induced by abstractions and dependencies
is a strong motivation for building a formal framework able to
ensure the robustness of data lakes and to control the interactions
among components.

2.2 On Formalization of Data Lakes
Only few proposals have been made to provide such formal frame-
work for data lakes. Most of previous works have focused on the
formalization of mostly isolated aspects of data lakes such as meta-
data models, data storage, analytical queries, etc.

Several models have been proposed for metadata modeling using
UML, entity relationship or graph theory. In [45] the authors state
that existing metadata models are either tailored for a specific use



A Formal Framework for Data Lakes Based on Category Theory IDEAS’22, August 22–24, 2022, Budapest, Hungary

case or not generic enough to be used in different contexts. They
extend their previous model called MEDAL (MEtadata model for
DAta Lakes) to build a more generic one called goldMEDAL, defined
on three levels: conceptual, logical and physical. The conceptual
level is formalized through set theory and describes data entities
and groupings, as well as hierarchy and lineage relationships. The
logical level puts together the previous elements through graph the-
ory concepts, especially nodes, edges and hyperedges. The physical
level is finally implemented with the metadata framework Apache
Atlas. The overall proposal of goldMEDAL is synthesized in a UML
class diagram.

In [42], a classification of metadata in two groups is proposed,
with a special attention given to metadata related to data gover-
nance concerns such as data access, quality and security. Metadata
describing various relationships among datasets are classified as
inter-metadata and metadata describing datasets themselves are
classified as intra-metadata. The conceptual metadata model is rep-
resented with a UML class diagram. A data lake architecture based
on three zones is also represented but not formalized. This proposal
has been later extended by the authors in [55] with a new analysis-
oriented metadata model, also conceptualized through a UML class
diagram.

Finally for metadata models, ensemble modeling and more pre-
cisely data vaults are used in [37] to create a model allowing better
evolutivity for data and schema. At the conceptual level, datasets
are classified inside satellites, logically abstracted inside hubs and
finally associated inside links. The proposal is represented with a
graph.

The storage layer of semantic data lakes has been formalized
with set theory in [11] as a tuple containing a set of data sources
(datasets), a set of metadata catalogs describing the datasets with
directed graphs, a global knowledge graph and a mapping function
relating metadata to knowledge concepts in the global graph. In the
same article, the authors also propose a set-theoretical formaliza-
tion of analytical queries. They are defined as sets of indicators of
interest measured along sets of dimensions of analysis. A response
to such query is a set of metadata and transformation rules allowing
the discovery of relevant data.

In [25], the authors compare four formal schema mapping lan-
guages based on tuple-generating dependencies (tgds), namely sim-
ple tgds, nested tgds, second-order tgds (SO tgds) and plain SO tgds,
as potential formal frameworks for integration tasks in data lakes.
The different tgds are compared depending on their expressiveness
as well as on the set of structural or reasoning properties they can
ensure among the existence of universal solutions, closure under
target homomorphism and allowing conjunctive query rewriting.
SO tgds languages are identified as more expressive than the other
two but also less reliable on the properties due to their higher time
complexity for model checking.

Despite existing attempts to formalize parts of data lakes, a for-
mal framework allowing a unified and complete representation of
all the functionalities and levels of abstraction of such systems is
still missing. Moreover, existing pieces of formal definitions are
mainly based on semi-formal and descriptive models like UML or
labeled graphs, which are not restrictive enough to guarantee math-
ematical, structural and/or reasoning properties to the proposed

model and to ensure their preservation in any subsequent concrete
implementation [6].

2.3 Contributions of Category Theory to Data
Lakes

Category theory is an abstract meta-mathematical theory. It helps
to reconcile the expressiveness of descriptive models and the restric-
tiveness of mathematical ones. This formalism has already been
successfully used to address some challenges of computer science,
for example to build a general framework for the specification of
concurrent systems [14] or to allow the compositionality of ma-
chine learning components [46]. To the best of our knowledge, it
has never been studied as foundation for a complete formal frame-
work for data lakes. Nevertheless, some works tackle relevant issues
to these systems with category theory.

Related to the data storage functionality, schemas and data in-
stances in relational databases have been modeled with small cate-
gories and set-valued functors in [47], and constraints with functors
and natural transformations later in [49]. Frameworks for object-
oriented databases have been proposed in [30] and for document-
oriented databases in [51]. The management of multi-model data
and data integration issues are studied in [28, 32, 52]with some basic
categorical tools like categories and functors as well as with more
advanced one like pullbacks, pushforwards and kan lifts. Finally,
metadata models based on category theory have been proposed
in [7, 12].

On data maintenance, category theory has been mostly used to
ensure data quality, through a metamodel adapted for geographic
information systems in [18] and through a framework for variability
models of software engineering in [35].

Finally, on data exploration, most of the existing works using
category theory focus on query processing. In [22, 23], monads
have been proposed as representation for queries, and monad com-
prehension is used for query processing. A query language imple-
mented with the functional programming language Haskell, based
on functors and using natural transformations for optimization is
presented in [50]. Category theory also serves as basis for a frame-
work of a search meta-engine in [53]. Other issues related to the
data exploration fonctionality of data lakes include data and schema
integration, which has been tackled in [48] with functorial data
migration operations, and the creation of data visualization, which
has been formalized in [54].

2.4 Synthesis
Data lakes have been detailed several times in terms of functionali-
ties, but a formal definition expressed through a theoretical frame-
work is still missing, and existing proposals either lack expressive-
ness or restrictiveness. Category theory is a promising candidate
as foundation for such framework and has already been used in
several relevant contexts for data lakes. A categorical definition
unifying all the main functionalities of data lakes should provide
the formal framework needed to improve them with mathematical
properties and theorems, while creating a bridge with the previous
works using the same formalism.
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3 FORMALIZATION
In this section, after a brief introduction to category theory, we give
a high level theoretical description of the main functionalities of a
data lake presented in section 2.1. We show how composition and
abstraction can be used to define different levels of representation
and how different types of functors can ensure the navigation
among them. We explain how our framework can be used to check
the validity of an implementation of a data lake. We finally illustrate
this on an example in subsection 3.3.

3.1 Category theory in a nutshell
Category Theory describes structures as categories and relations
between them with functors.

A category 𝐶 is defined by a collection 𝑂𝑏 (𝐶) of objects, a col-
lection 𝐻𝑜𝑚(𝐶) of directed relations between these objects, called
morphisms, and a binary associative operation (noted ◦) to com-
pose morphisms. The sub-collection of morphisms between an
object 𝑥 (called domain) and an object 𝑦 (called codomain), both
in 𝑂𝑏 (𝐶), can be expressed as 𝐻𝑜𝑚𝐶 (𝑥,𝑦), and a morphism 𝑓 be-
tween these objects is noted 𝑓 : 𝑥 → 𝑦. Each object 𝑥 ∈ 𝑂𝑏 (𝐶)
is associated with an identity morphism 𝑖𝑑𝑥 : 𝑥 → 𝑥 , acting as
neutral element with ◦.

A category 𝐶 is said to be locally small if 𝐻𝑜𝑚(𝐶) is a set,
small if 𝑂𝑏 (𝐶) and 𝐻𝑜𝑚(𝐶) are both sets and large otherwise.
There is also a large category Cat defined with all objects as small
categories and with all morphisms as functors between them.

A functor 𝐹 : 𝐶 → 𝐷 is a structure mapping the objects and
morphisms of a category 𝐶 to objects and morphisms of a category
𝐷 . Functors preserve identities, that is ∀𝑥 ∈ 𝑂𝑏 (𝐶), 𝐹 (𝑖𝑑𝑥 ) =

𝑖𝑑𝐹 (𝑥) , and preserve composition, that is ∀𝑓 : 𝑥 → 𝑦,𝑔 : 𝑦 →
𝑧, 𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 (𝑔) ◦ 𝐹 (𝑓 ).

A constant functor Δ𝐶−𝐷 : 𝐶 → 𝐷 is a special mapping that
collapses every object in 𝑂𝑏 (𝐶) to a single object 𝑑 ∈ 𝑂𝑏 (𝐷) and
every morphism in 𝐻𝑜𝑚(𝐶) to the identity morphism 𝑖𝑑𝑑 . Sur-
jective functors act on every not empty 𝐻𝑜𝑚𝐷 (𝑥,𝑦). A functor
𝐹 : 𝐶 → 𝐷 is said to be surjective if for every 𝑥,𝑦 ∈ 𝑂𝑏 (𝐷) and
every morphism in 𝐻𝑜𝑚𝐷 (𝑥,𝑦), there is at least one morphism
in 𝐻𝑜𝑚𝐶 (𝐹−1 (𝑥), 𝐹−1 (𝑦)) (surjective mapping on every morphism
of D).

A product of two categories𝐶1 and𝐶2 produces a new category
whose objects are all the possible pairs (𝑥,𝑦) with 𝑥 ∈ Ob(𝐶1) and
𝑦 ∈ Ob(𝐶2) and morphisms (𝑥,𝑦) → (𝑥 ′, 𝑦′) are pairs (𝑓 , 𝑔) where
𝑓 : 𝑥 → 𝑥 ′ ∈ Hom𝐶1 (𝑥, 𝑥 ′) and 𝑔 : 𝑦 → 𝑦′ ∈ Hom𝐶2 (𝑦,𝑦′). A
bifunctor has a product of categories as domain, and a category
as codomain.

3.2 Categorical Framework for Data Lakes
In this subsection, we propose a high level categorical framework
for data lakes, based on the description of the main functionalities
established in the literature and presented in section 2.

At the highest level of abstraction, a data lake can be seen as a
large category DL. This category is more precisely defined in ta-
ble 1 and is visually represented in figure 1. Its collection of objects
𝑂𝑏 (DL) includes three of the main functionalities identified in sec-
tion 2, namely Data Storage, Data Ingestion and Data Exploration.
These objects are themselves categories. The Data Maintenance

functionality has a specific representation. As it mainly transforms
data to improve their usability, it is represented by a bifunctor
Storage × Storage → Storage. It allows to define maintenance op-
erations that can have a single dataset along with its metadata as
input, but also operations that take two datasets with their metadata
as input (such as the discovery of relationship between entities).

store

Ingestion

explore StorageExploration

maintenance

DL

ObjectLegend:
 morphismCategory

Figure 1: Representation of the category DL

The figure 2 and the tables 1 and 2 synthesize the following
statements. The reader can use them as an helping guide of lecture.

The Data Ingestion functionality represents the entry point for
data into the data lake. To do so, its Ingestion category contains
three objects: 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎 for data as they are from their source,
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 for data as they enter into the data lake system and𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

that are extracted from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . The morphisms in this category
show the different steps of data ingestion, i.e., we 𝑙𝑜𝑎𝑑 the 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎
into the system to create a𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , this𝑑𝑎𝑡𝑎𝑠𝑒𝑡 can be 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚ed
(for example to compute aggregated data or to add some lightweight
information such as the timestamp of the entry in the data lake),
and some𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 can be 𝑒𝑥𝑡𝑟𝑎𝑐𝑡ed from this 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 .

The 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and its𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 must be stored into the data lake.
This functionality is supported by the Storage category. It is a
category, in which objects represent data at different levels of ab-
straction, linked by morphisms. The different levels considered are
the physical one with 𝑚𝑑_𝑠𝑦𝑠𝑡𝑒𝑚 and 𝑑_𝑠𝑦𝑠𝑡𝑒𝑚, the logical one
with 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , the conceptual one with𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 and the structural
one with 𝑚𝑑_𝑚𝑜𝑑𝑒𝑙 and 𝑑_𝑚𝑜𝑑𝑒𝑙 . The morphims link a 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
to its𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎, and the 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 to their respective
𝑚𝑜𝑑𝑒𝑙 . The different𝑚𝑜𝑑𝑒𝑙s are themselves linked to their storage
𝑠𝑦𝑠𝑡𝑒𝑚.

Once the data are stored, they can be accessed in order to be ex-
plored. It can be done with the Exploration category. The 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒
allows the 𝑙𝑜𝑐𝑎𝑙𝑖𝑧ation of a 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , through its𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎. It is pos-
sible to run some 𝑞𝑢𝑒𝑟𝑖es or 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚s on the retrieved 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 in
order to get the desired result.

With this representation, constant functors can link different lev-
els when lower level categories are embedded in objects of higher
level categories. For example, the refinements carried by the Stor-
age category are all embedded in one object of DL, namely 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 .
A constant functor Δ𝑆𝑡𝑜𝑟𝑎𝑔𝑒−𝐷𝐿 : Storage → DL can be used to
link the lower level category to the higher level one. Functorial laws
are satisfied because every object and every identity morphism in
the domain category is mapped to the same object and its identity
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Name Objects Morphisms (without identity morphisms)
DL storage, ingestion, 𝑠𝑡𝑜𝑟𝑒 : 𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 → 𝑆𝑡𝑜𝑟𝑎𝑔𝑒

exploration 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 : 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 → 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 : 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 × 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 → 𝑆𝑡𝑜𝑟𝑎𝑔𝑒

Ingestion raw_data, dataset, 𝑙𝑜𝑎𝑑 : 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎 → 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

metadata 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 →𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

Storage metadata, dataset, 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑_𝑏𝑦 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 →𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

d_model, d_system 𝑚𝑑_𝑚𝑜𝑑𝑒𝑙𝑒𝑑_𝑏𝑦 :𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 →𝑚𝑑_𝑚𝑜𝑑𝑒𝑙

md_model, md_system 𝑚𝑑_𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛 :𝑚𝑑_𝑚𝑜𝑑𝑒𝑙 →𝑚𝑑_𝑠𝑦𝑠𝑡𝑒𝑚
𝑑_𝑚𝑜𝑑𝑒𝑙𝑒𝑑_𝑏𝑦 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑑_𝑚𝑜𝑑𝑒𝑙

𝑑_𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛 : 𝑑_𝑚𝑜𝑑𝑒𝑙 → 𝑑_𝑠𝑦𝑠𝑡𝑒𝑚
Exploration catalogue, dataset 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒 : 𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒 → 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

metadata 𝑞𝑢𝑒𝑟𝑦 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑_𝑏𝑦 : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 →𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

Table 1: High level categories of the framework

Name Type Elements in Domain Elements in Codomain
𝑠𝑡𝑜𝑟𝑒 𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 → 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

𝑙𝑜𝑎𝑑 𝑖𝑑𝑑𝑎𝑡𝑎𝑠𝑒𝑡
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 𝑖𝑑𝑑𝑎𝑡𝑎𝑠𝑒𝑡
𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑_𝑏𝑦

𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 → 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑑_𝑚𝑜𝑑𝑒𝑙 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑑_𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

𝑚𝑑_𝑚𝑜𝑑𝑒𝑙 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

𝑑_𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑_𝑏𝑦 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑_𝑏𝑦
𝑑_𝑚𝑜𝑑𝑒𝑙𝑒𝑑_𝑏𝑦 𝑖𝑑𝑑𝑎𝑡𝑎𝑠𝑒𝑡
𝑑_𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛 𝑖𝑑𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑚𝑑_𝑚𝑜𝑑𝑒𝑙𝑒𝑑_𝑏𝑦 𝑖𝑑𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

𝑚𝑑_𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛 𝑖𝑑𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

Table 2: Functors used in the framework

morphism in the codomain category (identity preservation) and be-
cause identity morphisms can always be composed with themselves
(composition preservation).

To use the categories of the framework with an instance of a data
lake, each implementation of a functionality must be represented
in a category, that must be linked to its higher-level correspond-
ing category with a surjective functor. The surjective condition
ensures the respect of the proposed framework and its structure,
while allowing more complete descriptions of functionalities in the
category of the implementation. Furthermore, the morphisms of the
DL category add a constraint that forces the existence of functors
between the categories concerned by each morphism when they
are represented as objects in the DL category.

To ensure the navigation between the functionalities of the
data lake, functors exist between the Ingestion and the Storage
categories, and between the Storage and the Exploration categories.
The defined functors and morphisms force the direction of the
different transformations, and avoid the scattering of data. As the

categories that will be defined for the implementation must be
linked to their corresponding higher-level category, this forces also
the implementation to provide these functors between the different
implemented functionalities.

By relying on their constraints, such as the preservation of iden-
tities and the composition of morphisms, functors allow to keep
track of data from their loading into the data lake to the produc-
tion of results from a dataset in the exploration phase. Indeed, all
the objects and the morphisms of the domain category must be
sent to the codomain category. So, no information is lost when
switching from a functionality to another.

The maintenance functionality takes a different form in the
formalization framework. As it aims at improving the quality of
the datasets or the metadata in order to ease their use during the
exploration phase, two major applications of a maintenance oper-
ation can be found: improving a dataset or its metadata directly
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Figure 2: Representation of the categories Ingestion, Storage and Exploration, and the functors that link them

from themselves or improving a dataset or its metadata by rely-
ing on another dataset along with its metadata. Within the cate-
gory theory, it is possible to use bifunctors to cover both of these
applications. To do so, the bifunctor 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 is defined as
Storage × Storage → Storage. The first Storage category corre-
sponds to the one on which the maintenance operation is applied,
the second one corresponds to the one that will bring the elements
required to the improvement (it can be the same Storage category
as the first one when it is used to improve itself). The last Storage
category is the result of the maintenance operation, and can be
seen as the evolution of the first Storage category.

The figure 3 gives an overview of this mechanism. The objects
(𝑑𝑎𝑡𝑎𝑠𝑒𝑡,𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎) and (𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎, 𝑑𝑎𝑡𝑎𝑠𝑒𝑡) can be mapped either
on the object 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 or on the object 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 of the resulting
Storage category depending on the effect of the maintenance oper-
ation. We detail a little more this mechanism with an example in
the following section. The other associations of objects are omitted
for the sake of readability.

This representation allows the composition ofmultiplemain-
tenance operations, while giving freedom to apply them in any
order and to any data. Thus, the maintenance operations can be cho-
sen according to the individual needs of each dataset. Furthermore,
it has also constraints, as a maintenance operation can only be
applied on existing datasets and metadata. This contributes to
the identification of dependencies among datasets and metadata.

So, in its globality, this framework keeps track of the entire
lineage of data. It is possible to know the source of data, how
they have been transformed and the relationships that exist among
datasets. It also imposes constraints on the validity of transforma-
tions applied on data, and on the switching from a functionality to
another. Furthermore, operations can be composed, mainly with
the𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 functor, in order to allow a high flexibility that is
essential to data lakes.

3.3 Example
We propose to show the usability of our categorical framework by
defining a small data lake. We rely on the following use case: an
enterprise has data about their customers, and records their online
activity on the enterprise web applications.

The instances of the Ingestion and Storage categories are rep-
resented in figure 4. Regarding the data of the online activity, the
enterprise is not interested by all the data, so it performs an ag-
gregation operation in order to store only a summary of the data
(category Ing_ds1). The data of the customers are easier to handle.
As they are extracted from the enterprise information system, they
do not need any transformation before being stored into the data
lake (category Ing_ds2).

Once the data are ingested, they are stored in the data lake. For
the activity data, the dataset is modeled as time series and InfluxDB
is used as storage system. For the metadata, they are modeled as
graphs in Neo4j (category Str_ds1). Regarding the customer data,
the metadata are stored in the file system as JSON format, and the
dataset in the relational PostgreSQL database (category Str_ds2).

The table 3 states the effects of functors on the objects and
morphisms from the instance categories of the figure 4 to the cor-
responding high-level categories Ingestion and Storage. Thus, the
ingestion and storage functionalities of the implemented data lake
satisfy the requirements of the formalization including the surjec-
tivity condition on functors.

Once the two datasets are stored, a maintenance operation can
be applied on them (figure 5). In this operation, the dataset of
the temporal activity is enriched with the data about customers
(category Str_ds1_v2) in order to gain more information regarding
their different characteristics, for example their country that can be
used to make the typical hours of activity more precise. With this
enriched dataset, an exploration is performed, first to reduce the
dataset on a given period, and then to execute an anomaly detection
algorithm to reveal fraudulent uses.
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Figure 4: The ingestion and storage of the two datasets

This example demonstrates how the category theory supports
the navigation across abstraction levels and how properties on
functors constrain the implemented functionalities to comply to
the structure defined in the corresponding higher-level categories.
Moreover, the framework allows to represent all the potential func-
tionalities of a data lake, and thus to use it to check the validity of
an implementation of a data lake.

4 CONCLUSION
In this article, we have proposed a unified formal framework for
data lakes based on category theory. The navigation between the
different functionalities is controlled by functors and compositions,
that allow to keep track of the lineage of data while providing the
flexibility required by these systems. The levels of abstraction of the
data lake are linked with constant or surjective functors, that ensure

the validity of implementations of data lakes. We have shown on
an example how the framework can be used.

Unlike previous works on the formalization of data lakes, our
proposal considers a unified and complete view of all the main
functionalities identified by the literature, namely Data Ingestion,
Data Storage, Data Maintenance and Data Exploration. Thanks to
the expressiveness and restrictiveness of category theory, we have
also been able to represent and control the various dependencies
and levels of abstraction existing in data lakes. Category theory
additionally creates a bridge with existing works of the literature
using the same formalism, allowing their use as refinements of
some higher level aspects described in our framework.

As perspectives for future works, we plan to extend our for-
malism to allow the definition and control of complex and hybrid
workflows for accessing and querying data in data lakes. Such
workflows are indeed very important for these systems, in which a
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Figure 5: A maintenance operation followed by an exploration

variety of operations can be executed in the same environment like
for example operators of relational algebra, machine learning tasks
based on linear algebra, user-defined functions, etc. These various
operations could therefore be unified by expressing them through
categories, functors and bifunctors and then linked to the rest of
the framework. We also plan to introduce the physical level of com-
ponents in the data lake architecture by mapping the implemented
functionalities to their corresponding component through functors.
With this configuration, we can rely on a previous work [21] that
allows to check the conservation or the loss of technical properties
in an architecture with the category theory. We also think about
exploring more the capabilities of the 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 functor, that
could be used to control the models of the dataset and the metadata
depending on their original models with the (𝑑_𝑚𝑜𝑑𝑒𝑙, 𝑑_𝑚𝑜𝑑𝑒𝑙)
object of the product of categories. It can serve to detect model
transformations that will lose precision compared to the original
model.
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Functor Element in domain Element in
codomain

𝐼𝑛𝑔_𝑑𝑠1 → 𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑑𝑎𝑡𝑎 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎

𝑙𝑜𝑎𝑑 𝑙𝑜𝑎𝑑

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚

𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝐼𝑛𝑔_𝑑𝑠2 → 𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑑𝑎𝑡𝑎 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎
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